
Predicting Spatial Patterns of Plant Recruitment Using
Animal-Displacement Kernels
Luis Santamarı́a1*, Javier Rodrı́guez-Pérez1, Asier R. Larrinaga1, Beatriz Pias2
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Rey Juan Carlos, Móstoles, Madrid, Spain

For plants dispersed by frugivores, spatial patterns of recruitment are primarily influenced by the spatial arrangement and
characteristics of parent plants, the digestive characteristics, feeding behaviour and movement patterns of animal dispersers,
and the structure of the habitat matrix. We used an individual-based, spatially-explicit framework to characterize seed
dispersal and seedling fate in an endangered, insular plant-disperser system: the endemic shrub Daphne rodriguezii and its
exclusive disperser, the endemic lizard Podarcis lilfordi. Plant recruitment kernels were chiefly determined by the disperser’s
patterns of space utilization (i.e. the lizard’s displacement kernels), the position of the various plant individuals in relation to them,
and habitat structure (vegetation cover vs. bare soil). In contrast to our expectations, seed gut-passage rate and its effects on
germination, and lizard speed-of-movement, habitat choice and activity rhythm were of minor importance. Predicted plant
recruitment kernels were strongly anisotropic and fine-grained, preventing their description using one-dimensional, frequency-
distance curves. We found a general trade-off between recruitment probability and dispersal distance; however, optimal
recruitment sites were not necessarily associated to sites of maximal adult-plant density. Conservation efforts aimed at enhancing
the regeneration of endangered plant-disperser systems may gain in efficacy by manipulating the spatial distribution of dispersers
(e.g. through the creation of refuges and feeding sites) to create areas favourable to plant recruitment.
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INTRODUCTION
The spatial distributions of dispersed seeds play a crucial role in

determining the structure and dynamics of plant-populations [1,2].

While it is generally acknowledged that the spatial distribution of

seeds set the template on which subsequent demographic processes

(predation, germination, competition and growth) take place,

shaping the spatial pattern of adult plants [2–6], our knowledge of

the factors that determine the observed patterns of seed deposition

is still limited. For plants dispersed by frugivores (fruit-eating

animals), these factors include the density, spatial arrangement and

characteristics (e.g. fecundity, fruit size) of adult plants, the feeding

behaviour and movement patterns of animal dispersers and the

structure of the habitat matrix (which may determine the seed

shadow and subsequently influences seed fate) [7–10].

Most studies on seed shadows and plant recruitment patterns

use seed traps and seedling surveys to estimate the relationship

between seed (or seedling) density and distance from the seed

source (the ‘‘dispersal kernel’’) using various statistical models [11–

13]. These models (hereafter referred to as ‘‘1D dispersal kernels’’)

are generally based on unimodal distributions with a peak close to

the source and a long tail. Despite recent advances in the use of

these techniques, they are constrained by two limitations. Firstly,

in their analysis of seed-trap data, researches are generally

compelled to assume that seeds originate from the closest seed

source (i.e. the closest reproductive adult), therefore under-

estimating actual dispersal [14–16]. Secondly, 1D dispersal kernels

have the underlying assumptions of isotropic dispersal and habitat

homogeneity (across directions and distance), despite general

acknowledgement that they rarely hold in reality. As a conse-

quence, seed dispersal studies based on disperser ecology data

(foraging behaviour, gut passage time and movement patterns)

generally achieve different results from those based on seed-trap

and seedling-distribution data [17–22]. Although these differences

often underscore the anisotropy and context-dependence of

dispersal kernels [13], we are not aware of any study that has

attempted to generate spatially-explicit kernels based on animal

movement data (but see [23] for an example of spatial

heterogeneity generated by the overlap of isotropic kernels).

A second field of major advance in the ecology of frugivore-

mediated dispersal concerns the quality components of dispersal,

which include aspects influencing the subsequent fate of the

deposited seeds [24]. These include dispersal distance (which

reduces density-dependence seedling mortality), differential dis-

persal into different microhabitats (which modulates seed germi-

nation and seedling survival) and the effect of gut passage on seed

germination. While some of these factors have been extensively

addressed in laboratory and field studies [25–27], we still lack data

on the relationship between the spatial scales at which dispersal

processes operate in natural ecosystems and its various effects on

dispersal quality [10,28]. We aim at closing this knowledge gap by

incorporating to our spatially-explicit analysis of seed dispersal

several determinants of early seed fate, such as post-dispersal seed

predation, seed germination and seedling establishment, to obtain

‘‘plant recruitment kernels’’.

The inherent difficulties to accurately characterizing individual

seed-dispersal shadows and animal-disperser movements have

strongly limited their empirical study. However, recent advance-
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ments in the use of molecular techniques [29], animal telemetry

[17,19,22,30,31] and remote sensing (including accurate geo-

referencing) have opened the way for the compilation of detailed

data relating disperser movement and behaviour, habitat character-

istics, and the resulting spatial patterns of plant recruitment. This

framework is particularly important for the study of endangered

plants affected by mutualism disruption [32], because the in-

formation relating seed-dispersal scale and frugivore behaviour may

be used to quantify the effect of disperser loss (or its potential

reintroduction) on the spatial patterns of plant recruitment and,

through them, on plant population dynamics [33,34] .

In this paper, we use an individual-based, spatially-explicit

framework to characterize seed dispersal and seedling fate in an

endangered, insular plant-disperser system: the endemic shrub

Daphne rodriguezii and its exclusive disperser, the endemic lizard

Podarcis lilfordi. The following questions were addressed: (a) At what

scale does seed dispersal by lizards operate? (b) Does spatial variation

in dispersal result in spatial heterogeneity and/or in individual

variation in plant recruitment? (c) What are the relative contributions

of spatial effects, plant distribution and variation among individual

dispersers (lizards) to plant recruitment kernels? (d) What are the

relative contributions of disperser physiology (seed retention time,

gut passage effects on germination) and disperser behaviour (home

range, habitat use) to plant recruitment kernels?

To address these questions, we used a GIS platform to generate

plant recruitment kernels that combine field and laboratory data

on (1) the spatial distribution of plants and other habitat

characteristics (presence of shrubs, absence of soil on rocky

outcrops), (2) the retention time (gut passage rate) of seeds ingested

by lizards and its effect on seed germination, (3) the movements,

habitat use and daily activity rhythm of the disperser, and (4) the

effect of habitat characteristics on post-dispersal seed predation,

germination and seedling establishment.

RESULTS
The study area showed a fine-grained habitat structure, with small

patches (1 to 10 m) of vegetated areas (shrubs and pine forest: 54 and

5% of surface, respectively), bare soil (40%) and rocks (1%, including

rock outcrops and stone walls). The area included 38 large

reproductive adults of D. rodriguezii (Figure S1). All individuals

sampled (incl. 29 seedlings, 27 saplings and 46 sub-adults) grew

predominantly under shrubs (80%, as compared to 20% on bare

soil), in a proportion significantly departing from the null expectation

of proportionality to habitat cover (x2
1 = 39.2, p,0.0001; no

significant heterogeneity was detected among age classes).

In the study area, the activity, behaviour and habitat choice of

lizards did not vary significantly along the day, neither in the

15 min nor in the 45 min transects. The number of lizards

observed in the quick (15 min) transects varied significantly among

habitat types (x2
1 = 6.30, p,0.043), but differences in lizard

abundance between rocks, shrubs and bare soil (11%, 46% and

42% of observations, averaged across transects) matched habitat

availability (1%, 59% and 40% of surface, respectively). Lizards

observed during the slow (45 min) transects showed comparable

patterns of habitat use (Figure S2; x2
1 = 7.93, p,0.019) and were

predominantly observed moving (66% of observations as com-

pared to 32% on passive activities and 2% feeding; see Tables S1

and S2, and Figure S2 for details).

In both experiments, virtually all ingested seeds were defecated

intact (i.e. they were not digested, broken or crushed). Seed

retention times were considerably long, with peak defecation at

48–72 hours after ingestion and maximal retention times of up to

670 hours (Figure 1). Seed retention time did not differ between

the laboratory and the field experiment and was not affected by

lizard sex or seed weight (p,0.19, see Tables S3 and S4 for

details).

Figure 1. Two main determinants of seed dispersal by Balearic lizards: the retention time of seeds in the lizard’s gut (left axis) and lizard
movement over time (right axis). Seed retention time shows the relative frequency of defecation of previously ingested seeds (curve derived from
a cumulative log-normal fit). Maximum dispersal distance shows the distance between successive relocations of lizards by telemetry and the centre of
the lizard’s displacement kernel (exponential fit). Seed retention time peaks at the same time (48–72 hours) at which maximum dispersal distance of
lizards saturates. For both variables, mean values (6s.e.) per day are also represented; however, note that the displayed curves were fitted across all
measured values (not shown for clarity).
doi:10.1371/journal.pone.0001008.g001
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In the field experiment, the germination probability of seeds

ingested and subsequently defecated by lizards was comparable to

that of depulped, uningested seeds (0.3660.05 and 0.2860.05

respectively, mean6se) but significantly higher (x2
2 = 49.31,

p,0.0001) than non-depulped, uningested seeds (0.0160.01,

mean6se). Comparable results were obtained in the laboratory

experiment (which did not include non-depulped seeds). The

germination probability of ingested seeds increased significantly

with seed weight but this effect was reduced at increased retention

times (see Tables S5 and S6, and Figure S3 for details). In contrast,

seed germination rate was affected significantly by the factors

included in the analyses neither in the laboratory (Tables S7, S8,

S9) nor in the field experiment (z = 1.59, p = 0.11).

Telemetry data show that, given their small body size (5–10 g)

and locomotion method, lizards covered fairly large distances over

short periods of time (up to 90 m within 24 h). The relationship

between maximal distance and time was strongly non-linear

(y = 0.04220.010*t+0.0009*t2) and it did not vary among in-

dividual lizards (p.0.25, Table S10). Lizards quickly reached the

limits of their home ranges and, as a consequence, the maximal

distance from the centre of these ranges quickly saturated over

time (i.e. within 2 to 4 days; Figure 1). Therefore, the dispersal

distance of any ingested seed will only increase with time up to 2–

4 days (i.e. before the peak of the gut-passage curve). Over longer

periods (i.e. at the tail of the gut-passage curve), seed shadows will

depend on spatial patterns of visitation (displacement kernel and

habitat use of the lizard) rather than on the direction or speed of

the lizard movements.

Lizard home ranges and displacement kernels were strongly

anisotropic and varied largely in size and shape among different

individuals (Figure 2, Figure S4). Plant recruitment kernels provided

by the ten study lizards to each of the 38 plant individuals were also

anisotropic and highly variable (Figure S5). Core dispersal areas

were most often placed in areas of maximal lizard visitation, rather

than centred on the mother plant (Figure 3). As a consequence, only

a few curves were well-described by classical one-dimensional

equations (e.g. only 42% and 16% respectively had r2.0.50 and

r2.0.60; Table S11). In most cases, anisotropy of plant recruitment

kernels resulted in a high scatter of the frequency-distance relation-

ship, with frequencies peaking at a given distance in one direction

but showing values close to zero in other directions (Figure 3b) or

even showing several peaks corresponding to local areas of high

dispersal and recruitment (Figure 3c).

Moreover, owing to the strong differences in seed germination

and seedling survival between bare-soil and shrub-cover micro-

habitats (Traveset&Riera 2005), plant recruitment kernels were

fine grained (1–5 m), particularly outside core areas of maximal

lizard visitation. A variance partitioning analysis based on the

plant recruitment kernels provided by each individual lizard to

each individual plant showed that mean dispersal distance from

the mother plant was more strongly influenced by the lizard’s

displacement kernel than by the position of the mother plant (44%

and 4% of variance respectively), while the specific interaction

between both factors accounted for half of the variance (52% of

variance). In contrast, dispersal quality (average probability of

dispersal and establishment) was weakly influenced by the lizard’s

displacement kernel and the position of the mother plant (6% of

variance for each of both factors) and it depended mostly on the

specific interaction between both factors (88% of variance).

As a consequence, individual plants showed considerable

variation in recruitment probability per seed produced (average =

5.3*1025, range = 2.2*1025–1.9*1027) and mean dispersal dis-

tance (average = 28.3 m, range = 15–52 m), i.e. in potential plant

fitness (Figure 4, upper panel). This variation arises exclusively

from the spatial position of the individual plants in relation to

lizard territories. Spatial autocorrelation analysis showed signifi-

cant effects at small and medium scales, with positive Moran’s

I-values at distances ,20 m and negative values at distances

between 20 and 30 m (Figure 4, lower panels). The spatial pattern

of recruitment for the complete study population is centred in the

place of maximum lizard visitation, rather than close to the plant

population core (i.e. the place with maximum plant density). This

pattern also reflects the spatial effects on the contribution of plant

individuals to population recruitment, with plants at the centre of

the study area recruiting up to 100-fold more than plants in the

periphery (and four-fold more than the population average).

Recruitment probability (P) was inversely related to mean dispersal

distance (D), following a power relationship (D = 1.62*P20.22,

r2 = 0.67) with mean dispersal distances converging at 20–25 m for

medium to high recruitment probabilities (Figure S6).

DISCUSSION
Our study shows that, for the study system, plant recruitment

kernels are chiefly determined by the dispersers patterns of space

utilization (i.e. the lizards home-ranges and displacement kernels),

the position of the various plant individuals in relation to such

patterns, and habitat structure (shrub cover vs. bare soil). In

contrast to our expectations, seed gut-passage rate and its effects

on germination, and lizard speed-of-movement, habitat choice

Figure 2. Plant recruitment kernels generated by each individual
lizard. Probability of recruitment of each ingested seed (including post-
dispersal seed predation, seedling emergence and survival) is showed
as a colour gradient. The limit of the coloured area indicates the lizard
home range.
doi:10.1371/journal.pone.0001008.g002
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and activity rhythm were of minor importance. Predicted plant

recruitment kernels were strongly anisotropic and fine-grained,

preventing their description using one-dimensional, frequency-

distance curves. Traditionally used 1D-curves (e.g. exponential,

lognormal and Weibull functions) fitted significantly the

frequency-distance relationship, but provided highly inaccurate

descriptions owing to the broad range of variability (i.e. the huge

scatter of the datasets described by the curves) that arise from the

strong anisotropy of the recruitment kernels.

Despite its strong dependence on the spatial context, dispersal

characteristics showed a general scaling relationship, i.e. a non-

linear trade-off between probability of recruitment and dispersal

distance. The existence of a dispersal-establishment trade-off has

been a key assumption of many models based on plant traits (e.g.

those addressing the evolution of propagule size) [35] as well as

a number of models addressing spatial limitations to plant

recruitment [36]. Our model gives further support to this

assumption, since the relationship arises in this case from the

spatial variation in disperser use of space, i.e. it is independent

from other causes traditionally used to justify it.

Our work complements previous work aimed at describing the

dispersal curves of endozoochorously dispersed plants (largely in

1D, e.g. [22,37]; but also in 2D, [13,23]), while stressing the

necessity to incorporate aspects of disperser behaviour and habitat

structure that require the use of spatially-explicit predictions. It

departs from previous models [13,22,37] on a key assumption

derived from our results for this specific system: we based our

predictions on animal displacement kernels, rather than animal

speed of movement. This assumption was required by the nature

of our own data, namely the combination of long gut-passage

Figure 3. Three types of relationship between dispersal curves and plant recruitment kernels found for the lizard-shrub study system. The three
1D curves and recruitment kernels are selected among those modelled for the 38 plants present in the study area. For each plant, we calculated the
combined recruitment kernel provided by the 10 studied lizards (see Figure 2) and subsequently fitted a one-dimensional curve to a sample of 5000
points randomly selected from the modelled recruitment kernel. For a complete list of regression results of 1D fits for the 38 study plants (including
individuals 9, 13 and 2, shown here), see Table S11.
doi:10.1371/journal.pone.0001008.g003
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times of ingested seeds and the quick saturation of the disperser

dispersal distance (resulting from their rapid speed of movement in

relation to the home ranges). It is difficult to assess the generality of

this pattern, although the stated conditions (long gut-passage time,

rapid movements, relatively small home range) suggest that it is

more likely to occur in small reptiles and mammals, and perhaps

also in strongly-territorial passerines (should their high mobility

compensate for their short gut-passage times).

A counterintuitive result of our empirical observations and

experiments was the minor importance of seed gut-passage time,

gut passage effects on germination, and disperser speed-of-

movement, habitat choice, activity and defecation rhythm, for

Figure 4. Mean recruitment kernel of the study population, including the average probability of recruitment of each reproductive adult.
Probability of recruitment of each seed produced by the study population (including post-dispersal seed predation, seedling emergence and survival)
is showed as a colour gradient. Coloured dots indicate the position and average probability of recruitment (per seed produced) of 38 reproductive
adults present in the study area. The lower panels show the isotropic spatial autocorrelation (Moran’s I) of average plant recruitment. Since the data
structure was strongly anisotropic, we also show anisotropic spatial autocorrelation at four directions from the centre of the recruitment kernel.
Asterisks indicate distances at which Moran’s I significantly departed from zero: * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0001008.g004
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the predicted plant recruitment kernels–particularly since some of

these factors have been generally regarded as major determinants

of dispersal distance and quality [22,37]. In our specific study

system, gut passage times were very long in relation to animal

mobility within the home-ranges and it influenced seed germina-

tion only through its depulpation effect. The relative importance of

all these factors is likely to differ in other endozoochorous dispersal

systems in which the disperser shows quick directional movements

and marked habitat preferences (e.g. passerine birds, cassowaries,

emus; [17–19,22,38]. In all these systems, predictions based on

animal movements (rather than home-ranges) and/or habitat use

may be more adequate, and may result in predictions that are

well-described by one-dimensional curves ([12], but see [13]).

Our predictions indicate the existence of spatial variation in

plant recruitment and dispersal distance (i.e. in potential plant

fitness; Figure 4), arising exclusively from their spatial position in

relation to lizard territories-rather than from individual variation

in certain plant traits (such as fruit production; [13]). In

evolutionary terms, such variation represents a form of spatial

stochasticity that, through its strong effects on plant fitness, may

contribute (together with temporal variation and gene-flow effects)

to swamp small-scale local adaptation and is likely to interact with

the evolution of plant traits that mediate dispersal and recruitment

[39,40]. These results also indicate that optimal recruitment sites

at a given time are not necessarily identical or even nearby sites of

maximal adult-plant density, particularly in endozoochorously-

dispersed plants (which is strongly directional).

Conservation efforts aimed at enhancing the regeneration of

endangered plant populations in the Mediterranean basin,

particularly at the micro-scale [41,42], may gain in efficacy by

incorporating spatially explicit predictions of plant recruitment

such as presented here. Future considerations concerning the

reintroduction of Balearic lizards into existing populations of

Daphne rodriguezii should also take into account the necessity of

creating safe-sites for re-located individuals, and the bearing that

the distribution of these sites may have for the conservation target

(plant recruitment and population growth). The great promise

offered by recent developments in remote sensing, geo-referencing,

telemetry and spatially-explicit modelling suggest that this types of

approaches are likely to become valuable tools for the study of the

ecology and evolution of seed dispersal and the assessment of

conservation projects in the future.

MATERIALS AND METHODS

Study system
We studied the plant-disperser system formed by the endemic

shrub Daphne rodriguezii Teixidor (Thymelaeaceae) and its exclusive

seed disperser, the endemic lizard Podarcis lilfordi Günter

(Lacertidae) [32,43]. We studied this simple dispersal system

because both the quantitative and qualitative components of

dispersal, and the spatial scale in which operates have proven

effects on the spatial distribution and regeneration capacity of the

plant population [43]. Podarcis lilfordi is a small, diurnal lizard

endemic of the Western Balearic Islands (Mallorca and Menorca)

and closely related to the Eastern Balearic endemic lizard P.

pityusensis (Eivissa and Formentera). Both species play an important

role as pollinators and seed dispersers of many native plants [44],

with proven effects on their reproductive potential [32,45,46].

Daphne rodriguezii is a small evergreen shrub, endemic from the

coastal scrubland of Eastern Menorca Island (Balearic Islands,

Eastern Spain). Its fruits (orange-red drupes) develop in May-June

and are quickly removed and consumed by P. lilfordi lizards at the

only islet where the latter are still present (Colom Islet) [32]. No

other frugivores have been observed feeding on D. rodriguezii fruits,

either at Colom Islet or at any of the populations at Menorca Island

where lizards became extinct following to the introduction of exotic

carnivores [43,47]. These observations have been confirmed by

lizard-exclusion experiments carried out at Colom Islet [43].

Study site
Field work took place in a survey carried at the Colom Islet, a small

islet (surface,55 ha.) located c. 250 m offshore of the Menorca

Island (Figure S1), from June 14th to 21st 2005. It was concentrated

within the short time window (c. three weeks) at which seed

dispersal of D. rodriguezii by lizards take place [32]. Our study site

was located in a small peninsula (2.91 ha.; Figure S1) situated at

the Southern tip of the islet (4u169E, 39u579N, 10 a.s.l.), covered by

sclerophyllous garrige dominated by Phyllirea media, Pistacia lentiscus

and Erica multifolia. Part of the study site was surrounded by a small

stone-wall which, together with two large rocky outcrops, provided

numerous refuge sites for the lizard population.

Habitat characteristics and plant distribution
Data on habitat structure were entered in a GIS platform (ArcGIS

9.0, ESRIHArcMapTM 9.0). These included a digital elevation

model, based on 1:1000 cartography, and a habitat structure map

derived from a geo-referenced aerial photograph commercially

available. Habitat structure was obtained using a supervised

classification, with categories adjusted to match our field

observations during the study period (sclerophyllous shrubs, bare

soil, rock-outcrop and stone-wall). We also included in the

database the position of every large reproductive (i.e. fruit-bearing)

individual of D. rodriguezii found in the study area (only individuals

separated by distances larger than 5 m were geo-referenced

separately). During the survey, we assigned all individuals detected

to four age classes (seedling, sapling, sub-adult and reproductive

adult) and noted the microhabitat (under shrub vs. bare soil vs.

rocks and walls) in which they were found.

Lizard activity and habitat use
Daily activity rhythm of, and habitat use by P. lilfordi was estimated

using regular censuses of two fixed transects placed in the Eastern

and Northern limits of our study site (65 and 120 m length,

respectively), in order to avoid interfering with the movements of the

individuals followed by telemetry (see below). Throughout the study

period, both transects were censused always by the same observer

three times a day during the lizard’s activity period (morning: 10–

12 h, midday: 13–16 h and afternoon: 17–20 h). The observer

walked over the transect distance at a slow, approximately constant

pace and, for each detected lizard, he recorded the time, habitat type

(under shrub vs. bare soil vs. rock or stone wall) and behaviour.

Behavioural categories were grouped as considered relevant for seed

dispersal: moving vs. feeding vs. other categories (mostly passive in

terms of displacement). To assess whether recording lizard

observations at a low pace resulted in underestimates of lizard

activity (i.e. the number of lizards detected per transect), we also

made 28 quick transects (c. fifteen minutes, up to eight per day)

recording only the microhabitat where each lizard was detected.

Overall, we spend a total census time of 969 minutes.

Seed retention time
Seed retention time following ingestion by lizards was determined

in laboratory (2004) and field conditions (2005). The laboratory

experiment was carried out in more detail and was used also to

assess the effect of gut passage on seed germination. The field

experiment was used to assess whether differences in diet and

Plant Dispersal Kernels
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activity of laboratory individuals may have resulted in an

overestimation of seed retention time.

For the laboratory experiment, we used 19 recently-captured

lizards (ten males and nine females) maintained in the terraria of

the Terrestrial Ecology Laboratory (IMEDEA). Lizards were

captured at the Dragonera Islet (Mallorca Island) and individually

kept in separate terraria (17626617 cm) with an artificial grass

floor and a piece of brick as refuge. The spatial distribution of

these terraria was assigned randomly and rearranged on daily

basis. In the morning of June 14th 2004, D. rodriguezii fruits from 15

plants of Colom Islet (collected two days before and stored in the

refrigerator) were force-fed to lizards (two to five fruits per lizard,

depending on its body size). Fruits from each individual plant were

randomly assigned to two individual lizards (generally one male

and one female). After force feeding, lizards were fed with tomato

and water ad libitum throughout the experiment. Terraria were

checked three times a day: morning (9–10 a.m.), early afternoon

(3–4 p.m.) and late afternoon (9–10 p.m.). The number of

collections was reduced to twice a day (every eight hours; morning

and afternoon) five days after initiating the experiment, and once

a day (morning) 15 days after initiation. Defecated seeds were

counted and stored dry for subsequently determination of their

individual weight (60.1 mg).

The experiment was repeated in the field, using 30 individuals

of P. lilfordi (most of them adult males; 4–9 g) captured at Colom

Islet on June 15th 2005, using tomato baited pit-traps placed

nearby the radio-tracking area. Captured lizards were placed in

individual terraria in a quiet, shaded area and, after acclimating

overnight, they were force-fed with fruits from 15 plants collected

from a nearby population (Favàritx, mainland Menorca; at Colom

Islet, most fruits had been already consumed by lizards). Fruit from

each plant individual were assigned to two individual lizards.

Terraria were checked every two hours during daytime (from

10:00 to 20:00 h) for depositions (as above). We did not check

overnight, since lizards are not active during that period and

therefore produce very few droppings (pers. obs.).

Seed germination
Seeds obtained from the retention time experiments (laboratory

and field conditions) were sown in an experimental garden, under

artificial shading and automatically watered (twice a day) at the

onset of the wet, winter season (December 7th 2004 and November

11th 2005, respectively). Non-ingested depulped seeds from the

same plant individuals (c. six seeds per plant = c. 90 seeds) were

also sown as controls. (Seeds were depulped by gently scrubbing

the fruit flesh using absorbent paper; hence, depulpation did not

involve chemical or mechanical abrasion of the seed coat that

could mimic the effect of the lizard digestive system.) Seeds were

sown in germination trays (one seed per randomly-assigned,

464 cm pot) filled with horticultural mixture. In the field

experiment, we also sowed non-depulped control seeds (i.e. intact

fruits) to evaluate the germination potential of fruits directly fallen

from the mother plant [48,49]. Seed germination was monitored

once a week, until no new germination was recorded for at least

four weeks (until August in both experiments). Seeds that failed to

germinate during this period were considered as non-viable, since

D. rodriguezii does not show seed dormancy [32].

Characterization of lizard movements by radio-

telemetry
During the midday of June 14th 2005, pit-fall traps baited with

tomato were set up throughout the study site. At each trap, the

largest individual (mostly males) of P. lilfordi captured within

a 30 min period was selected. Ten of these lizards (7.0–

9.5 g60.1 g) were tagged with radio-transmitters (weight: 0.35 g,

operating life: up to 14 days; BiotrackH, Dorset, UK). Transmitters

were dorsally attached to the lizard by means of a small back-pack

placed over the shoulders and adhered to the back and chest. They

were followed with radio-receptors TR-4 and hand-held ‘H’

antennas (TelonicsH, Mesa, USA).

Two radio-receptors were used to simultaneously measure the

bearings of each radio-tagged lizard from two pairs of tracking

stations (used alternately over time, to maximize signal reception),

previously set and geo-referenced. The location of each radio-tagged

lizard was checked every 30 to 60 minutes throughout the day,

excluding the early afternoon period of low lizard activity (14:00 to

16:00 h) caused by high midday temperatures. Positions and

associated errors (the latter using a subset of three-bearing locations)

were calculated using LOASH (Ecological Software Solutions).

Data analyses
Field and experimental data on lizard activity and habitat use, and

germination probability (total seedling emergence at the end of the

germination run) were assessed by fitting Generalized Linear

Models (GLIM hereafter) using the GENMOD and GLIMMIX

procedures of SAS 9.0 [50]. In all cases, we chose the link

functions and error distributions that fitted best the data, i.e. we

tried all combinations that met data requirements and chose those

that maximized the model goodness-of-fit and minimized residuals

overdispersion. Deviances from the models were scaled using the

square-root of the ratio deviance/degrees of freedom, to correct

for data over-dispersion. Significant differences between fixed

factors were contrasted using likelihood-ratio statistics. Departing

from full models with all relevant (fixed and random) independent

variables, we progressively removed non-significant variables with

p.0.25 from the model [51]; only results from these reduced

models are reported hereafter. Details on model structures (full

and reduced models), link functions and error distributions are

provided in the Appendices (Tables S1 to S6).

Seed retention time (from ingestion to defecation) and seed

germination rate (time in days from the start of the germination

run to seedling emergence) were analyzed using failure-time

analysis using S-Plus [52]. A Cox-proportional hazard model was

fitted to either retention time or germination time for each

individual seed. For seed retention time, we evaluated separately

the effect of lizard sex and type of experiment (laboratory vs. field),

and the effect of seed weight (only lab-experiment data). For seed

germination, we used separate analysis to evaluate the effect of

treatment (ingested vs. control seeds) and retention time (fixed and

random effects and continuous covariates as above). We only

included germinated seeds in the model, to evaluate separately the

effects on germination probability and germination rate.

Lizard movements (i.e. subsequent telemetry localizations) were

analyzed using the extension ‘Home Range Tools’ of ArcGis 9.0

[53] and Hawth’s Analysis Tools 3.2 [54]. Adaptive kernel density

estimates were obtained using a least-squares cross-validation

method to choose the smoothing parameter h [55]. Maximum

dispersal distance to the first fix was calculated for each re-

location, to evaluate whether potential seed dispersal distance

increased continuously or it saturated over time. Net dispersal

distance from the centre of the kernel was also calculated for each

one of the locations, to evaluate whether observed home ranges

were visited from the centre to the periphery following circadian

rhythms. Before drawing a general relationship between these

variables and time, a GLIM analysis (GENMOD procedure and

GLIMMIX macro of SAS 9.0) was used to assess whether it varied

among lizard individuals, using individual as random factor, and
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time and time2 as continuous covariates (to account for potential

non-linearity), a gamma error distribution and a power link

function.

Because maximum dispersal distance quickly saturated over

time (see results), we calculated the hypothetical plant recruitment

kernels generated by each individual lizard (for a given, ingested

seed) by combining kernel density estimates, habitat structure and

the relative probabilities of surviving predation, germinating and

establishing at the various microhabitats. The latter were derived

from previously-published data from the same study area [32].

We also calculated the combined recruitment kernel provided

by our sample of 10 lizard individuals for each individual plant,

and interpreted it as a surrogate of the plant’s seed shadow.

Because the probability of fruit consumption by a given individual

lizard would vary depending on the plant’s location, we used the

density values of each lizard-individual displacement kernel at the

plant’s location as surrogate of visitation probability and weighted

the plant recruitment kernels provided by each lizard using this

probability before combining them. To evaluate the relative

contributions of disperser displacement kernel, plant position and

their interaction to dispersal quality and distance, we performed

a variance partitioning analysis (Variance Components module of

Statistica v6.0) using lizard and plant individual as independent,

random factors and two surrogates derived from these plant

recruitment kernels (dispersal quality: weighted average probabil-

ity of dispersal and establishment; dispersal distance: average

distance from the mother plant) as dependent variables. We also

used a spatial autocorrelation analysis (Moran’s I) to evaluate

whether the position of the different plant individuals result in

variation in the surrogates of dispersal quality and distance

described above.

Finally, we estimated the plant recruitment kernel for the

complete study population of D. rodriguezii from the average of the

recruitment kernels of all individual plants (i.e. the probability of

seed dispersal at each point of the study area).

SUPPORTING INFORMATION

Table S1 Results of Generalized Linear Modelling of the

number of lizards observed per 15 min transect.

Found at: doi:10.1371/journal.pone.0001008.s001 (0.04 MB

DOC)

Table S2 Results of Generalized Linear Modelling of the

number of lizards per 45 min transect.

Found at: doi:10.1371/journal.pone.0001008.s002 (0.04 MB

DOC)

Table S3 Results of Cox-proportional hazard modelling of sex

and type of experiment (laboratory vs. field) on seed retention time

(gut passage rate of seeds ingested by lizards).

Found at: doi:10.1371/journal.pone.0001008.s003 (0.03 MB

DOC)

Table S4 Results of Cox-proportional hazard modelling of the

effect of sex and seed weight on seed retention time (gut passage

rate of seeds ingested by lizards) in the laboratory experiment.

Found at: doi:10.1371/journal.pone.0001008.s004 (0.03 MB

DOC)

Table S5 Results of General Linear Modelling of the effect of

treatment (ingestion by lizards vs. uningested control) and seed

weight on germination probability (number of seedlings emerged/

number of seeds set to germinate) in the laboratory experiment.

Found at: doi:10.1371/journal.pone.0001008.s005 (0.03 MB

DOC)

Table S6 Results of General Linear Modelling of the effect of

sex, retention time and seed weight on germination probability in

the laboratory experiment.

Found at: doi:10.1371/journal.pone.0001008.s006 (0.04 MB

DOC)

Table S7 Results of Cox-proportional hazards modelling of the

effect of the type of experiment (laboratory vs. field) and treatment

on the germination rate of defecated seeds.

Found at: doi:10.1371/journal.pone.0001008.s007 (0.03 MB

DOC)

Table S8 Results of Cox-proportional hazards modelling of the

effect of treatment on germination rate in the laboratory experiment.

Found at: doi:10.1371/journal.pone.0001008.s008 (0.03 MB

DOC)

Table S9 Summary of Cox-proportional hazard modelling of sex

and seed weight on germination rate in the laboratory experiment.

Found at: doi:10.1371/journal.pone.0001008.s009 (0.03 MB

DOC)

Table S10 Results of Generalized Linear Modelling of the effect

of time on maximum displacement distance of radio-tracked

lizards.

Found at: doi:10.1371/journal.pone.0001008.s010 (0.03 MB

DOC)

Table S11 Parameters estimates and coefficient of determina-

tion of the best-fitting function relating recruitment probability to

distance from source plant.

Found at: doi:10.1371/journal.pone.0001008.s011 (0.10 MB

DOC)

Figure S1 Study site at Colom Islet (west coast of Menorca

Island). Different colours indicate the spatial distribution of the

habitat types considered in this study. Circles show the location of

reproductive individuals of D. rodriguezii

Found at: doi:10.1371/journal.pone.0001008.s012 (4.62 MB TIF)

Figure S2 Daily changes in activity, behaviour and habitat

choice of lizards in the study area. Bars show the number of

observations (average se) per transect (15 min transects for habitat

use and 45 min transects for behaviour), grouped in three activity

periods: morning (10–12 h), midday (13–16 h) and afternoon (17–

20 h).

Found at: doi:10.1371/journal.pone.0001008.s013 (1.17 MB TIF)

Figure S3 Effect of seed weight and retention time (during gut

passage) on the germination percentage of seeds ingested and

defecated by lizards. For simplicity, logistic fits representing

expected values of germination probability are shown for three

discrete values of retention time.

Found at: doi:10.1371/journal.pone.0001008.s014 (0.68 MB TIF)

Figure S4 Home ranges and probability density function of the

ten lizards followed by telemetry. Dots indicate individual re-

locations.

Found at: doi:10.1371/journal.pone.0001008.s015 (6.89 MB TIF)

Figure S5 Plant recruitment kernels of the 38 reproductive

adults of Daphne rodriguezii present in the study area. At each

individual kernel, dots indicate the position of the reproductive

plant individual.

Found at: doi:10.1371/journal.pone.0001008.s016 (6.67 MB TIF)

Figure S6 Relationship between recruitment probability and

mean dispersal distance of seeds from the mother plant. Each

point represents an individual plant.

Found at: doi:10.1371/journal.pone.0001008.s017 (0.78 MB TIF)
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las interacciones planta-animal en dos especies de Daphne (Thymelaeaceae)

[dissertation]. Spain: University of the Balearic Islands.
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