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Abstract

Organisms face numerous environmental stressors, which can affect developmental precision, includ-
ing symmetry of various physical characteristics. Fluctuating asymmetry (FA) has therefore been
suggested as a simple and efficient tool for assessing sub-lethal stress levels. We analyzed FA in two
sympatric lizard species (Iberolacerta horvathi and Podarcis muralis) to determine potential effects of
interspecific competition and urbanization, as proxies of stress, taking into account sexual dimorphism
and environmental conditions. We sampled 16 syntopic and allotopic populations and used geometric
morphometrics of head morphology. We detected significant but mixed effects on the head asymmetry
from the environment and the syntopic occurrence that differed between species. P. muralis lizards had
more asymmetric heads at higher altitudes, while 1. horvathi lizards did at mid altitudes, which may be
explained by P. muralis experiencing environmental stress of colder conditions at higher altitudes. The
mid-altitude effect on asymmetries in 1. horvathi might be explained by a lower availability of stony
walls and higher abundance of P. muralis, thus higher competition. The asymmetry of supraciliary
granules was affected by the presence of other species. However, lizards from allotopic populations
attained larger asymmetries compared to lizards from syntopic populations, which was the opposite
from what was expected. There was no effect of urbanization in P. muralis, which could be due to
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relatively low pollution and habitat degradation in study locations. Overall, we highlighted the pos-
sibility of using lizards and FA for bioindication of environmental stressors and especially improved
the knowledge gap in the research of biotic stressors.
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Introduction

Negative effects of either abiotic or biotic origin, have long been the focus of
research to assist biodiversity conservation (Wood et al., 2000). With the escala-
tion of anthropogenic pressure on natural populations there is an increasing need
for efficient, easy to use, inexpensive and non-invasive indicators of population dis-
turbance to aid conservation efforts (Burger, 2006). These indicators need to be
sensitive, i.e., they can detect signs of population disturbance early before compo-
nents of fitness have been strongly affected and before irreversible demographic
damage has occurred (Bartell, 2006; Burger, 2006).

In this context, the degree of developmental stability (DS) has been suggested
as a reliable indicator, because a wide range of environmental stressors has been
shown to affect developmental precision (Beasley et al., 2013). DS is a character-
istic of an organism to develop along a predetermined developmental pathway and
resist random disturbances, which can occur during the development (Lens & Van
Dongen, 2000). The majority of organisms have one or more axes of symmetry over
which the body is a mirror image. However, they are rarely perfectly symmetrical
and slight differences between the repeating structures occur. These random and
subtle deviations from perfect symmetry are referred to as fluctuating asymmetry
(FA; Palmer & Strobeck, 1986; Leamy & Klingenberg, 2005; Graham et al., 2010),
which is one of the most commonly used measures of developmental (in)stability
(Van Valen, 1962). The logic behind using FA as a measurement of DS is based on
the assumption that both sides of bilaterally symmetrical individuals develop in the
same environment and under the effect of identical genes, so that any differences
between sides have to be a result of disturbances during the development (Clarke,
1993).

FA is a non-directional asymmetry, as opposed to the directional asymmetry
where one side is larger than the other side (e.g., internal organs of vertebrates,
handedness and position of owl ears; Mgller & Swaddle, 1997). For a given sam-
ple or population, FA is computed as the variance of bilateral differences scored
between individuals, either of size or of shape. It must be distinguished from anti-
symmetry, another and less frequent kind of non-directional asymmetry, where
signed bilateral differences do not have a Gaussian distribution (Klingenberg,
2015).

In the last two decades, there has been an increased interest in FA as a stress
indicator due to its advantage over other indicators, such as direct measuring of
net survival (fertility, survival), which is more expensive and impractical compared
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to observations of FA (Leung et al., 2000). Some studies have shown that asym-
metry levels increase with the presence of stress factors, suggesting that FA can
be used as an indicator of environmental and/or genetic stress and that it also
might be useful for assessing the quality and health of individuals and popula-
tions (Leung & Forbes, 1996; Clarke, 1998). Common environmental stress factors
caused by anthropogenic activity are exposure to pollutants, such as heavy metals
and pesticide residues, temperature changes induced by climate change and habitat
destruction (often as a consequence of urbanization; Lens et al., 1999). Biotic stress
factors can include competition, inbreeding (and consequently higher homozygos-
ity) and hybridization (Garrido & Pérez-Mellado, 2014). When exposed to stress,
organisms need to invest energy in order to cope with it, thus there could be less
energy available for stable development, which can lead to asymmetry of physical
characteristics (Leung et al., 2000).

High levels of FA in lizards have so far been described as a consequence of
various disturbance factors: inbreeding in populations from small islands (Soulé,
1967; Soulé & Yang, 1973), habitat fragmentation (Sarre, 1996), suboptimal incu-
bation temperatures of eggs (Brafa & Ji, 2000) and pollution (Tull & Brussard,
2007). Furthermore, the connection between FA and the female choice showed that
females preferred more symmetric males (Martin & Lopez, 2006), indicating its
potential effect of FA on individuals’ and population fitness. In some lizard species
a correlation between FA and performance was observed, as higher asymmetry of
hind limbs negatively affected their running speed (Martin & Lépez, 2001; Lopez
& Martin, 2002). Recent studies (Lazi¢ et al., 2013) and general overviews of this
topic (Clarke, 1995; Mgller & Swaddle, 1997) established FA as a valid indicator
of DS and suggested it can be used as an early warning sign.

Studying head shape asymmetry was observed to be an especially good model
system for examining the effects of environmental stress on the development, as the
head is a developmentally complex body part involved in several important ecolog-
ical and social activities in lizards, e.g., feeding, mating, acquiring and defending
territories (Pianka & Vitt, 2003). Consequently, the shape of the head varies greatly
between individuals within a population and among populations, indicating that it
is potentially subject to selection pressure (Lazi¢ et al., 2015).

Lizards, as ectothermic organisms, are good models to be used as indicator
species for detecting the presence of environmental stress, since their development
is more sensitive to environmental and genetic changes compared to endothermic
organisms (Leary & Allendorf, 1989). Their advantage as bioindicator species is
also the result of the many possible metric (limbs, head dimensions) and meristic
(scales, femoral pores) traits, which are relatively easy to measure (Soulé, 1967).
Moreover, lizards are usually abundant, which facilitates sample collection, and
they inhabit places with varying levels of potential stressors (Crnobrnja-Isailovic et
al., 2005; Amaral et al., 2012; Lazi¢ et al., 2013).
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Interspecific interactions, direct or indirect, have been identified as one of the
most important processes determining the structure of natural communities (Cody
& Diamond, 1975; Bonsall & Hassell, 1997; Vrezec & Tome, 2004). Interspecific
competition is a relationship between species, defined as a collection of reciprocal
negative effects among ecologically similar species that results in a reduction of
fecundity, growth and/or survivorship due to resource exploitation or interference
(Smith & Smith, 1998). Prerequisites for competition between species are: they
occupy the same space (occur in a zone of sympatry), are active in the same time
and their fundamental niches overlap (at least partly) (Smith & Smith, 1998; Begon
et al., 2006). In communities where two or more members of the same ecological
guild coexist and resources they utilize are limited, they will either segregate in
one or more dimensions of ecological niche to avoid interspecific interactions or
they will interact (Begon et al., 2006). As competition effects are negative for all
involved in the interaction, they represent biotic stress factors that may impact DS.

However, almost no information is available so far about the effects of interspe-
cific interactions on asymmetry of organisms as a consequence of DS, although
it could play an important role as a biotic stress factor (Thornhill, 1992; Witter &
Swaddle, 1994; Graham et al., 2010). For example, Mallard and Barnard (2003) per-
formed a study testing apparent competition on the conspecific and heterospecific
level between two species of crickets and observed that limb FA was significantly
correlated with the competitor’s presence in one, but not in the other species. Such
results suggest effects of competitor species on asymmetry (one species may be
more dominant than the other in the interspecific competition) that hence can shape
the relationships between both species in syntopic populations (Holt, 1977).

To fill this knowledge gap, we compared FA levels between allotopic and syn-
topic populations of two competing lizard species, which is the first such study
in lizards known to us. We used a pair of ecologically and morphologically sim-
ilar species of lacertid lizards that occur in sympatry in Slovenia and Croatia:
the wall lizard, Podarcis muralis (Laurenti, 1768) and the Horvath’s rock lizard,
Iberolacerta horvathi (Méhely, 1904). The two species exhibit a spatial pattern of
occurrence in alternating allotopic and syntopic populations and opposite patterns
in altitudinal distribution with P. muralis occurring in higher abundances at lower
altitudes, while . horvathi is most abundant at the highest elevations (De Luca,
1989; Zagar, 2016). Due to their similarities and restricted use of common spatial
resources (Zagar et al., 2012, 2017; Osojnik et al., 2013), interspecific competi-
tion occurs in syntopic populations (Zagar et al., 2015a). Competitive interactions
can be a source of biotic stress, therefore we expected that species will be more
asymmetric in syntopic than in allotopic populations.

In addition to potential effects of interspecific interactions, we studied the influ-
ence of urbanization (only in P. muralis). Higher levels of FA were expected to be
found in populations from urbanized (hence degraded and polluted) sites vs nat-
ural habitat sites. Since the species occur in a relatively high altitudinal gradient
(approx. 1800 m) and exhibit an opposite trend in relative densities across altitudes
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Figure 1. The locations of the studied populations (see Table 1 for the legend). For better visibility
the area of Kocevska, where the density of sampling points was higher, is enlarged in (a).

(I. horvathi is more abundant at higher altitudes and P. muralis at lower altitudes),
we included altitude as an environmental factor, and performed an additional test
on a subset of populations to exclude the effect of altitude and potential differences
due to phylogenetic distances. In general, we expected that populations from colder
higher altitudes will have a higher level of asymmetries than lowland populations,
but the effect should be stronger in the generalist species (P. muralis) that has a
higher occurrence in lowlands and middle altitudes. Our study should improve our
understanding of the effects of biotic and abiotic stressors on the occurrence of
asymmetries in vertebrates and reveal the potential of using DS as bioindicator for
environmental stress.

Materials and methods
Sampling and study design

Sampling sites were distributed across the area of sympatric occurrence of the two
studied species, Iberolacerta horvathi and Podarcis muralis, across Slovenia and
Croatia (fig. 1; De Luca, 1989; Sillero et al., 2014; Zagar, 2016). The study area is
characterized by a large altitudinal gradient, heterogeneous topography, high forest
cover and a mosaic of open areas with exposed rocky areas, which represent suit-
able habitat for both species (Zagar et al., 2013), while P. muralis also occurs in
urbanized areas (Krofel et al., 2009). The climate is temperate continental with an
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Table 1.

Locations of studied populations of Podarcis muralis and Iberolacerta horvathi in Slovenia and Croa-
tia as labelled on the map (fig. 1). Populations labelled with * were used in the additional analysis on
a subset of populations, since they occur at close geographical proximity and are genetically closely
related. Abbreviations: F, female, M, male.

Map  Location name Altitude  Presence of other Urbanization Sample size
label species - M
1 East from Ribnica* 741 Allotopic — P. muralis ~ Natural 40 58
2 Velike Bele stene* 1005 Allotopic — I. horvathi 63 69
3 KuZeljska stena* 840 Syntopic — 1. horvathi 0 9
Syntopic — P. muralis 1 1
4 Kameni zid* 1045 Syntopic — 1. horvathi 1 11
Syntopic — P. muralis 5 8
5 Sveti Stefan 308 Allotopic — P. muralis ~ Urban 20 15

cemetery
6 Fridrih$tajn* 943 Allotopic — P. muralis 12 8
7 Ljubljana (RozZna 295 Allotopic — P. muralis ~ Urban 5 6
Dolina)

8 Dinara 1500 Syntopic — I. horvathi 1 2
Syntopic — P. muralis 3 5
9 Bilpa 220 Syntopic — I. horvathi 5 4
Syntopic — P. muralis 0 7
10 Mangart 2040 Allotopic — I. horvathi 5 1
11 Ucka 1264 Syntopic — I. horvathi 3 13
Syntopic — P. muralis 2 1
12 Vaganski vrh 1653 Allotopic — I. horvathi 10 9
13 Zurgarska stena* 890 Allotopic — I. horvathi 1 6
14 Planinska jama1 475 Syntopic — 1. horvathi 1 6
Syntopic — P. muralis 0 0
15 Orlovica 1270 Allotopic — I. horvathi 2 14
16 Donacka gora 835 Allotopic — P. muralis 2 1

alpine climatic influence from the north and influence of the Adriatic Sea from the
southwest (Puncer, 1980; Perko & OroZen, 1998).

Sampled populations were distributed across an altitudinal span of approxi-
mately 1800 m (table 1). Each population was classified according to the presence
of one or both species: (a) allotopic I. horvathi, (b) allotopic P. muralis or (c)
syntopic (table 1, supplementary table S2). Synopic populations have similar abun-
dances of both species at all sampled sites (Zagar A., pers. obs.). To test the effect
of urbanization of the study site, we assigned selected sites of P. muralis to two
categories: (a) urban and (b) natural (table 1, supplementary table S2). This factor
could only be studied in P. muralis, because I. horvathi was not sampled in urban-
ized areas, but only in the natural environment in our study area.
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Fieldwork photography and asymmetry methods

Lizards were collected using a noose in three years between 2013 and, 2015
(table 1), measured and photographed in the field and then released at the cap-
ture location. We collected four morphometric measurements of lizard heads: pileus
length, head width, length and height. Measurements were always obtained by the
same person (AZ) using digital calipers to the closest 0.01 mm. We photographed
the dorsal side of the head of lizards in natural light with a Nikon Coolpix camera
set to the macro function. In the process of photography, the camera was mounted
with the lens directed downwards to the horizontal surface, where lizard was placed
in the center of the optical field to take photographs at a fixed distance (20 cm) from
the individual. Using the high-resolution photos and by inspecting photographs on
the computer screen, we obtained a meristic trait — the number of supraciliar gran-
ules (SCGN). SCGN are located right above the eyes, below the supraocular scales;
they have no evident function (Lazi¢ et al., 2013). The same person (AA) counted
the number of SCGN twice, each time in a different order with several days of rest
between the first and second counting, to ensure independence of the trait counts.

Landmark-based methods of geometric morphometrics were used to analyze the
variation in head size and shape (Bookstein, 1997). High-resolution photos of the
dorsal side of the head were used to digitize 28 landmarks using tpsDig2 (Rohlf,
2005). Landmarks were set at the contact of big scales on lizards’ heads (see
Lazi¢ et al., 2015 for landmark locations), which have a close relationship with the
head bones underneath and develop according to them. Therefore, their contacts
ensure a permanent position and are suitable as landmark locations. Landmarks
were recorded twice by the same person (AA) in order to assess measurement error
arising during digitization.

Data analysis

To test for the presence of directional asymmetry (DA) and/or FA in SCGN we
used the two-way ANOVA model on log-transformed values with side as a fixed
factor and individual as a random factor, as well as their interaction. In this ANOVA
design, a significant effect of side alone would indicate the presence of DA and a
significant interaction between side and individual would point to the existence
of FA. As our results indicated the existence of FA (see Results), we calculated
an individual asymmetry index (AI) for each trait as the unsigned right-left (R-
L) difference between the log-transformed average of trait values across the two
replicate counts of each individual, to account for measurement error. The values
of Al did not deviate significantly from normality within each population for the
studied trait (Kolmogorov-Smirnov test, P > 0.05 in all cases).

To test for the presence of FA and/or DA in lizard head shape, we used an
approach similar to the one used for SCGN. Procrustes ANOVA was performed
on replicated landmark configurations with individual, side and their interaction as
factors. As our results showed significant individual-side interaction and thereby
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indicated the presence of FA, we calculated an Al for each individual. To calculate
the Al in head shape, we first calculated the difference in landmark coordinates
between the left and the right side of the head by comparing original landmark
configurations with the mirror-reflected copies. We used only positive original-
to-reflected differences, and in cases in which these were negative, we used the
reflected-to-original differences, obtaining an unsigned Al for each specimen. This
matrix of unsigned asymmetry values was further used to calculate an Al index by
taking the square root of sums of squared differences from all configurations of
landmarks (Lazi¢ et al., 2015).

To test for differences in the head shape asymmetry across species, sexes and
while incorporating other environmental factors (altitude, presence of other species,
and urbanization), we performed permutation ANOVA with 10,000 repetitions
using the ‘adonis’ function from the vegan package (Oksanen et al., 2010). To
test for differences in asymmetries of SCGN, head size and head shape across
altitudes, allotopic/syntopic populations or urban/natural populations, we used a
factorial ANOVA design including categorical factors: species, sex, and population
or urbanization, and a continuous factor: altitude. For pairwise post-hoc compar-
isons we used the Bonferroni test. We performed an additional set of analysis only
on a subsample of populations to reduce the effects of environment (altitude and
geographical differences of distant locations, as well as phylogenetical differences).
We used six locations from close geographical proximity (region Kocevsko, south
Slovenia), at similar altitudes (700-1050 m a.s.l., specified in table 2), where we
already know that individuals share common mitochondrial and nuclear haplotypes
(Salvi et al., 2013; Cocca et al., 2021).

Results

We used photographs of adults of both species from 16 populations (fig. 1, table 1).
In total, 436 individuals (200 of P. muralis and 236 of 1. horvathi) were sampled.

Visual representation of the variation in head shape showed that most of the vari-
ation was concentrated at the base of the head in both species. Two-way ANOVA
on the number of supraciliar granules (SCGN) revealed statistically significant
individual variation (supplementary table S1). DA was not detected (insignificant
side effect, supplementary table S1), while the presence of FA was confirmed, as
indicated by the significant individual-side interaction (supplementary table S1).
Similarly, Procrustes ANOVA on replicate landmark recordings revealed signifi-
cant individual variation in head shape, DA and FA (supplementary table S1).

The results from the entire sample set showed statistically significant differences
in head size across species and sexes (species-sex factor interaction, table 2). Males
had bigger heads than females, but the difference in the head size between sexes
was more pronounced in P. muralis (fig. 2A) than I. horvathi (fig. 2B); P. muralis
males had significantly bigger heads than females. Head size also differed depend-
ing on the presence of other species (factor population, table 2), with individuals
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Table 2.

Results from ANOVA comparing head size, head shape asymmetry and asymmetry of the number of
supraciliar granules across species, sex, altitude and populations (allotopic/syntopic) from all sampled
populations. Significant effects are marked in bold.

Head size Head shape asymmetry SCGN
df F p df F P af  F P

Altitude 1 7.99 0.004 1 0.14 0.696 1 1.51 0205
Species 1 36.66 0.001 1 379 0.060 1 158 0.217
Sex 1 144.54 0.001 1 170 0.216 1 0.06 0.804
Population 1 46.00 0.001 1 285 0.110 1 4.63 0.030
Altitude: species 1 571 0.019 1 891 0.007 1 0.01 0.906
Altitude: sex 1 2032 0.001 1 293 0.094 1 0.03 0.879
Species: sex 1 7.64 0.006 1 058 0.477 1 0.02 0.890
Altitude: population 1 1.79 0.189 1 1.14 0.271 1 0.04 03815
Species: population 1 1.32 0.264 1 043 0.491 1 074 0.392
Sex: population 1 0.20 0.660 1 132 0.227 1 024 0.646
Altitude: species: sex 1 9.07 0.004 1 0.06 0.793 1 1.17 0.216
Altitude: species: population 1 5434 0.001 1 1222 0.004 1 045 0454
Species: sex: population 1 0.21 0.658 1 029 0.578 1 0.01 0.925
Residuals 319 319 212

Total 334 334 225

Abbreviations: df, degrees of freedom; F, F-test value; p, p-value; SCGN, the number of supra-
ciliar granules.

from allotopic populations having a larger head size compared to syntopic popula-
tions in both species (fig. 2C). We also found significant effects on the head size
with altitude but in combination with other factors (see altitude factor interactions,
table 2), thus, head size also varied in a complex manner across altitude. Males but
not females exhibited a linear negative trend of head size with altitude (fig. 3A,
B), while on the species level we did not observe a linear relationship (fig. 3C, D).
When we limited analysis to the six populations with similar altitudes and close
geographical proximity we again observed statistically significant differences in
head size between the sexes, species, sex-species interaction and presence of other
species (table 3).

Head shape asymmetry differed between species; 1. horvathi individuals had a
more asymmetric head shape (table 1); however, it also depended on altitude of the
locality (the interaction between species and altitude was statistically significant,
table 2). Linear relationships revealed that the head shape asymmetry increased
with altitude in P. muralis (fig. 4A), but not I. horvathi, where the head asymmetry
was most pronounced at mid altitudes (fig. 4B). Presence of other species showed a
significant effect on the head shape asymmetry only in combination with the factors
altitude and species (table 2), while in the case of analysis limited to six populations,
the head shape asymmetry only differed between species; I. horvathi had more
asymmetrical heads compared to P. muralis (table 3).
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In the case of SCGN asymmetry we found a significant difference between
allotopic and syntopic populations (table 2, fig. 5), which was also confirmed
in the case of analysis limited to six populations (table 3). No differences
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Table 3.

339

Results from ANOVA comparing head size, head shape asymmetry and the number of supraciliar
granules asymmetry across species, sex, and populations (allotopic/syntopic) in genetically similar
populations from south Slovenia. Significant effects are marked in bold.

Head size Head shape asymmetry SCGN
df F P df F )4 af  F p

Population 1 2380 <0.001 1 <0.01 0.960 1 3.84 0.046
Species 1 2433 <0.001 1 52.04 0.020 1 3.51 0.070
Sex 1 12846 <0.001 1 0.83 0.381 1 0.03 0.870
Population: species 1 0.67 0417 1 0.72 0.360 1 0.14 0.715
Population: sex 1 0.06  0.792 1 <0.01 0.979 1 1.09 0.290
Species: sex 1 1158 <0.01 1 18.86 0.184 1 0.10 0.737
Population: species: sex 1 <0.01 0.739 1 0.75 0.356 1 0.01 0.745
Residuals 269 269 218

Total 276 276 225

Abbreviations: df, degrees of freedom; F, F-test value; p, p-value; SCGN, the number of supra-

ciliar granules.

were found in SCGN asymmetry between species or sexes and across altitude

(table 2).

Podarcis muralis males had larger heads than females in natural and urban pop-
ulations, but we did not detect any effect of urbanization on head size, head shape

asymmetry or SCGN asymmetry (table 4).
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Discussion

The interplay of various stressors can interfere with the process of an organism’s
development and thus lead to various phenotypic changes. These changes can be

Table 4.

Results from ANOVA comparing head size, head shape asymmetry and the number of supraciliar
granules asymmetry between sexes and between natural and urban sites (urbanization). Df = degrees
of freedom, F = F-test value, P = p-value. Significant effects are marked in bold.

Head size Head shape SCGN
df F p df F p df F P
Urbanization 1 1.71 0.166 1 0.29  0.654 1 041 0.560
Sex 1 11932 <0.001 1 024 0.702 1 017 0.676
Urbanization: sex 1 0.96 0.35 1 199.58  0.168 1 005 0.79
Residuals 129 129 98
Total 132 132 101

Abbreviations: df, degrees of freedom; F, F-test value; p, p-value; SCGN, the number of supra-

ciliar granules.
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detrimental to the organism, if they affect survival. Therefore, it is important to
detect stress before changes in the environment lead to population extinction. One
possible way of detecting early signs of stress is by using asymmetries of various
morphological features. In this study we tested three stress effects, originating from
biotic interactions (presence of competitor species) or human influence (urbaniza-
tion), and the environment (colder conditions for ectotherms at higher altitudes).
Two of these factors were found to affect levels of head shape asymmetry and one
factor affected the scale asymmetry.

Firstly, our results showed considerable differences in head size between species
and between sexes. P. muralis individuals had larger heads, which corresponds
with previously known behavioral differences between species that showed that P
muralis is more dominant in the case of agonistic interactions (Zagar et al., 2015a;
Zagar et al., 2017). Sexual dimorphism in head size is pronounced in many lizards,
which has been attributed to sexual selection for stronger and more aggressive males
(Kaliontzopoulou et al., 2007; Zagar et al., 2012). Biting is involved in territorial
defense and in mating, when males grab females to hold them during copulation
(Pianka & Vitt, 2003). Stronger bite force of larger-headed lizards also enables
them to ingest harder prey, which can reduce intersex and interspecific competition
for the same food sources (Verwaijen et al., 2002). Head size could also be related
to the use of shelters (smaller, more flattened heads could allow the use of smaller
shelters; Kaliontzopoulou et al., 2010).

Drop of temperature with rising altitude can represent more restricted environ-
mental conditions for ectotherm organisms, and thus we expected that populations
from colder higher altitudes will display a higher level of asymmetries than low-
land populations in both species, but more pronounced in the generalist species P.
muralis, that exhibits a predominantly lowland and middle altitude distribution and
is known to be less adapted to cold conditions (i.e., has a physiology that is less
adapted to shorter activity periods compared to I. horvathi, Zagar et al., 2015b).
Indeed, altitude had a significant effect, but in a complex manner in combination
with the biotic factor (presence of other species), and species. We confirmed our
expectations:we found that P. muralis lizards had more asymmetric heads at higher
altitudes, but . horvathi lizards did not. A cold environment may be more stressful
to the more generalist species P. muralis, which might experience environmental
stress at higher altitudes due to its physiology being adapted to warmer conditions
where activity periods are longer (Zagar et al., 2015b). On the other hand, the high-
altitude specialist I. horvathi did not exhibit higher levels of head shape asymmetry
at higher altitudes, thus confirming its adaptation to a colder environment that actu-
ally represents its optimal habitat in the study area (Zagar, 2016).

However, we detected a mid-altitude effect on asymmetries in 1. horvathi. The
highest levels of head asymmetry at mid altitude in I. horvathi might be related to
the lower availability of favorable habitats for lizards. Namely, the lowest propor-
tion of open areas with rock walls is found at mid altitudes compared to higher
altitudes, as well as the lowest altitudes, where the species occurs only at the
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entrances of karstic caves with vertical walls (Zagar, 2016). Mid altitudes also rep-
resent the area of highest overlap among the two species, as P. muralis is more
abundant at lower and middle altitudes and 1. horvathi is a mountain species with
highest abundances at higher altitudes (Sillero et al., 2014; Zagar, 2016). The higher
abundance of P. muralis together with limited stone wall open areas at mid altitude
may also induce higher competition between the two species. And it is known that
under these conditions (where sun-exposed areas as resources for basking are lim-
ited) P. muralis has a competitive advantage over I. horvathi (Zagar et al., 2015a).
The higher interspecific competition for sun-exposed areas that may occur here
could result in greater stress to I. horvathi, which possibly contributes to the higher
levels of asymmetry found with our results. We assume it is also likely that other
environmental factors (i.e., habitat structures used for hiding places, food availabil-
ity, parasites, etc.) besides temperature are responsible for such a result, where we
would need a more controlled set of populations to study the effects exempt of
different potential effects that are present in natural populations.

Next, when we compared allotopic and syntopic populations on the subset of
populations (to exclude the factor altitude and avoid potential effects of phyloge-
netically distant populations), we obtained variable results for head shape, head
asymmetry and scale asymmetry. We first found that in both species the head size
was affected by the presence of competitor species; lizards had larger heads when
one species occurred alone (allotopy). This suggests that in areas without interspe-
cific competitor, species may invest more energy in growth. The presence of an
interspecific competitor can result in a higher resource competition (Begon et al.,
2006) and can have a stressful effect on both species, which could result in smaller
heads. We also observed a pronounced sex difference with males having bigger
heads that females (following earlier obtained results on this species, Zagar et al.,
2012). Bigger heads may be more pronounced in allotopy due to the fact that sexual
selection might be stronger in allotopic populations. It is known that higher conspe-
cific competition drives the larger size of heads, which correlates with stronger bite
forces and dominance in male-male combats for females (Zagar et al., 2017).

Next, we found that in 1. horvathi head shape was more asymmetric compared
to P. muralis, which suggests that I. horvathi could be under greater stress or be
more susceptible to stress effects than P. muralis. Such an interspecific difference
suggests that the ability to buffer environmental disturbance may differ between
species, and it may be connected with a more generalist character of P. muralis,
which is very adaptable and tolerates more anthropogenic influence than most other
European lizards (Arnold and Oveden, 2004). The results obtained are also interest-
ing, because these could have an indirect effect on species’ competitive interaction
via the ‘apparent competition’ mechanism (Holt, 1977). The studied species are in
fact known to potentially compete under syntopic conditions and limited micro-
habitat conditions connected with thermoregulation (Zagar et al., 2015a). However,
in the case of SCGN asymmetries, we found — quite contrary to our expectations
that competition could increase stabilizing selection — that animals tend to be more
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symmetric in the presence of the other species. However, many other factors may
also affect stabilizing selection, while our predictions were set to this expectation
due to our study aim and sampling in syntopic and allotopic populations. Possi-
ble explanations for this finding in the light of the effects of competition might be
that individuals that suffer more from interspecific competition may have a higher
mortality and less reproductive success and thus lower adaptive value. Therefore,
such individuals do not succeed in the population and are consequently more rare.
This was also explained in some other studies (Thornhill, 1992; Mgller et al., 1998;
Tomkins & Kotiaho, 2001) and may also provide the explanation for why we did
not detect them in our populations. Another explanation may also lie in the fact
that conspecific competition exhibits higher stress pressure than interspecific com-
petition, which is reflected in higher asymmetry in allotopic populations. We also
acknowledge that this result could be due to imbalance of the sample, which is in
favor of allotopic populations. Also, SCGN - as far as we are aware — have no evi-
dent functional significance, meaning that selection for DS in this character may be
relaxed.

Finally, we tested if populations of P. muralis from urbanized (hence degraded
and possibly polluted) sites show higher FA levels compared to natural habitat sites.
Results provided no evidence that the urbanization influences DS of morphological
traits in P. muralis in our study area. On one hand, this could mean that the two pop-
ulations classified as urbanized in our study (railway tracks in the city of Ljubljana
and the cemetery in the village of Fara) are not degraded or polluted to the level that
it would disrupt developmental homeostasis and affect the developmental path of
this species. To confirm this, comparison with populations from more degraded or
polluted habitats would be required. To increase the detection of FA, it would also
be useful to analyze a larger spectrum of physical characteristics, including already
established features for measuring FA (e.g., length of hind legs, number of femoral
pores, border points on lateral side of head, etc.; Lopez & Martin, 2002; Crnobrnja-
Isailovi¢ et al., 2005; Martin & Lépez, 2006; Kaliontzopoulou et al., 2007; Lazi¢ et
al., 2013).

In conclusion, our study presents novel data on the effects of biotic stressors,
such as interspecific competition, on the DS in lizards. The effects were found
on the level of head shape asymmetry, but not in the scale asymmetries. Since
the studied species differ in altitudinal preferences, we managed to understand the
combination of effects of potential competition and environmental conditions that
change across the altitude. These results emphasize the need to include variable
relevant effects (biotic and abiotic) when trying to understand the occurrence of
asymmetries as bioindicators of stress. We clearly highlighted the possibility of
using lizards and FA for bioindication of environmental stressors.
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Table S1.
Results from ANOVA testing for the presence of directional (DA) and fluctuating
asymmetries (FA) in the number of supraciliar granules and head shape of lizards from all

sampled populations. Significant effects are marked in bold.

SCGN Head shape asymmetry

add F p df F D
Individual 327 5.50 <0.001 334 4091 <0.02
Side 1 3.60 0.58 1 50.12  <0.02

Individual : side 293 8.12 <0.001 334 1.12 <0.02

Measurement error 616 670

Abbreviations: df, degrees of freedom; F, F-test value;p, p value, SCGN, the number of

supraciliar granules.



Table S2.

Background dataset used in the analysis.

Individual label Species Sex SVL  Population Image Individual Type
A_THOR_M_01 IHOR M 503 ALLOTOPIC 1 1 natur
A_THOR_M_02 IHOR M 574 ALLOTOPIC 1 2 natur
A_IHOR_M_03 IHOR M 542 ALLOTOPIC 1 3 natur
A_THOR_M_06 IHOR M 56.6 ALLOTOPIC 1 4 natur
A_THOR_M_08 IHOR M 558 ALLOTOPIC 1 5 natur
A_IHOR_M_09 IHOR M 552 ALLOTOPIC 1 6 natur
A_IHOR_M_10 IHOR M 51.1 ALLOTOPIC 1 7 natur
A_THOR_M_11 IHOR M 61.1 ALLOTOPIC 1 8 natur
A_THOR_M_12 IHOR M 529 ALLOTOPIC 1 9 natur
A_THOR_M_13 IHOR M 51.2 ALLOTOPIC 1 10 natur
A_IHOR_M_14 IHOR M 56.6 ALLOTOPIC 1 11 natur
A_IHOR_M_15 IHOR M 532 ALLOTOPIC 1 12 natur
A_IHOR_M_17 IHOR M 497 SYNTOPIC 1 13 natur
A_IHOR_M_18 IHOR M 537 SYNTOPIC 1 14 natur
A_IHOR_M_19 IHOR M 519 SYNTOPIC 1 15 natur
A_IHOR_M_20 IHOR M 49 SYNTOPIC 1 16 natur
A_IHOR_M_21 IHOR M 524 SYNTOPIC 1 17 natur
A_THOR_M_22 IHOR M 488 SYNTOPIC 1 18 natur
A_IHOR_M_23 IHOR M 51 ALLOTOPIC 1 19 natur
A_THOR_M_24 IHOR M 56.6 ALLOTOPIC 1 20 natur
A_IHOR_M_26 IHOR M 55 ALLOTOPIC 1 21 natur
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53.74

56.26

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

290

291

292

293

294

295

296

297

298

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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[HOR_1536
[HOR_1538
[HOR_F1
[HOR_F11
[HOR_F13
[HOR_F14
[HOR_F19
[HOR_F2
[HOR_F4
IHOR_F5

[HOR_F9

KZID_IHOR1501
KZID_IHOR1502
KZID_IHOR1503
KZID_IHOR1505
KZID_IHOR1506
KZID_IHOR1507
KZID_PMUR1501
KZID_PMUR1502
KZID_PMUR1503
KZID_PMUR1504

KZID_PMUR1505

PMUR_1544

PMUR_1545

[HOR

IHOR

[HOR

IHOR

IHOR

IHOR

IHOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

< £ £ £ £ g ™©@

T

T

< £ £ 2 X

48.55

59.96

48.88

60.37

58.78

61.34

53.27

53.66

54.7

57.52

56.95

54.22

47.53

49.6

53.34

53.94

50.24

58.63

49.94

50.25

58.76

56.49

59.76

58.17

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

1

1

299

301

320

321

322

323

324

325

326

327

328

333

334

335

337

338

339

340

341

342

343

344

366

367

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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PMUR_1546
PMUR_1547
PMUR_1548
PMUR_1549
PMUR_1550
PMUR_1551
PMUR_1552
PMUR_F16
PMUR_F17
PMUR_F18
PMUR_F19
PMUR_F20
PMUR_F21
PMUR_F22
PMUR_F23

PMUR_F24

A_IHOR_M_01
A_IHOR_M_02
A_IHOR_M_03
A_IHOR_M_06
A_THOR_M_08
A_THOR_M_09
A_THOR_M_10

A_THOR_M_11

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

[HOR

[HOR

[HOR

[HOR

IHOR

IHOR

IHOR

IHOR

< £ 2 £ £ E K

T

< £ £ £ £ £ £ £

54.93

55.44

51.04

61.57

58.39

55.96

59.72

59.49

61.16

55.26

60.95

59.56

59.96

50.55

57.69

62.24

50.3

57.4

54.2

56.6

55.8

55.2

51.1

61.1

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

368

369

370

371

372

373

374

388

389

390

391

392

393

394

395

396

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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A_IHOR_M_12
A_IHOR_M_13
A_IHOR_M_14
A_IHOR_M_15
A_IHOR_M_17
A_IHOR_M_18
A_IHOR_M_19
A_IHOR_M_20
A_IHOR_M_21
A_IHOR_M_22
A_IHOR_M_23
A_IHOR_M_24
A_IHOR_M_26
A_IHOR_M_27
A_IHOR_M_28
A_IHOR_M_29
A_IHOR_M_30
A_IHOR_M_31
A_IHOR_M_32
A_IHOR_M_33
A_IHOR_M_35
A_PMUR_M_02
A_PMUR_M_03

A_PMUR_M_05

[HOR

IHOR

[HOR

IHOR

IHOR

IHOR

IHOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

IHOR

PMUR

PMUR

PMUR

£ £ £ £ £ £ £ £ £ £ £ g g g g g 2 g g & k£

52.9

51.2

56.6

53.2

49.7

53.7

51.9

49

524

48.8

51

56.6

55

51.5

48.5

58.2

59.8

53.5

49.7

53.2

60.4

47.9

51.1

49

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

urban

urban
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A_PMUR_M_06
A_PMUR_M_07
A_PMUR_M_13
A_PMUR_M_14
A_PMUR_M_16
A_PMUR_M_19
A_PMUR_M_22
A_PMUR_M_23
A_PMUR_M_24
A_PMUR_M_25
A_PMUR_M_26
A_PMUR_M_27
A_PMUR_M_29
A_PMUR_M_30
A_PMUR_M_31
C_IHOR_M_01
C_IHOR_M_02
C_IHOR_M_03
C_IHOR_M_04
C_IHOR_M_05
C_IHOR_M_07
C_IHOR_M_09
C_IHOR_M_10

C_IHOR_M_11

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

[HOR

[HOR

[HOR

[HOR

[HOR

IHOR

IHOR

IHOR

IHOR

£ £ £ £ £ £ £ £ £ £ £ g g g g g 2 g g & k£

56.5

54.9

56.8

62

52.2

594

61.6

62.4

56

50.8

55.1

47.5

55.6

55.2

50.7

47.2

58.3

58.4

49.1

474

52.6

54.2

48.8

51

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

urban

urban

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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C_IHOR_M_13

C_IHOR_M_14

C_PMUR_M_02
C_PMUR_M_03
C_PMUR_M_05
C_PMUR_M_09

C_PMUR_M_10

C_PMUR_M_11
[HOR-01
[HOR-03
[HOR-05
[HOR-06
[HOR-07
M_IHOR_F_04
M_IHOR_F_05
M_IHOR_F_07
M_IHOR_F_08
M_IHOR_F_10
M_IHOR_F_12
M_IHOR_F_24
M_IHOR_F_25
M_IHOR_F_26
M_IHOR_F_27

M_IHOR_F_28

[HOR

IHOR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

IHOR

IHOR

IHOR

IHOR

< £ £ £ £ £ £ £ £ £ £ £ £

57.1

53.9

59.1

554

534

574

59.8

51.1

523

51

49.8

46.9

53

62.2

59

61.6

61.3

61.1

55.1

60.7

55.3

48.9

56.5

514

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

57

58

59

60

61

62

63

64

65

66

67

68

69

74

75

76

77

78

79

81

82

83

84

85

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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M_IHOR_F_29

M_IHOR_M_23
M_IHOR_M_26
M_IHOR_M_29
M_PMUR_F_02
M_PMUR_F_08
M_PMUR_F_09
M_PMUR_F_10
M_PMUR_F 11
M_PMUR_F_12
M_PMUR_F 13
M_PMUR_F_14
M_PMUR_F 15
M_PMUR_F_16
M_PMUR_F 17
M_PMUR_F_18
M_PMUR_F_19
M_PMUR_F_20
M_PMUR_F_21
M_PMUR_F_25
M_PMUR_F_29
W_IHOR_F 01

W_IHOR_F_03

W_IHOR_F_04

[HOR

IHOR

[HOR

IHOR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

IHOR

IHOR

IHOR

T

< £ X

56.3

48.8

533

54.6

51.7

62

61.9

68

58

56.6

68.5

59.2

60.5

59.9

61

594

58

50.2

52.1

55.6

54

56.4

62

58.3

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

86

108

110

111

113

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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W_IHOR_F_05
W_IHOR_F_06
W_IHOR_F_07
W_IHOR_F_08
W_IHOR_F_09
W_IHOR_F_10
W_IHOR_F 11
W_IHOR_F 13
W_IHOR_F_14
W_IHOR_M_01
W_IHOR_M_04
W_IHOR_M_07
W_IHOR_M_09
W_IHOR_M_11
W_IHOR_M_12
W_PMUR_F_02
W_PMUR_F_03
W_PMUR_F_04
W_PMUR_F_05
W_PMUR_F_06
W_PMUR_F_07
W_PMUR_F_08
W_PMUR_F_10

W_PMUR_F_I11

[HOR

IHOR

[HOR

IHOR

IHOR

IHOR

IHOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

T

< £ £ £ E K

55.7

55.6

66.7

54.9

54.1

59.3

59.9

61.4

50.5

50.6

55.3

53.6

46.9

56.1

47.5

57.6

54.7

58.6

51.8

52.8

60.9

56.9

54.7

51.1

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

138

139

140

141

142

143

144

145

146

147

149

152

153

154

155

156

157

158

159

160

161

162

163

164

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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W_PMUR_F_12
W_PMUR_F_13
W_PMUR_F_14
W_PMUR_F_15
W_PMUR_F_16
W_PMUR_M_01
W_PMUR_M_02
W_PMUR_M_04
W_PMUR_M_06
1

10

11

12

13

14

15

16

17

18

19

2

20

21

24

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

[HOR

[HOR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

IHOR

IHOR

IHOR

IHOR

T

< £ £ £ £ £ £ £ £ £ £ £ g g & £

59.3

48.8

50.7

50

59.1

59.2

49.5

56.5

47.2

52.3

59

53.8

58.2

54

50

60.1

51.9

58.1

523

56.1

54.7

60.4

58.9

66.1

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

165

166

167

168

169

170

171

172

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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25

26

27

28

30

31

32

33

35

38

39

40

41

42

43

44

47

48

49

50

51

PMUR M

IHOR F

PMUR M

IHOR F

IHOR M

IHOR F

IHOR F

IHOR F

IHOR F

IHOR F

PMUR M

[HOR

T

[HOR

PMUR

< £ X

PMUR

IHOR F

PMUR M

IHOR F

PMUR F

PMUR F

PMUR F

[HOR M

PMUR F

PMUR F

57.6

57.6

59.5

58.5

51.8

61.7

51.1

59.3

64

66.1

52.9

61.3

54.6

60.8

57.4

61.3

48.1

57.4

56.7

63.6

61.6

53.9

55.1

60.2

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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52

53

55

56

57

58

59

60

61

62

63

64

65

66

69

70

71

73

74

75

78

79

[HOR

IHOR

PMUR

PMUR

IHOR

IHOR

PMUR

[HOR

PMUR

PMUR

PMUR

PMUR

PMUR

[HOR

PMUR

PMUR

[HOR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

< £ 7

T

58

60.3

60.2

60.8

61.4

54.6

59.9

53.9

57.8

61.1

57.3

60.8

58.3

56

60

54.9

52.1

62.4

56.3

54.9

58.6

60.8

58.9

57.4

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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81

82

83

84

85

88

90

91

92

93

94

96

97

Al0

A2

A3

A4

A6

A8

A9

Bl

B2

IHOR M

IHOR M

PMUR F

PMUR F

PMUR F

PMUR F

PMUR F

PMUR F

PMUR F

PMUR F

PMUR F

PMUR F

PMUR F

IHOR F

IHOR F

IHOR F

IHOR F

IHOR F

IHOR F

IHOR F

IHOR F

IHOR F

IHOR F

IHOR F

58.4

54.1

58.8

56.3

533

56.7

55

59.1

49.5

53.8

53.9

55.9

59.9

55.5

61.2

64.1

60.3

61.4

52.5

58.6

53.8

62.2

57.5

58.1

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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B3

B4

B5

B6
[HOR_1526
[HOR_1527
[HOR_1528
[HOR_1529
[HOR_1530
[HOR_1531
[HOR_1532
IHOR_1533
IHOR_1535
IHOR_1536
IHOR_1538
IHOR_F1
IHOR_F11
IHOR_F13
IHOR_F14
IHOR_F19
IHOR_F2
IHOR_F4
IHOR_F5

IHOR_F9

[HOR

IHOR

[HOR

IHOR

IHOR

IHOR

IHOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

[HOR

IHOR

IHOR

IHOR

IHOR

T

< £ £ £ £ £ £ £ £ £ £

57.2

63.6

55.6

58.4

52.18

47.73

57.14

61.79

48.05

47.49

58.17

53.74

56.26

48.55

59.96

48.88

60.37

58.78

61.34

53.27

53.66

54.7

57.52

56.95

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

262

263

264

265

290

291

292

293

294

295

296

297

298

299

301

320

321

322

323

324

325

326

327

328

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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KZID_IHOR1501
KZID_IHOR1502
KZID_IHOR1503
KZID_IHOR1505
KZID_IHOR1506
KZID_IHOR1507
KZID_PMUR1501
KZID_PMUR1502
KZID_PMUR1503
KZID_PMUR1504
KZID_PMUR1505
PMUR_1544
PMUR_1545
PMUR_1546
PMUR_1547
PMUR_1548
PMUR_1549
PMUR_1550
PMUR_1551
PMUR_1552
PMUR_F16
PMUR_F17
PMUR_FI18

PMUR_F19

[HOR

IHOR

[HOR

IHOR

IHOR

IHOR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

PMUR

< £ £ £ E K

T

T

< £ £ £ £ £ £ 2 £ £ g K

54.22

47.53

49.6

53.34

53.94

50.24

58.63

49.94

50.25

58.76

56.49

59.76

58.17

54.93

55.44

51.04

61.57

58.39

55.96

59.72

59.49

61.16

55.26

60.95

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

SYNTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

333

334

335

337

338

339

340

341

342

343

344

366

367

368

369

370

371

372

373

374

388

389

390

391

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur

natur
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PMUR_F20
PMUR_F21
PMUR_F22
PMUR_F23

PMUR_F24

PMUR

PMUR

PMUR

PMUR

PMUR

F

59.56

59.96

50.55

57.69

62.24

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

ALLOTOPIC

392

393

394

395

396

natur

natur

natur

natur

natur

Abbreviations: IHOR = Iberolacerta horvathi, PMUR = Podarcis muralis, M = male, F =

female, SVL = snout to vent length (cm), natur = natural habitat, urban = urb
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