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Modelling the partially unknown distribution of
wall lizards (Podarcis) in North Africa: ecological
affinities, potential areas of occurrence, and
methodological constraints

A. Kaliontzopoulou, J.C. Brito, M.A. Carretero, S. Larbes, and D.J. Harris

Abstract: Species distribution modelling (SDM) is a powerful tool to investigate various biological questions with a spa-
tial component, but is also sensitive to presence-data characteristics, particularly data precision and clustering. Here, we in-
vestigate the effect of these two factors on SDM using Maxent as the modelling technique and wall lizards (genus
Podarcis Wagler, 1830) from North Africa as a model system. Podarcis are not ubiquitous in Africa as they are in Europe,
but their ecological and distributional characteristics in this area are poorly known. Our results show that the most impor-
tant environmental factors related to the distribution of this genus in North Africa are humidity, habitat type, and tempera-
ture. The areas of potential distribution predicted by models based on data sets with different precision and clustering
characteristics show high relatedness to coastal areas and mountain ranges and extend to areas were presence records for
these lizards are lacking. Our comparison of models based on different data sets indicates that finer scale models, even if
based on fewer presence locations, outperform coarser scale ones. Data clustering does not have a negative effect on
model performance, but is rather overcome by sample-size effects. Similar approaches may be of general application to
other stenoic species for which available locations are scarce in comparison with the extension of the study area.

Résumé : La modélisation de la répartition des espéces (SDM) est un outil puissant pour étudier diverses questions biolo-
giques a composante spatiale, mais elle est sensible aux caractéristiques des données, particulicrement leur précision et
leur regroupement. Nous examinons ici les effets de ces deux facteurs sur la SDM en utilisant Maxent comme méthode de
modélisation et des 1ézards des murailles (le genre Podarcis Wagler, 1830) d’Afrique du Nord comme systéme modele.
Les Podarcis ne sont pas ubiquistes en Afrique comme ils le sont en Europe, mais les caractéristiques de leur répartition
et de leur écologie dans cette région restent mal connues. Nos résultats montrent que les facteurs du milieu les plus impor-
tants pour expliquer la répartition de ce genre en Afrique du Nord sont I’humidité, le type d’habitat et la température. Les
zones de répartition potentielle prédites par les modeles d’apres des bases de données présentant des précisions et des car-
actéristiques de regroupement diverses montrent une forte affinité avec les régions cdtieres et les chaines montagneuses et
comprennent des zones ou il n’existe pas actuellement de confirmation de la présence de ces 1ézards. Nos comparaisons
des modeles €laborés a partir de différentes bases de données indiquent que les modeles a échelle plus fine, méme s’ils se
basent sur moins de localités de présence, sont plus performants que les modeles a échelle plus grossiere. Le regroupement
des données n’a pas d’effet négatif sur la performance du modele, car cet effet est oblitéré par les effets de la taille de
I’échantillon. Des approches semblables pourraient étre d’application générale pour I’étude d’autres especes sténoiques
pour lesquelles il existe peu de données de répartition, compte tenu de 1’étendue de la zone d’étude.

[Traduit par la Rédaction]

Introduction

Species distribution modelling (SDM) is rapidly being in-
corporated to an increasing number of biological applica-
tions (Aradjo and Guisan 2006) as an innovative tool to
investigate ecological and evolutionary questions and to en-
hance conservation (Elith et al. 2006). SDM tries to evaluate

how a set of environmental factors influence a species’ dis-
tribution. Therefore, it provides an estimate of the species’
fundamental niche (Hutchinson 1957), which can be used to
predict its potential geographical distribution. In practice, in-
formation on a number of environmental parameters is com-
bined to known locations of presence and a model is fitted
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to describe the requirements of the target species (Anderson
et al. 2003). Recently, numerous statistical approaches have
been developed for this purpose, including envelope models,
regression analysis, factor analysis, genetic algorithms, and
maximum entropy (reviewed by Elith et al. 2006).

However, all these techniques present inherent problems.
Sample size (Stockwell and Peterson 2002; Elith et al.
2006; Hernandez et al. 2006), bias in data distribution
(Guisan et al. 2006; Segurado et al. 2006), and geographic
accuracy of the records (Hernandez et al. 2006) may affect
modelling performance. Also, the question of scale is inher-
ent to all modelling techniques (Huettmann and Diamond
2006; Guisan et al. 2007). In practical terms, all the above
factors are inter-related and involve decision-making by the
investigator. For example, obvious trade-offs exist between
sample size and clustering of records (Segurado et al. 2006)
and one has to choose between a complete but clustered or a
random but reduced data set, since clustered field observa-
tions will usually result in spatially autocorrelated data. An-
other dilemma concerns the use of published data and
species records from collections. Although field observa-
tions can now be precisely referenced using Global Position-
ing Systems (GPS), species records published in atlases,
scientific and naturalistic journals, or obtained from museum
collections often fail to have the desired geographic preci-
sion (Graham et al. 2004; Rowe 2005). This constrains the
geographic scale of the analysis and a decision has to be
made between many records of low precision or fewer re-
cords of high precision. Obviously, these questions are espe-
cially relevant for species with fragmented or partially
unknown distributions, as well as for species occurring in
conflictive areas of difficult access.

Because of the geographically asymmetrical knowledge
on distribution and their complex evolutionary history, Po-
darcis from North Africa constitute an interesting model
system to investigate both methodological and biological
questions related to SDM. Wall lizards of the genus Podar-
cis Wagler, 1830 are members of the family Lacertidae, dis-
tributed around the Mediterranean basin. They are known to
be ecological generalists, occupying a wide variety of habi-
tats (Arnold 1987). Although detailed distributional and
comprehensive ecological data exist for most European spe-
cies of the genus, this is not the case for North Africa. In
this region the genus attains the southern limit of its distri-
bution, ranging from Morocco through northern Algeria,
and reaching west to northwestern Tunisia (Fig. 1A).
Although detailed distribution data are available for Mo-
rocco (Bons and Geniez 1996), Algeria is practically unex-
plored (but see Chirio and Blanc 1997) and few records
exist for Tunisia (Blanc 1979).

This situation is further obscured by the taxonomic com-
plexity that characterizes Iberian and North African Podar-
cis lizards (i.e., the species complex of Podarcis hispanica
Steindachner, 1870), owing to the lack of concordance be-
tween current taxonomy and phylogenetic relationships
(Harris and Sa-Sousa 2002; Harris et al. 2002; Pinho et al.
2007). Members of the genus from Morocco and southern
Spain were recently re-elevated to specific status, as Podar-
cis vaucheri (Boulenger, 1905) (Busack et al. 2005). How-
ever, since no populations from Algeria and Tunisia were
analysed, the remaining North African Podarcis are still
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maintained under P. hispanica sensu lato. Another study
has indicated a more complex situation and suggested that
taxonomic re-evaluation is needed, since at least two line-
ages are present in the area (Pinho et al. 2007). Together
with the difficulties related to fieldwork in Algeria, this has
hindered a clear definition of the southern limits of the dis-
tribution of this group. SDM is an indirect approach to re-
solving such questions and can be efficiently applied to
infer the ecological affinities and distribution limits of this
group in North Africa. The potential existence of more than
one phylogenetic entity in the area does not invalidate the
use of SDM. When, as in the case of North African Podar-
cis, the physiology of such entities is phylogenetically con-
served (Amaral and Carretero 2005; Carretero et al. 2006)
and their ranges are parapatric (Pinho et al. 2007), their joint
distributions can be efficiently modelled.

In this study, we use maximum entropy modelling to in-
vestigate the distribution of Podarcis lizards in North Africa
based on geographic distributional data and environmental
predictor variables, with the following objectives: (i) to de-
termine which environmental factors are correlated with the
distribution of these lizards in the southern limit of the dis-
tribution of the genus, (ii) to identify potential areas of oc-
currence in the study area by applying models based on
those factors, and (iii) to evaluate the effect of common
methodological restrictions, namely data precision and clus-
tering of presence records, on the quality of such models.

Materials and methods

Study area and presence records

The study area encompasses the overall range of Podarcis
in North Africa (Fig. 1A). Records for the species were col-
lected during fieldwork and exact coordinates were marked
with GPS. Moreover, published localities of occurrence of
Podarcis in the study area (Blanc 1979; Bons and Geniez
1996; Chirio and Blanc 1997) were located at a 10 km X
10 km scale. Because of the uncertainty of precision of pub-
lished data, these localities could not be considered at a fi-
ner geographic scale. We used zone 31N of the World
universal transverse mercator (UTM) grid, which is the cen-
tral zone of the study area, and projected data from all pub-
lished localities onto this grid. Data sets were reduced to one
record per cell for each geographic scale.

Data sets examined

To examine the effect of data precision and data cluster-
ing on the performance of Maxent modelling, we used four
alternative data sets (Figs. 1B—1D). As mentioned above, we
considered two initial data sets: one with exact records at an
approximately 1 km? (30 s x 30 s) geographic scale (1ALL)
and another including all available records at a 10 km?2 scale
(10ALL). Both data sets were examined for clustering using
the nearest neighbour index (NNI; spatial statistics toolbox
in ArcMap version 9.2; Environmental Systems Research In-
stitute, Inc. 2006). NNI assesses the degree of clustering of
the data and is the ratio of the observed distance between
points divided by the expected distance for a random distri-
bution. For NNI = 1, the distribution is random; for NNI >
1, the distribution is dispersed; for NNI < 1, the distribution
is clustered (Cliff and Ord 1973). Since the initial data sets
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Fig. 1. (A) Location of the study area and (B-E) presence data sets used. (B) 1 km? scale, all data; (C) 1 km? scale, non-autocorrelated data;
(D) 10 km? scale, all data; (E) 10 km? scale, non-autocorrelated data. The shaded area represents the mask used to model the potential

distribution of wall lizards (genus Podarcis).

C

Table 1. Results of the nearest neighbour index (NNI) analysis.

Observed mean

Expected mean

Data set n distance distance NNI Z score

1ALL 185 0.061 0.239 0.255 -19.39 x SD
10ALL 243 14.478 30.154 0.480 -15.50 x SD
1IRED 34 0.473 0.548 0.863 —-1.53 x SD
10RED 64 51.100 58.559 0.873 -1.95 x SD

Note: n is the number of sampling points and the Z score is the statistic value for testing the
null hypothesis of a random distribution of points, expressed as a multiple of standard devia-
tions (SD). The Z-score critical values for significance of « = 0.05 are Z = +1.96 SD. See Ma-
terial and methods for data set codes. Distances are in decimal-degrees for data sets at the
1 km scale, while in kilometres for data sets at the 10 km scale.

showed clustering, we eliminated clustered points using a
random interactive process until the distribution did not sig-
nificantly differ from random, i.e., the NNI was not statisti-
cally different from 1. This procedure resulted in two
reduced data sets (1IRED and 10RED, respectively, without
autocorrelated points; Table 1).

Modelling techniques

We used maximum entropy modeling of species geo-
graphic distributions (Maxent version 3.0; available from
http://www.cs.princeton.edu/~schapire/maxent [accessed 20
July 2007]) with default parameters and partitioned the data
to training and test samples (80% and 20% of presence
points, respectively, i.e., Anderson et al. 2003). We chose
Maxent because it has been shown to perform better than

other established methods, among both presence-only (Bio-
clim, Domain) and presence—absence (GAM, GLM, GARP)
techniques, particularly with small sample sizes (Elith et al.
2006; Hernandez et al. 2006; Phillips et al. 2006). Moreover,
Maxent presents several advantages (see Phillips et al. 2006;
Phillips and Dudik 2008), the most important of which (at
least in terms of experimental design and data availability)
is that it admits both continuous and categorical predictor
variables and it can be very effective with a relatively small
number of presence records (Pearson et al. 2007).

Maxent modelling estimates the potential distribution of a
species by finding the distribution of maximum entropy (i.e.,
closest to uniform), with the constraint that the expected
value of each predictor variable under this estimated distri-
bution has to match its empirical average, i.e., the mean
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Table 2. Environmental variables used to model the distribution of Podarcis lizards in North Africa.

Variable (unit) Ranges and classes Code Source
Altitude (m above sea level) 0-4016 ALT USGS 2004
Slope (%) 0-36.22 SLOPE USGS 2004
Land cover 1. Lowland evergreen forest LANDCOV GLC 2003

2. Submontane and montane forest

3. Humid areas

4. Closed deciduous forest

5. Open deciduous shrubland

6. Sparse grassland

7. Croplans

8. Sandy desert and dunes

9. Stony desert

10. Bare rock

11. Salines

12. Water bodies

13. Cities
Annual precipitation (mm) 27-1432 ANN_PR Hijmans et al. 2005
Precipitation in the driest month (mm) 0-29 PR_DRY Hijmans et al. 2005
Precipitation seasonality (mm) 19-110 PR_SEAS Hijmans et al. 2005
Annual mean temperature (°C) 1.5-24.3 ANN_X T Hijmans et al. 2005
Temperature annual range (°C) 10.9-42.3 T_ANN_RNG Hijmans et al. 2005
Minimum temperature of coldest month (°C) —15to0 13.3 TMN_COLD Hijmans et al. 2005
Maximum temperature of warmest month (°C)  22.2-46.7 TMX_WARM Hijmans et al. 2005

value of a random set of points sampled from the distribu-
tion in question (Phillips et al. 2004, 2006; Phillips and Du-
dik 2008). This is achieved through an iterative algorithm,
which begins with a uniform probability distribution with
zero gain. The gain is a measure of likelihood of the sam-
ples and it expresses how much higher is the average sample
likelihood compared with that of a random background
pixel. The algorithm sequentially updates the weights of pre-
dictor variables until it converges to the optimum potential
distribution and the gain of the final model can be inter-
preted as a measure of how much better the predicted distri-
bution fits the sample points compared with a theoretical
uniform distribution (Phillips et al. 2004, 2006; Phillips and
Dudik 2008).

Different models were tested with receiver operating char-
acteristics (ROC) plots. ROC curves plot true-positive rate
against false-positive rate (Phillips et al. 2004) and the area
under the curve (AUC) was used as a measure of the overall
fit of the model.

Environmental predictor variables

We considered a set of 10 uncorrelated (r < 0.8) environ-
mental factors (i.e., ecogeographical variables, EGVs) that
were selected to describe habitat variability. Three types of
EGVs were considered (Table 2): (1) topographical, i.e., al-
titude and slope derived from a digital elevation model
(USGS 2004); (2) ecological, i.e., a land-cover EGV derived
from satellite data (GLC 2003); (3) climatic, i.e., seven cli-
mate grids at approximately 1 km?2 precision (30 s x 30 s)
describing precipitation and temperature means, extremes,
and variability (Worldclim version 1.4; Hijmans et al.
2005). EGVs were all continuous, except for land cover,
which was categorical (Table 2). For 10 km? models, the
resolution of all EGVs was decreased to a grid cell size of
10 km? to match the precision of published species records.

The importance of each EGV in explaining the observed
distribution was evaluated by jacknife analysis of the AUC
with training and test data. For this purpose, Maxent sequen-
tially excludes one EGV and creates a model with the re-
maining. This way it determines the AUC that is lost by
exclusion of that particular EGV and estimates how much
information that EGV has which is not contained in others.
Additionally, to evaluate how much information that EGV
contains on its own, Maxent creates models considering
each EGV individually by fixing the rest to their mean
value. To simultaneously assess both measures of variable
importance and incorporate information from different mod-
els, we examined the scatter plot of “mean individual AUC”
(the mean AUC of models with a single EGV along alterna-
tive data sets) vs. “mean AUC loss” (the mean AUC lost
when that EGV was excluded from the model, along alterna-
tive data sets).

Response to predictor variables

To investigate the precise dependence of the distribution
observed on individual environmental factors, we produced
univariate models. This is necessary because the correlation
between predictor variables might produce spurious results
when examining all the variables together (Phillips et al.
2006). Consequently, we produced Maxent models with
each of the five most important variables (individual
AUC > 0.75) separately, using the four alternative data sets.
This allowed us to obtain response curves that describe the
relation between the probability of occurrence of Podarcis
in the study area and the most important environmental fac-
tors.

Predicting potential areas of occurrence
To integrate information provided by both models at each
geographic scale, we combined predictions to generate an
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Table 3. Maxent modelling results for the four models built.

Model n train  Iterations  Training AUC ntest Test AUC  AUC SD
1IALL 148 500 0.986 37 0.982 0.007
IRED 28 440 0.963 6 0.833 0.077
10ALL 195 500 0.931 48 0.883 0.021
I0RED 52 500 0.866 12 0.854 0.039

Note: n train is the training sample size, n test is the test sample size, AUC is the area under the

curve, and SD is standard deviation.

Fig. 2. Scatter plots of individual area under the curve (AUC) vs. AUC loss for the ecogeographical variables (EGVs) evaluated at 1 km?
(A) and 10 km? (B) geographic scales. Values for each EGV represent the mean of the models developed at each scale. For variable codes

see Table 2.
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ensemble prediction (Aradjo and New 2007). For this pur-
pose, we attributed to each cell of the study area the mean
value of the probability calculated for this cell by both mod-
els. Predictions are given in the logistic format of Maxent,
the value of each cell representing the exponential of the en-
tropy of its raw distribution. This logistic probability can be
interpreted as predicted probability of presence, ranging
from O to 1.

Results

Model performance

All models performed very well and closely fitted the
presence points of Podarcis in the study area, as suggested
by both training and test AUC values (Table 3), which were
above 0.9 for all the training data sets except for 10RED
with a training AUC of 0.8656. An examination of both
training and test AUCs for the four models built (Table 3)
revealed the existence of three sets of models: with both
training and test AUCs below 0.9 (10RED), with training
AUC above 0.9 but test AUC below 0.9 (1IRED, 10ALL),
and with both training and test AUCs above 0.9 (1ALL).
Although differences between the models in terms of AUC
are minor, the model that best predicts occurrence of the
species in presence areas is 1ALL.

Explanatory variables

Examination of the scatter plots of mean individual AUC
vs. mean AUC loss for each EGV (Fig. 2) revealed that the
five most important variables determining the distribution of
Podarcis lizards in North Africa are annual precipitation,
land cover, annual mean temperature, slope, and maximum
temperature in the warmest month of the year. The response

Individual AUC

curves produced by univariate models (Fig. 3) give more in-
sights into the precise effect of each variable on the distribu-
tion of Podarcis in the study area. A positive relationship is
observed with annual precipitation; the contribution to the
prediction increases in a nearly linear fashion, reaching its
maximum at around 1000-1100 mm under all models con-
sidered. In contrast, annual mean temperature seems to be
restrictive, since a relatively high contribution is observed
for temperatures from 3 to 18 °C, with a sharp drop above
this temperature. A similar pattern is observed for the maxi-
mum temperature in the warmest month of the year, the
contribution to the prediction reaching its highest value at
29-30 °C. Considering land cover, the lowland, submontane,
montane, and deciduous forests, humid areas, and water
bodies have a high contribution, while grasslands and crop-
lands exhibit notably lower contributions. Sandy desert,
dunes, and stony desert make no contributions to the predic-
tion. Finally, a positive relationship is observed with slope,
with quite high contribution above 5%, which stabilizes at
15%—20%.

Potential distribution of Podarcis in North Africa

As expected, the area predicted at the 10 km?2 scale was
much larger than that predicted at the 1 km?2 scale, but both
models provided high probabilities of occurrence for similar
areas (Fig. 4). Areas encompassed by all models are closely
related to coastal areas and mountain ranges, including the
Rif, Middle, and High Atlas in Morocco; the Aurés, High
Plateaux, isolated areas of the Saharian Atlas in Algeria;
and the Tell Atlas in Algeria and Tunisia (for toponyms see
Fig. 1A). At both geographic scales, the predictions include
areas where Podarcis records are lacking, especially for Al-
geria.
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Fig. 3. Response curves produced by univariate models of each data set on the five most important predictor variables. Solid black line:
1ALL; broken black line: 1RED; solid gray line: 10ALL; broken gray line: 10RED. The y axis (logarithmic contribution to raw prediction)

represents the contribution of the examined variable to the exponent that is

pixel of the study area.
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Discussion in the study area (Fig. 3A), emphasising the preference of

SDM has been shown to be a tool that can be used to in-
fer ecological requirements of organisms, study niche segre-
gation and competition of co-existing species, facilitate
fieldwork by the prediction of potential occurrence areas for
rare species and improve conservation, and numerous other
applications with a spatial component (Aradjo and Guisan
20006; Elith et al. 2006; Guisan et al. 2006). Our results rein-
force this view, offering insights into the ecological factors
related to the distribution of Podarcis in North Africa and
providing a map of potential occurrence. Additionally, a
number of interesting methodological conclusions with rele-
vance for broader applications can be drawn.

Ecological affinities of Podarcis in North Africa

As revealed by Maxent modelling, precipitation, habitat
type, and temperature are important environmental factors
in explaining the geographical distribution of wall lizards in
North Africa (Fig. 3). This is not surprising given the Medi-
terranean origin of the genus and the environmental charac-
teristics of the study area. Interestingly, the only other study
using Maxent to explain the distribution of Podarcis species
also highlighted the importance of humidity and habitat type
for these lizards (Herkt 2007). Additionally, other modelling
approaches applied to two forms of P. hispanica also re-
vealed that temperature and climate type may be highly rel-
evant (Sa-Sousa 2000).

In our case, a positive relationship existed between annual
precipitation and the probability of occurrence of Podarcis

these lizards for relatively humid environments and being
additionally supported by the importance of humid areas
and water bodies as a positive contributor related to land cover
(Fig. 3B). This confirms previous observations that Podar-
cis inhabiting the north of Africa are dependent on perma-
nent water courses (Schleich et al. 1996) and also agrees
with the preference for forested habitats (see Fig. 3B, Ta-
ble 2). In contrast, more desert-like habitats which favour
arid steppe-land vegetation are completely avoided. This pat-
tern is possibly related to the Mediterranean origin of these
lizards, which usually prefer Mediterranean-type shrubby vege-
tation and temperate forests and avoid intensively cultivated
areas (Miras et al. 2005).

However, the high values of both mean individual AUC
and mean AUC loss indicate that land cover is an EGV rel-
evant for the distribution of Podarcis on its own, which is
not included in other EGVs. Therefore, the contribution of
habitat type (as represented by the EGV of land cover) is
not uniquely related to the humidity characteristics of corre-
sponding classes. Probably, the habitat structure related to
these vegetation types is also important, since these lizards
prefer rocky habitats (Arnold 1987; Miras et al. 2005). The
positive contribution of bare rock (Fig. 3B), as well as the
response curve of the EGV “slope” (Fig. 3D), which sug-
gests that plains are excluded (zero contribution to the pre-
diction) and slopes above 5% are favoured, may be an
additional indication of this fact.

Finally, the high importance of two temperature-related
variables and their corresponding response curves also fa-
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Fig. 4. Individual and ensemble predictions of Podarcis distribution obtained by the models at 1 km? ((A) all data; (B) reduced data set;
(I) ensemble of A and B in the WGS 1984 projection) and 10 km? ((C) all data; (D) reduced data set; (II) ensemble of C and D projected at
the UTM 31N zone). Dark tones represent low probabilities of occurrence and light tones represent high probabilities of occurrence. Total
records of Podarcis presence used at each scale can be seen in the reduced shaded maps.

0 200km

0 200km

200km

0 200km

vour the view that Podarcis behave as specialists in North
Africa. The response curves of annual mean temperature
(Fig. 3C) and maximum temperature at the warmest month
(Fig. 3E) indicate that these lizards are dependent on tem-
perate areas, but avoid exceedingly warm conditions. Podar-
cis are known to select lower body temperatures than other
North African lacertids like the Acanthodactylus Wiegmann,
1834 (Bauwens et al. 1995).

Potential distribution

The preference of Podarcis for humid conditions and for-
ested habitats, but not extremely high temperatures, is re-
flected in their potential distribution model, which
principally includes areas that lie either close to the Mediter-
ranean coast or along mountain ranges. It is interesting that
presence of Podarcis is predicted in areas where no records
of occurrence exist. This could be a result of modelling
weakness, but is probably rather due to undersampling of
the areas in question. A cross-examination of the 1 km?
scale prediction map (Fig. 4I) and the actual distribution of
Podarcis in North Africa (Fig. 1D) reveals that 1 km?2 scale
models accurately assign high probabilities of occurrence to
areas where Podarcis exist, although these locations were
not used for modelling. Reinforcing this observation, in the
time between the elaboration of the models and the produc-
tion of this manuscript, one of us (S.L.) confirmed the pres-
ence of Podarcis in localities where it was predicted but not
previously recorded, confirming the good performance of
the models in the field, as expected because of the relatively
constant habitat preferences of Podarcis along the study
area. Interestingly, Podarcis lizards were recorded in the Sa-
harian Atlas, at locations corresponding to extremely iso-
lated pixels with high probability of occurrence in the south
of the Algerian part of the prediction map (Fig. 5). These
isolated populations were clearly marginal, with very low
densities, something that could result from Podarcis being
at the southern limit of their distribution.

The environmental features related to the distribution of
Podarcis in North Africa give indirect insights into the fac-
tors limiting the distribution of the genus southwards, specif-
ically high humidity and moderate temperatures. The
reproductive biology of these lizards is influenced by small
fluctuations of both humidity (Galan 1996, 1999) and tem-
perature (Van Damme et al. 1992; Castilla and Swallow
1996; Brafa and Ji 2000), probably restricting the spread of
the genus farther south. In the southern part of the study
area, high probabilities of occurrence were only predicted
for high mountain ranges, where the effect of altitude coun-
terbalances the effect of latitude. An examination of the dis-
tribution of lacertid lizards in Morocco (Bons and Geniez
1996) indicates that while Mediterranean species, such as
Scelarcis perspicillata (Duméril and Bibron, 1839), show a
distribution that mostly coincides with the predicted distri-
bution of Podarcis, more arid areas are occupied by other
lacertids of African origin (i.e., members of the lacertid gen-
era Acanthodactylus and Mesalina Gray, 1845).

Methodological considerations

Several methodological studies have examined the effect
of sample size (Pearce and Ferrier 2000; Stockwell and Pe-
terson 2002; Hernandez et al. 2006), data characteristics
(Lennon 2000; Diniz-Filho et al. 2003; Segurado et al.
2006; Dormann 2007; Hawkins et al. 2007), and scale (Fer-
rier and Watson 1997; Tobalske 2002; Guisan et al. 2007)
on distribution modelling performance. However, all of
them were based on simulations or (and) different data par-
titioning of a single data set and did not include compari-
sons between field observations and data from publications
and collections, which are more relevant for biologists. In
concordance with previous studies (Elith et al. 2006; Her-
nandez et al. 2006; Phillips et al. 2006; Guisan et al. 2007),
our results show that Maxent SDM performs very well over
a wide range of initial data sets, at least for the case study
explored. Other factors being equal, models inferred from
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Fig. 5. New observations of Podarcis in Algeria, superimposed on the predictive map at 1 km? scale. (1) Tlemcen — Mafrouche National
Park (34°51.00'N, 1°17.53'W); (2) Ain Guettaya, 7 km south of Charef (34°33.03'N, 2°47.77'E); (3) Ain Sidi Chikh, Djebel Ksel

(33°43.94'N, 1°10.15'E).

0 200 km

precise presence records performed better than those in-
ferred from published data of uncertain precision. Similarly,
models inferred using all the data available, although clus-
tered, performed better than those using reduced, randomly
arranged data sets.

In the context of the increasing availability of species re-
cords from natural-history collections (Graham et al. 2004)
and published resources, data quality (Rowe 2005) and its
effects on SDM are of relevance. Our comparison of Maxent
models of different geographical precision shows a benefit
in using fine-resolution models over more coarser resolution
ones. Several studies report different degrees of sensitivity
of SDM to change in grain size (Ferrier and Watson 1997,
Tobalske 2002; Guisan et al. 2007). Regarding model struc-
ture and the importance of EGVs, examination of mean indi-
vidual AUC and mean AUC loss (Fig. 2) reveals that grain
size is relevant. Coarser grain models seem to have a lower
capacity for detecting which variables are more important
for species distribution. In our data, both mean individual
AUC and mean AUC loss of EGVs showed lower values at
10 km? pixel size. This was reflected in the resulting proba-
bility predictions (Fig. 4A), with those for coarser grain size
(Fig. 4C, 4D, 4I) being “fuzzy” compared with those for
finer grain size (Figs. 4A, 4B, 4I). This result is probably
related to the ecological characteristics of Podarcis (small
body size and home range, aggregate distribution, and low
dispersal) and therefore a higher resolution of EGVs is ex-
pected to better capture their requirements (Suarez-Seoane
et al. 2002; Guisan and Hofer 2003).

Clustering of presence records is related to both sampling
bias and spatial autocorrelation. Sampling bias may occur
because investigators are likely to collect species records in
a nonrandom, spatially clustered manner. The effect of spa-
tial autocorrelation (lack of independence of neighbouring

points; Legendre 1993; Dormann 2007) on SDM has been
extensively reviewed and several suggestions have been
made to deal with this issue in modelling and ecological
studies (Lennon 2000; Diniz-Filho et al. 2003; Segurado et
al. 2006; Dormann 2007; Hawkins et al. 2007). Here we
used an empirical approach to examine clustering effects on
the performance of Maxent modelling. Our results indicate
that complete data sets work better than those reduced to
eliminate clustering, although the confounding effect of
sample size does not permit direct comparison of the models
(but see further below). Higher AUC values and lower AUC
standard deviations (Table 3) characterize Maxent models
produced with all the observations available. Maxent model-
ling, not being a regression-based technique and incorporat-
ing complicated interactions between predictor variables
(Phillips et al. 2006; Phillips and Dudik 2008), should be
less liable to autocorrelation effects than other methods, but
this is a question that should be investigated further.

Although it has been repeatedly suggested that sample
size strongly affects model accuracy (Pearce and Ferrier
2000; Stockwell and Peterson 2002), our results indicate
that Maxent is quite robust to variations in sample size. All
the models developed for Podarcis lizards in North Africa
were at least useful (i.e., 0.75 < AUC < 0.9) and at least
one of them was highly accurate (i.e., AUC > 0.9) (Swets
1988; Aradjo et al. 2005). An evaluation of the effect of
sample size on model accuracy along techniques (Hernandez
et al. 2006) concluded that Maxent outperforms other meth-
ods, being accurate and stable across all sample-size catego-
ries tested. Our results reinforce this conclusion, since
Maxent modelling seems to be very accurate along a wide
range of sample sizes (34-243 in this study). However, two
important conclusions can be drawn concerning its trade-offs
with data precision and data clustering effects. First, data

© 2008 NRC Canada



1000

precision seems to prevail over sample size, something that
has also been indicated by other authors (i.e., Engler et al.
2004); models based on precise data performed better than
those based on lower precision data, although sample sizes
were higher for the latter. In contrast, sample size over-
comes the importance of data clustering, both at 1 and
10 km? scales. Models based on complete data sets are
more effective than those based on reduced data sets.

The narrow ecological requirements and restricted distri-
bution of wall lizards in North Africa, examined with Max-
ent modelling, allowed us to determine putative
environmental constraints and successfully predict species
presence in unsampled areas orienting future samplings.
Our analysis of methodological constraints on Maxent mod-
elling shows that precise presence records are to be pre-
ferred over less accurate records, even if this reduces
sample size. In contrast, clustering does not have a negative
effect on Maxent performance, as sample size is more im-
portant. Similar approaches may be of general application
to other stenoic species for which available locations are
scarce in comparison with the study area.

Acknowledgements

We thank N. Sillero and P. Tarroso for technical assis-
tance with GIS. N. Sillero, X. Santos, and two anonymous
reviewers provided helpful comments that improved earlier
versions of the manuscript. A.K. was supported by a predoc-
toral grant (SFRH/BD/28565/2006) and J.C.B., M.A.C., and
D.J.H. were supported by postdoctoral grants (SFRH/BPD/
26699/2006, SFRH/BPD/27025/2006 and SFRH/BPD/
26738/2006), all by Fundagao para a Ciéncia e a Tecnologia.

References

Amaral, M.J., and Carretero, M.A. 2005. Preferred body tempera-
tures of Podarcis lizards in Portugal: inter- and intraspecific var-
iation. In Programme and Abstracts of the 13th Ordinary
General Meeting of Societas Europaea Herpetologica, Bonn,
Germany, 27 September — 2 October 1995. Edited by Zoolo-
gisches Forschungsmuseum Alexander Koenig, Bonn, Germany.
p- 24.

Anderson, R.P., Lew, D., and Peterson, A.T. 2003. Evaluating pre-
dictive models of species’ distributions: criteria for selecting op-
timal models. Ecol. Model. 162: 211-232. doi:10.1016/S0304-
3800(02)00349-6.

Aratijo, M.B., and Guisan, A. 2006. Five (or so) challenges for spe-
cies distribution modelling. J. Biogeogr. 33: 1677-1688. doi:10.
1111/j.1365-2699.2006.01584 x.

Aratijo, M.B., and New, M. 2007. Ensemble forecasting of species
distributions. Trends Ecol. Evol. 22: 42-47. doi:10.1016/j.tree.
2006.09.010. PMID:17011070.

Araujo, M.B., Pearson, R.G., Thuiller, W., and Erhard, M. 2005.
Validation of species—climate impact models under climate
change. Glob. Change Biol. 11: 1504-1513. doi:10.1111/j.1365-
2486.2005.01000.x.

Arnold, E.N. 1987. Resource partition among lacertid lizards in
southern Europe. J. Zool. Ser. B, 1: 739-782.

Bauwens, D., Garland, T., Castilla, A.M., and Van Damme, R.
1995. Evolution of sprint speed in lacertid lizards: morphologi-
cal, physiological and behavioral covariation. Evolution, 49:
848-863. doi:10.2307/2410408.

Blanc, C.P. 1979. Observations sur Lacerta hispanica et L. lepida
en Tunisie. Bull. Soc. Herpetol. Fr. 103: 504-506.

Can. J. Zool. Vol. 86, 2008

Bons, J., and Geniez, P. 1996. Amphibians and reptiles of Mor-
occo. Asociacion Herpetoldgica Espaiiola, Barcelona.

Brafia, F., and Ji, X. 2000. Influence of incubation temperature on
morphology, locomotor performance, and early growth of
hatchling wall lizards (Podarcis muralis). J. Exp. Zool. 286:
422-433. doi:10.1002/(SICI)1097-010X(20000301)
286:4<422::AID-JEZ10>3.0.CO;2-D. PMID:10684565.

Busack, S.D., Lawson, R., and Arjo, W.M. 2005. Mitochondrial
DNA, allozymes, morphology and historical biogeography in
the Podarcis vaucheri (Lacertidae) species complex. Amphib.-
Reptilia, 26: 239-256. doi:10.1163/1568538054253438.

Carretero, M.A., Marcos, E., and de Prado, P. 2006. Intraspecific
variation of preferred temperatures in the NE form of Podarcis
hispanica. In Mainland and insular lacertid lizards: a Mediterra-
nean perspective. Edited by C. Corti, P. Lo Cascio, and M.
Biaggini. Firenze University Press, Florence, Italy. pp. 55-64.

Castilla, A.M., and Swallow, J.G. 1996. Thermal dependence of in-
cubation duration under a cycling temperature regime in the li-
zard, Podarcis hispanica atrata. J. Herpetol. 30: 247-253.
doi:10.2307/1565516.

Chirio, L., and Blanc, C.P. 1997. Statut et distribution des reptiles
dans le massif de 1’ Aures (Algérie). J. Afr. Zool. 111: 205-232.

Cliff, A.D., and Ord, J.K. 1973. Spatial autocorrelation. Pion Lim-
ited, London.

Diniz-Filho, J.A.F., Bini, L.M., and Hawkins, B.A. 2003. Spatial
autocorrelation and red herrings in geographical ecology. Glob.
Ecol. Biogeogr. 12: 53-64. doi:10.1046/j.1466-822X.2003.
00322.x.

Dormann, C.F. 2007. Effects of incorporating spatial autocorrela-
tion into the analysis of species distribution data. Glob. Ecol.
Biogeogr. 16: 129-138. doi:10.1111/j.1466-8238.2006.00279.x.

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S.,
Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Leh-
mann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G.,
Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M.C.C.,
Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira,
R., Schapire, R.E., Soberdn, J., Williams, S., Wisz, M.S., and
Zimmermann, N.E. 2006. Novel methods improve prediction of
species’ distributions from occurrence data. Ecography, 29: 129—
151. doi:10.1111/j.2006.0906-7590.04596.x.

Engler, R., Guisan, A., and Rechsteiner, L. 2004. An improved ap-
proach for predicting the distribution of rare and endangered
species from occurrence and pseudo-absence data. J. Appl.
Ecol. 41: 263-274. doi:10.1111/j.0021-8901.2004.00881 .x.

Environmental Systems Research Institute, Inc. 2006. ArcMap.
Version 9.2 [computer program]. Environmental Systems Re-
search Institute, Inc., Redlands, Calif.

Ferrier, S., and Watson, G. 1997. An evaluation of the effective-
ness of environmental surrogates and modelling techniques in
predicting the distribution of biological diversity. Environment
Australia, Canberra, A.C.T.

Galan, P. 1996. Seleccion de lugares de puesta en una poblacion
del lacértido Podarcis bocagei. Rev. Esp. Herpetol. 10: 97-108.

Galan, P. 1999. Demography and population dynamics of the lacer-
tid lizard Podarcis bocagei in northwest Spain. J. Zool. Ser. B,
249: 203-218.

GLC. 2003. The Global Land Cover for the Year 2000. Available
from http://www-gem.jrc.it/glc2000/defaultGLC2000.htm [ac-
cessed 10 June 2007].

Graham, C.H., Ferrier, S., Huettmann, F., Moritz, C., and Peterson,
A.T. 2004. New developments in museum-based informatics and
applications in biodiversity analysis. Trends Ecol. Evol. 19:
497-503. doi:10.1016/j.tree.2004.07.006. PMID:16701313.

Guisan, A., and Hofer, U. 2003. Predicting reptile distributions at

© 2008 NRC Canada



Kaliontzopoulou et al.

the mesoscale: relation to climate and topography. J. Biogeogr.
30: 1233-1243. doi:10.1046/j.1365-2699.2003.00914 .x.

Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton,
J.M.C.C., and Aspinall, R. 2006. Making better biogeographical
predictions of species’ distributions. J. Appl. Ecol. 43: 386-392.
doi:10.1111/j.1365-2664.2006.01164.x.

Guisan, A., Graham, C.H., Elith, J., and Huettmann, F., and the
NCEAS Species Distribution Modelling Group. 2007. Sensitivity
of predictive species distribution models to change in grain size.
Divers. Distrib. 13: 332-340.

Harris, D.J., and Sa-Sousa, P. 2002. Molecular phylogenetics of
Iberian wall lizards (Podarcis): is Podarcis hispanica a species
complex? Mol. Phylogenet. Evol. 23: 75-81. doi:10.1006/mpev.
2001.1079. PMID:12182404.

Harris, D.J., Carranza, S., Arnold, E.N., Pinho, C., and Ferrand, N.
2002. Complex biogeographical distribution of genetic variation
within Podarcis wall lizards across the Strait of Gibraltar. J.
Biogeogr. 29: 1257-1262. doi:10.1046/j.1365-2699.2002.00744.
X.

Hawkins, B.A., Diniz-Filho, J.A.F., Bini, L.M., De Marco, P., and
Blackburn, T.M. 2007. Red herrings revisted: spatial autocorre-
lation and parameter estimation in geographical ecology. Eco-
graphy, 30: 375-384.

Herkt, M. 2007. Modelling habitat suitability to predict the poten-
tial distribution of Erhard’s wall lizard Podarcis erhardii on
Crete. M.Sc. thesis, International Institute for Geo-Information
Science and Earth Observation, Enschede, the Netherlands.

Hernandez, P.A., Graham, C.H., Master, L.L., and Albert, D.L.
2006. The effect of sample size and species characteristics on
performance of different species distribution modeling methods.
Ecography, 29: 773-785. doi:10.1111/j.0906-7590.2006.04700.x.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis,
A. 2005. Very high resolution interpolated climate surfaces for
global land areas. Int. J. Climatol. 25: 1965-1978. doi:10.1002/
joc.1276.

Huettmann, E., and Diamond, A.W. 2006. Large-scale effects on
the spatial distribution of seabird in the Northwest Atlantic.
Landsc. Ecol. 21: 1089-1108. doi:10.1007/s10980-006-7246-8.

Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harb.
Symp. Quant. Biol. 22: 415-427.

Legendre, P. 1993. Spatial autocorrelation: trouble or new para-
digm? Ecology, 74: 1659-1673. doi:10.2307/1939924.

Lennon, J.L. 2000. Red-shifts and red herrings in geographical
ecology. Ecography, 23: 101-113. doi:10.1034/j.1600-0587.
2000.230111.x.

Miras, J.A.M., Cheylan, M., Nouira, M.S., Joger, U., Sa-Sousa, P.,
and Pérez-Mellado, V. 2005. Podarcis vaucheri. In 2006 TUCN
red list of threatened species. International Union for Conserva-
tion of Nature and Natural Resources (IUCN), Gland, Switzer-
land. Available from http://www.iucnredlist.org [accessed 13
August 2007].

Pearce, J., and Ferrier, S. 2000. An evaluation of alternative algo-
rithms for fitting species distribution models using logistic re-
gression. Ecol. Model. 128: 127-147. doi:10.1016/S0304-
3800(99)00227-6.

Pearson, R.G., Raxworthy, C.J., Nakamura, M., and Peterson, A.T.
2007. Predicting species distributions from small numbers of oc-

1001

currence records: a test case using cryptic geckos in Madagas-
car. J. Biogeogr. 34: 102-117. doi:10.1111/j.1365-2699.2006.
01594 x.

Phillips, S.J., and Dudik, M. 2008. Modeling of species distribu-
tions with Maxent: new extensions and a comprehensive evalua-
tion. Ecography, 31: 161-175. doi:10.1111/.0906-7590.2008.
5203.x.

Phillips, S.J., Dudik, M., and Schapire, R.E. 2004. A maximum en-
tropy approach to species distribution modeling. In Proceedings
of the Twenty-first International Conference on Machine Learn-
ing, Banff, Alta., July 2004. Edited by R. Greiner and D.
Schuurmans. ACM Press, New York. pp. 655-662.

Phillips, S.J., Anderson, R.P., and Schapire, R.E. 2006. Maximum
entropy modeling of species geographic distributions. Ecol.
Model. 190: 231-259. doi:10.1016/j.ecolmodel.2005.03.026.

Pinho, C., Harris, D.J., and Ferrand, N. 2007. Comparing patterns
of nuclear and mitochondrial divergence in a cryptic species
complex: the case of Iberian and North African wall lizards (Po-
darcis, Lacertidae). Biol. J. Linn. Soc. 91: 121-133. doi:10.
1111/5.1095-8312.2007.00774.x.

Rowe, R.J. 2005. Elevational gradient analyses and the use of his-
torical museum specimens: a cautionary tale. J. Biogeogr. 32:
1883-1897. doi:10.1111/j.1365-2699.2005.01346.x.

Sa-Sousa, P. 2000. A predictive distribution model for the Iberian
wall lizard (Podarcis hispanica) in Portugal. Herpetol. J. 10: 1—
11.

Schleich, H.H., Kistle, W., and Kabisch, K. 1996. Amphibians and
reptiles of North Africa. Koeltz Scientific Books, Koenigstein,
Germany.

Segurado, P., Aratjo, M.B., and Kunin, W.E. 2006. Consequences
of spatial autocorrelation for niche-based models. J. Appl. Ecol.
43: 433-444. doi:10.1111/§.1365-2664.2006.01162.x.

Stockwell, D.R.B., and Peterson, A.T. 2002. Effects of sample size
on accuracy of species distribution models. Ecol. Model. 148:
1-13. doi:10.1016/S0304-3800(01)00388-X.

Suarez-Seoane, S., Osborne, P.E., and Alonso, J.C. 2002. Large-
scale habitat selection by agricultural steppe birds in Spain:
identifying species—habitat responses using generalized additive
models. J. Appl. Ecol. 39: 755-771. doi:10.1046/j.1365-2664.
2002.00751.x.

Swets, J.A. 1988. Measuring the accuracy of diagnostic systems.
Science (Washington, D.C.), 240: 1285-1293. doi:10.1126/
science.3287615. PMID:3287615.

Tobalske, C. 2002. Effects of spatial scale on the predictive ability
of habitat models for the green woodpecker in Switzerland. In
Predicting species occurrences: issues of accuracy and scale.
Edited by J.M. Scott, P.J. Heglund, F. Samson, J. Haufler, M.
Morrison, M. Raphael, and B. Wall. Island Press, Covelo, Calif.
pp. 197-204.

USGS. 2004. Shuttle radar topography mission (SRTM): mapping
the world in 3 dimensions. United States Geological Survey Na-
tional Center, Reston, Va. Available from http://srtm.usgs.gov/
[accessed 8 June 2007].

Van Damme, R., Bauwens, D., Brafia, F., and Verheyen, R.F. 1992.
Incubation temperature differentially affects hatching time, egg
survival, and hatching performance in the lizard Podarcis mura-
lis. Herpetologica, 48: 220-228.

© 2008 NRC Canada



