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Abstract
Extreme climate events, together with anthropogenic land use changes, have led to the rise of 
megafires (i.e., fires at the top of the frequency size distribution) in many world regions. 
Megafires imply that the centre of the burned area is far from the unburnt; thus, recolonization
may be critical for species with low dispersal abilities such as reptiles. We aimed to evaluate 
the effect of megafires on a reptile community, exploring to what extent reptile responses are 
spatially shaped by the distance to the unburned area. We examined the short-term 
spatiotemporal response of a Mediterranean reptile community after two megafires (>20.000 
hectares) occurred in summer 2012 at eastern Spain. Reptiles were sampled during four years 
after the fire in burnt plots located at different distances from the fire perimeter (edge, middle,
and centre), and in adjacent unburnt plots. Reptile responses were modelled with fire history, 
as well as climate and remotely sensed environmental variables. In total we recorded 522 
reptiles from 12 species (11 species in the burnt plots and 9 in the unburnt plots). Reptile 
abundance decreased in burnt compared to unburnt plots. The community composition and 
species richness did not vary either spatially (unburnt and burnt plots) or temporally (along 
the four years). The persistence of reptiles in the burnt area supports their resilience to 
megafires. The most common lizard species was Psammodromus algirus; both adults and 
juveniles were found in all unburnt and burnt plots. This species showed lower abundances in 
burnt areas compared to the unburnt and a slow short-term abundance recovery. The lizard P. 
edwarsianus was much less abundant and showed a tendency to increase its abundance at 
burnt plots compared to unburnt plots. Within the megafire area, P. algirus and P. 
edwarsianus abundances correlated with the thermal-moisture environment and vegetation 
recovery regardless of the distance from the fire edge. These results indicate the absence of a 
short-term reptile recolonization from the unburnt zone, demonstrating that reptiles are 
resilient (in-situ persistence) to megafires when environmental conditions are favourable.
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Introduction
Fire is an intrinsic and natural process in many regions, and a key element for understanding 
the ecology of fire-prone ecosystems (Pausas and Keeley 2009, Keeley et al. 2012). In those 
ecosystems, vegetation structure and plant and animal composition are shaped by fire regime 
(Kelly et al. 2020, Pausas and Parr 2018). There is a long standing debate on how fire is 
affecting biodiversity. First, because species respond to fire in multiple (and sometimes 
opposed) ways (Moretti et al. 2004, Ferreira et al. 2016b); and, secondly, because there are 
multiple factors including land-use legacy (Montiel-Molina et al. 2019), vegetation dynamics 
(Lindenmayer et al. 2008, Swan et al. 2015), fire characteristics (e.g. intensity, size, season, 
recurrence; Keeley 2009), and species life history traits (Smith 2018) that interact to fully 
explain the response of organisms to fire. Despite this variability in responses to fire, there is 
growing evidence that in fire-prone regions plant and animal species are resilient to historical 
fire regimes (Andersen et al. 2005), and have evolved multiple strategies to respond to this 
disturbance (Pausas 2019). In fact, some animals can survive after fire in refugia or protected 
microsites (Santos et al. 2016, Pausas 2019); others may temporally disappear from the burnt 
area and recolonize from the unburnt area after fire (Brotons et al. 2005). However, the 
current raise in the frequency of large fires cast doubts on the resilience of animal 
populations, and especially on those with low mobility and limited dispersal ability.

Given the current anthropogenic effects on fire regime (increased ignitions, land use 
changes, and global climate change), the frequency of large fires (e.g., megafires) is 
increasing worldwide, including the Mediterranean region (Pausas and Fernandez-Muñoz 
2012, Moreira et al. 2020). By megafires we refer to those wildfires of high intensity that are 
in the top of the size frequency distribution of a given region (Pausas and Keeley, 2021). 
From the biological point of view, a key distinction of megafires is that some burnt areas are 
very far from the unburnt, and this may limit postfire colonization. In addition, the increasing 
drought may imply longer time for vegetation (habitat) to recover (Torres et al. 2018, Hislop 
et al. 2019) or may move to another stable state (Pausas and Bond 2020). Thus, the rise of 
megafires has increased the level of pressure for biodiversity since animals have to respond to
fire at both the temporal (post-fire succession) as well as in the spatial (post-fire 
recolonization) components (Stevens et al. 2012, Jones et al. 2016, Jung 2019, Siegel et al. 
2019). The spatiotemporal approach is particularly relevant for low-mobility animal species 
for which megafires are typically much larger than their home range and dispersal distances.

Reptiles are ectotherm organisms (Huey 1982), and they are sensitive to abrupt shifts 
in habitat (Doherty et al. 2020) and specifically in vegetation structure (i.e., heterogeneity and
cover; Azor et al. 2015). In general, reptiles have small home ranges (Perry and Garland 2002,
Vitt and Caldwell 2009) and low dispersal abilities (Valentine and Schwarzkopf 2008), thus 
they can be susceptible to the large high-intensity fires currently occurring in Mediterranean 
shrublands. Reptiles typically respond to fire with a replacement of species along the post-fire
succession process (Hu et al. 2013, Santos and Cheylan 2013). However, reptiles respond 
poorly to predictable models of habitat succession as these responses are context-dependent 
(e.g. biogeography, surrounding landscape, climate, Nimmo et al., 2014, 2012; Simms et al., 
2019). Thus, reptile responses largely depend on the rate of vegetation recovery and the 
resilience of several ecosystem components (Lindenmayer et al. 2008, Santos et al. 2016). 
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Accordingly, megafires can severely compromise reptile recolonization and community 
composition into the burnt area.

The aim of this study was to evaluate the effect of megafires on a reptile community, 
exploring how reptile responses are spatially shaped by the distance to external unburnt 
shrubland, i.e., the unburnt vegetation surrounding the burnt area (hereafter termed ‘unburnt’).
Specifically, we ask whether reptile species survive after a megafire (in situ persistence; e.g., 
hidden in microsites), or alternatively, whether they disappear after fire and colonize from 
adjacent populations. To answer this question, we sampled reptiles during four years after two
unusually large fires (>20,000 ha each) in Mediterranean shrublands at eastern Spain. The 
spatial sampling design includes different distances from the unburnt to the centre of the fire. 
Reptile responses were modelled with fire history, as well as climate and remotely sensed 
environmental variables. These satellite-based variables translate different dimensions of 
ecosystem functioning linked to energy-mater flows (Alcaraz et al. 2006, Cabello et al. 2012),
which recover with distinct trajectories and speeds after a fire (Torres et al. 2018, Marcos et 
al. 2021) thus potentially improving the assessment of reptile responses to megafires. Finding 
a reptile decline pattern towards the centre of the burnt area would suggest that colonization is
the main process; the lack of such pattern may suggest local extinction (if they are absent) or 
fire survival (if reptiles are present); the latter would support reptile persistence after 
megafires. The study was conducted along four years after the fire disturbance to provide 
insights on the ecological resilience of the reptile community to megafires.

Material and Methods
Study sites and sampling design
The study was performed in the Valencia region (eastern Spain), an area with a Mediterranean
climate and high fire activity (Pausas 2004, Pausas and Fernandez-Muñoz 2012). In June/July 
2012, two very large fires occurred simultaneously and under extreme weather conditions 
(very hot and dry weather with strong winds). Fire ignition started in the municipalities of 
Cortes de Pallás and Andilla (hereafter, Cortes and Andilla fires) and spread over ca. 30,000 
and 21,000 ha, respectively (Fig. 1). According to the fires recorded in the study area during 
the XIX and XX centuries (see Fig. 2 in Pausas & Fernandez-Muñoz 2012), fires of this size 
are in the extreme of the size frequency distribution, and thus can be considered megafires 
(sensus Pausas & Keeley 2021). The distance between the two fires was ca. 65 km (straight 
line), and were located in different mountain chains separated by a valley dedicated to 
agriculture. Both fires occurred on limestone lithology, and the elevation range of these sites 
varies from 190 to 1245 m a.s.l. Average annual rainfall and temperature for the area are 
17.8ºC and 454 mm, respectively (www.aemet.es  ; Spanish Meteorological Agency  ). Before 
the 2012 fires, Cortes was a shrubland dominated by Q. coccifera, Cistus sp. pl., Rosmarinus 
officinalis, Juniperus oxycedrus, and Brachypodium retusum, while Andilla alternated similar 
shrublands with pine woodlands (Pinus halepensis) and some evergreen oak patches (Quercus
ilex). These differences in vegetation between both sites were mainly attributed to different 
fire histories previous to the 2012 fires (Pausas et al. 2018). In Cortes, all the area had burnt 
previously in different fires between 1978 and 1994, and the fire recurrence was higher in the 
centre of the study area than on the edges. In contrast, no fires were recorded at Andilla in the 
last 50 years (Fig. 1).

 A total of 24 plots ca. 1 ha (12 plots per fire) were sampled during four post-fire years
starting the year after the fire (2013-2016), considering different distances in relation to the 
fire edge (Fig. 1): three plots in the surrounding unburnt area (‘Unburnt zone’), three plots in 

http://www.aemet.es/
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the burnt area at less than 500 m from the burnt perimeter (‘Edge zone’), three plots in the 
burnt area at ca. 1.5 km from the burnt perimeter (‘Middle zone’), and three plots in the centre
of the fire at more than 2 km from the perimeter (‘Centre zone’). Because of the high intensity
of the fires, unburnt patches of natural vegetation inside the burnt area were rare, but in any 
case, precaution was taken so that plots in the burnt zone were never close to large unburnt 
patches (e.g., agricultural patches). All sampled plots were located in areas dominated by 
shrublands, both before the fire in the case of burnt plots, and in the unburnt plots, thus 
avoiding forest areas. Plot selection also targeted locations where the effect of fire was 
homogeneous and affected the entire plant structure (i.e., crown-fires). Unburnt plots 
corresponded to nearby mature shrublands outside the fire perimeter. 

Reptile community variables 
At each plot, reptiles were actively searched visually and by turning rocks and other known 
refuges (as described in Santos and Cheylan 2013, and Santos et al. 2016) to characterize 
species composition, abundances, and diversity of the reptile community. Reptile sampling 
was always conducted in spring (between April-June months), i.e., when reptiles are most 
active (reproductive period). Each plot was surveyed three times each spring (separated by at 
least one week) by two researchers for periods of 30 minutes in each visit. Each year, all plots
were visited within a 4-5-day period. The search was carried out in sunny days and during 
reptiles’ most active hours. Specimens were identified to species level, sexed and classified as
adult and non-adult individuals when possible. Reptile detectability can vary according to the 
complexity of the vegetation structure (Chergui et al. 2019). However, previous application of
active search sampling in other Mediterranean sites resulted in an unbiased detection of reptile
individuals as detection distances were similar in unburnt and burnt plots (Santos and Cheylan
2013, Santos et al. 2016). For this reason, we did not apply distance correction to our data. 

As response variables (reptile community variables) we have used, per plot and year: 
total reptile abundance and reptile species richness. In all cases the variables were computed 
after summing the sights in the three surveys made per plot and year. Moreover, as response 
variables we considered the abundance for the two commonest reptile species, the lizards 
Psammodromus algirus and Psammodromus edwarsianus.

Environmental variables
Climate data
We used climatic data from the TerraClimate dataset (Abatzoglou et al. 2018), containing 
monthly climate and climatic water balance for global terrestrial surfaces, and made available 
by the Google Earth Engine. TerraClimate data is at ~4Km of spatial resolution and 
interpolates high-spatial resolution data from the WorldClim dataset, with coarser spatial 
resolution, but time-varying data from CRU Ts4.0 and the Japanese 55-year Reanalysis 
(JRA55; Abatzoglou et al. 2018). Using these data, we calculated annual average anomalies in
total annual precipitation (in mm) as well as maximum and minimum temperatures (°C) using
a 30-year period of average reference from 1987-2016. Annual anomalies were calculated as 
the average score of the 12 months before sampling (i.e. from July to June).

Remotely-sensed satellite data
We used satellite remote sensing data (SRSD) to characterize the spatial changes in habitat 
and vegetation, and capture landscape changes through time (Arenas-Castro et al. 2019, 
Gonçalves et al. 2016). Specifically, we selected three remote-sensing spectral indices which 
portray ecological reptile requirements: 1) Normalized Difference Vegetation Index (NDVI), 
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which provides a proxy of photosynthetic activity and green biomass (Carlson and Ripley 
1997) and can be used to monitor post-fire dynamics of the reptiles’ habitat (e.g., Torres et al. 
2018, Marcos et al. 2019); 2) Land Surface Temperature (LST), which provides a surrogate of
the thermal environment for reptiles; it is expected to increase after the fire due to changes in 
albedo (Veraverbeke et al. 2012), and to progressively return to pre-fire conditions with time, 
making it also suitable for post-fire monitoring; and, 3) Tasselled Caps Transform (TCT), a 
special case of a principal components analysis which transforms the image data to a new 
coordinate system with a new set of orthogonal axes (Huang et al. 2002, Xiaoyang et al. 2002)
that are related to: surface brightness of bare or partially covered soil (and closely linked to 
albedo, TCTbri), soil or vegetation wetness/water content (TCTwet), and surface greenness 
linked to vegetation cover (TCTgrn). TCT greenness differs from NDVI by accounting for 
more spectral information in additional wavelengths from blue to shortwave infrared (~450 – 
2200 nm) and performing a linear combination of all available bands similar to PCA. NDVI 
formula is more straightforward and based on a normalized ratio which ‘only’ includes 
reflectance data from the red (~650 nm) and near-infrared (~850 nm) spectral bands. These 
two indices can be correlated and for this reason a correlation analysis and variance inflation 
factor were performed to account for TCTgrn – NDVI association.

We obtained NDVI, LST and TCT data from the following Terra/MODIS satellite 
platform products: (i) MOD13Q1 product containing 16-day composite images for spectral 
indices (e.g., NDVI) at 250 m of spatial resolution, (ii) MOD11A1 product containing daily 
land surface temperature data at 1000m, and (iii) the MOD09A1 product containing 
Terra/MODIS surface reflectance 8-day composites at 500m. Image data considered the 
period 2001-2016 (i.e., twelve years before the fires, and the four years of the sampling 
study). 

The image time series obtained for NDVI, LST, and TCT were used to calculate 
several Ecosystem Functioning Attributes (EFA) which constitute integrative descriptors of 
ecosystem processes linked to energy and matter flows, as well as seasonal and inter-annual 
changes (Alcaraz et al. 2006, Cabello et al. 2012, Arenas-Castro et al. 2018, 2019). EFAs 
consider the annual distribution of ecosystem process from NDVI, TCT and LST data to 
calculate the following measures: the annual median (Q50) as an index of average quantity 
and centrality, the inter-quartile range (Q75% - Q25%; hereafter IQR) which is a metric of 
intra-annual seasonal variation, and two extreme values, the 5% and 95% quantiles (Q5 and 
Q95) which are sensitive to fire severity conditions (Arenas-Castro et al. 2019). For instance, 
NDVI-IQR is a proxy for seasonal changes in greenness and photosynthetic activity (e.g., 
deciduous vegetation has relatively higher IQR values than evergreen vegetation). 
Disturbances such as wildfire can decrease NDVI-IQR after the fire by strongly lowering 
annual seasonal variation through vegetation burning, lack of photosynthetic activity, and 
decreasing the NDVI median for the same reasons. All these annual values were calculated 
considering the 12 months before the sampling (from July to next June of each year).

For all annual EFA variables (i.e. Q50, Q95, Q5, and IQR), we calculated anomalies 
that allow inter-annual comparisons between a pre-fire baseline (for period 2001-2011) and 

the post-fire scenario (2012 – 2016). The anomaly ( ) for a given variable , with average 

for the reference period , for a certain year ( ) is defined as: . 

Anomalies can indicate the impact (severity) of the fire on the vegetation structure and the 
ecosystem functioning as well as the post-fire recovery ('re-greening') process. For example, 
immediately after a fire, NDVI-IQR and LST-Q50 anomalies are expected to increase due to 
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very contrasting conditions (vegetated to non-vegetated/burnt) followed by a decrease 
(depending on vegetation type, fire severity, among other factors). In contrast, the anomaly of 
the NDVI-Q50 is expected to follow an opposite trend. Drought can also cause strong 
negative anomalies in NDVI by physiologically limiting growth and decreasing living 
biomass and hampering the recovery process, while LST will undergo much less changes. 
Depending on their ability to track meaningful aspects of ecosystem functioning to post-fire 
reptile survival and recovery, these different EFA’s are expected to show widely different 
predictive ability.

Data analyses
Species accumulation curves using the Chao I and Chao II estimators were performed in order
to assess whether our sampling effort was sufficient for estimating the community 
composition. Based on the shape of the curve for the total surveys as well as for burnt and 
unburnt surveys separately, the asymptotic shape of the Chao I and Chao II estimators against 
a random accumulation of surveys indicate that our sampling scheme was adequate 
(Appendix S1: Fig. S1). This is confirmed by the occurrence during surveys of all the reptile 
species historically located on the study region (Pleguezuelos et al. 2002).

Reptile community spatiotemporal variation
Reptile community variables were compared among plots across the four sampling years by 
permutational multivariate analysis of variance (PERMANOVA). Pairwise similarity in 
reptile composition among plots was assessed with the Bray-Curtis similarity distance for 
relative abundance data, and the Jaccard similarity index for presence/absence data. Two 
PERMANOVA were performed, one to evaluate the effect of fire condition (thus considering 
all burnt/unburnt plots), and the other to evaluate the effect of distance to the fire perimeter 
(thus only considering burnt plots, edge/middle/centre). In both analysis, Time since fire 
(years) and its interaction with fire condition and distance to the fire perimeter were included, 
and site (Andilla and Cortes) was used as a random factor. This analysis was performed with 
PRIMER v6 (Clarke and Gorley 2006).

Environmental predictors’ models
Generalized Linear Mixed Models (hereafter GLMMs) were used to describe the 
spatiotemporal variation of the environmental predictors at unburnt and burnt plots across the 
four sampling years, and to evaluate how they explain the spatiotemporal variation of the 
reptile community among plots and years. Similar to PERMANOVA procedure, we run two 
sets of GLMMs: first, including fire condition with the main objective to identify differences 
between unburnt and burnt plots, and second, only with burnt plots and including the distance 
to the fire perimeter with the aim to identify differences related to distance. 

We considered as predictors (i.e., fixed effects) elevation, four fire-history variables 
(fire condition [unburnt/burnt], time since the last fire, the number of fires in the last 50 years,
and the distance class to the fire perimeter), and 23 environmental variables including climatic
data and satellite-derived ecosystem functioning attributes (see the full list of variables in 
Appendix S1: Table S1). To make models more parsimonious and avoid spurious effects 
linked to multicollinearity, we performed pairwise Spearman correlations among 
environmental variables and removed those with correlation greater than 0.7. With the 
remaining variables we calculated the variance inflation factors (VIF). VIF value for the best 
model (see below GLMM procedure) equals 2.46, and the average for all models in the 
confidence set (DeltaAICc < 2) equals 2.85 (min: 1.44, max: 5.18). These values are below 
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the recommended threshold (VIF ≤ 10; Kutner et al., 2004) indicating very low 
multicollinearity among predictors.

We used model selection to see which predictor variables better fit P. algirus and P. 
edwarsianus abundances. The latter was only modelled in Andilla site as it was almost absent 
in Cortes site. In the model development, we specifically considered complex models with 
multiple predictor variables and their interaction with fire condition. Thus, we used the 
"dredge" function (MuMIn R package) to build all possible models with a maximum of five 
combined variables (to reduce potential overfitting issues). This procedure was required to 
find the best combination of variables and maximize model performance. Models were ranked
by their Akaike Information Criterion values (AICc; corrected for small sample sizes). Those 
models with ΔAICc < 2 were considered to have the highest likelihood and support to explain
reptile responses. We examined the importance of each variable to explain reptile responses 
by summing the weights of all models in which each variable has contributed. We also 
calculated GLMM R2 values based on Nakagawa and Schielzeth (2013) (piecewiseSEM R 
package) to further assess model fitting and robustness. This statistic splits into conditional-R2

(including both random and fixed effects) and marginal-R2 (mR2, including solely fixed 
effects). Reptile abundances (counts of individuals) were modeled assuming a Poisson 
distribution and using site (Andilla and Cortes) and plot (24 different plots) as random effects.

The ‘raster’ package (Hijmans, 2020) was used to perform all spatial data processing, 
manipulation and the calculation of satellite-based EFA metrics (among other). Packages 
‘lme4’ (Bates et al. 2015), ‘MuMIn’ (Barton 2020), and ‘AICcmodavg’ (Mazerolle 2020) 
were used for data analyses. Packages ‘ggplot2’ (Wickham 2016) and ‘sjPlot’ (Lüdecke 2021)
were used for producing graphics.

Results
Reptile community composition 
We found a total of 522 reptiles from 12 species (seven lizards and five snakes), 11 species in 
the burnt plots and 9 in the unburnt plots (Table 1). Five species, four lizards (Tarentola 
mauritanica, Chalcides bedriagai, Psammodromus algirus, Psammodromus edwarsianus) 
and one snake (Malpolon monspessulanum), were repeatedly found during the four years of 
the study. The most common species was the lizard P. algirus, with 79% of the total sights 
(including adults and juveniles), followed by P. edwarsianus with 7.3% of the sights. In burnt
plots, we observed juvenile individuals of the four lizard species, supporting reproductive 
success after the megafires. P. edwarsianus has a lifespan of one year, and thus, its 
persistence in centre burnt plots evidences the species resilience to megafires. Three snake 
species were only found in burnt plots (Hemorhois hippocrepis, Zamenis scalaris and 
Coronella girondica). Overall, the number of species per plot ranged from 0 to 4, and 
abundances of the species per plot ranged from 0 to 5 except for the most common species, P.
algirus, which reached up to 15 individuals per plot. 

Almost the whole reptile community was represented in the burnt plots regardless of 
the distance to the fire perimeter (Table 2). The commonest species were found even at the 
centre plots more than 2.5 km far from the fire perimeter; moreover, two of the three species 
exclusively found in burnt areas (Hemorhois hippocrepis and Coronella girondica) were in 
centre plots (Table 2).

There were differences in the reptile community composition (considering species 
abundances) between burnt and unburnt plots and among years, with a non significant 
interaction between both factors (Table 3). When considering presence/absence of species, 
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there were no differences between burnt and unburnt plots or among years, and only the site 
was significant (Table 3).

Among burnt plots, there were differences in the community composition among years
and between sites (random factor) but not among the three distance classes (fire edge, middle 
and centre; Table 3). The results were similar either considering abundance or 
presence/absence of the species (Table 3).

Spatiotemporal variation of environmental variables
In both unburnt and burnt plots, we observed differences in annual precipitation anomalies 
across the four sampling years, being the second post-fire year very dry (Appendix S1: Fig. 
S2). Inter-annual differences of the environmental variables were higher and less stable in 
burnt compared to unburnt plots, with all burnt plots (centre, middle and edge) showing the 
same patterns (Appendix S1: Fig. S3). For example, average annual LST anomaly was higher 
in burnt compared to unburnt plots across all the sampling period (Appendix S1: Fig. S3a); 
the second sampling year (the driest), the average LST anomaly was very high in all the plots 
(Appendix S1: Fig. S3). TCTwet anomaly was significantly higher in burnt compared to 
unburnt plots the first three sampling years and only were similar among unburnt and burnt 
plots the fourth sampling year (Appendix S1: Fig. S3b). Annual maximum LST anomaly was 
stable along the four sampling years in unburnt plots, whereas it was extremely high the first 
year after burning in burnt plots and decreased considerably from the second to the fourth 
sampling year (Appendix S1: Fig. S3c). Annual average NDVI anomaly in unburnt plots was 
stable except for the second year coinciding with the drought, whereas in burnt plots NDVI 
anomaly was negative (biomass loss) in the first two years after the burning and only 
increased towards the third year (Appendix S1: Fig. S3d).

Reptile responses to environmental predictors 
Reptile species richness per plot ranged from 0 to 4 species through all the study period.  The 
best models for richness had weak support due to the low values (explained variances mR2 < 
0.05), so they are not shown here. We focused on the most abundant species, the lizards P. 
algirus and P. edwardsianus.  Both species were present in burnt and unburnt plots and 
reached abundances up to 15 (P. algirus) and 5 (P. edwardsianus) individuals per plot and 
year. Total reptile abundance models showed very similar results than P. algirus abundance 
models and are not shown here.

The lizard P. algirus was more abundant in unburnt than burnt plots across the four 
sampling years (Fig. 2). The differences in P. algirus abundance between unburnt and burnt 
plots were important one year after the fire, and again 3 and 4 years after the fire. The second 
year however, the abundance in unburnt plots reached the minimum values in accordance to 
the low annual precipitation (Appendix S1: Fig. S2). GLMMs identified 11 models with 
ΔAICc < 2 (R2m range ≈ 0.40-0.43; Appendix S1: Table S2). These models included the three
fire variables (i.e. fire condition, the most important variable to explain P. algirus abundance, 
time since fire, and fire recurrence) as well as the interaction of fire condition with time since 
fire and fire recurrence. The best models also included annual precipitation and three satellite 
remote sensing variables (ordered by its importance: aLST-Q50, aTCTwet-Q50, and aLST-
Q95; Fig. 3a). The interaction aTCTwet-IQR and fire condition were also included among the
11 best models (Appendix S1: Table S3). Overall, P. algirus increased at higher annual 
precipitation (Fig. 4a), lower median surface temperatures (aLST-Q50; Fig. 4b), and higher 
soil moisture (aTCTwet-Q50, Fig. 4c), and maximum LST (Fig. 4d) anomalies.
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The lizard P. algirus occurred in the three distance classes to unburnt, with newborn 
individuals found in burnt plots during the four years of the field study (Table 2). According 
to AICc-based ranking of models for burnt plots, 19 models were selected with mR2c ranging 
from 0.13 to 0.23, all of them including two variables, i.e. median land surface temperature 
(aLST-Q50) and fire recurrence (Appendix S1: Table S4). When we order all the variables 
according to their importance in the model selection, fire recurrence and several 
environmental variables were more important to explain P. algirus abundance than time since 
fire and distance to the fire perimeter (Fig. 3b). GLMM results showed that, among burnt 
plots, its abundance increased for land surface temperatures closer to pre-fire conditions (i.e. 
values of land surface temperature anomaly closer to zero) and higher levels of vegetation 
greenness (aTCTgrn-Q95), as well as in plots with high fire recurrence, whereas the distance 
to the fire perimeter was not significant.

The lizard P. edwarsianus only occurred in Andilla, and was observed in two unburnt 
plots out of three, and in seven burnt plots out of nine (Table 2). According to the AICc 
scores, the best models showed that P. edwarsianus abundance increased at burnt plots 
compared to unburnt plots, and at higher altitudes. Moreover, P. edwarsianus was more 
abundant in plots of higher aTCTwet-IQR and aTCTbri_Q05, and lower aLST_Q50 
(Appendix S1: Table S5 and Fig. S4).

Discussion 
Our field study, combined with fire-history, climatic, and satellite remote sensing variables, 
suggest that: 1) megafires reduced the abundance of reptiles but did not affect the overall 
community composition; 2) there was evidence of fire survival in lizards (adults and eggs) 
after megafire; 3) there was a lack of spatial (i.e., no pattern from edge to centre) post-fire 
lizard responses in the burnt area; 4) P. algirus did not evidence abundance recovery in the 
four post-fire years,; and 5) in the burnt area, spatial and temporal variability in environmental
anomalies (i.e. the amount of change in relation to pre-fire conditions) and past fire history 
better explained P. algirus abundance than spatial attributes. These results suggest that post-
fire survival is a more prominent fire strategy (‘refugia and dormant’ sensu Pausas 2019) than 
exogenous colonization, and thus reptiles show persistence to large fires. Holling’s (1973) 
seminal paper defined resilience as a measure of the persistence of systems and of their ability
to absorb changes after disturbance. Despite the reduction of P. algirus abundance, the 
occurrence of all reptile species in burnt plots suggests certain resilience capacity of the 
reptile community. This resilience is caused by their persistence after the fire and not by their 
colonization ability from unburnt areas.

Compared to other vertebrate groups with higher mobility, reptiles have very small 
home ranges. In an extensive study with 222 lizard data sets, Perry and Garland 
(2002) observed that most lizard species have home ranges below 0.02 km2. Only lizards of 
the Family Varanidae had larger home ranges in accordance to their large body size, as home 
range and body size are correlated in reptiles (Perry and Garland, 2002) and mammals (Kelt 
and Van Vuren, 2001). Despite the larger dispersion abilities of many mammals compared to 
reptiles, in situ survival and not recolonization from the unburnt was also the mechanism of 
postfire recovery of mammal populations in Australian megafires (Banks et al. 2011; Hale et 
al. 2021). The key factor that explains wildlife resistance to fire is the presence of refuges in 
the burnt area (Robinson et al., 2013; Hale et al., 2021). Habitat structures in the burnt area 
enhance fauna survival during the fire event, facilitating population persistence, and 
community resilience; for this reason, those reptile species which use structures not consumed
by the flames (e.g., rocks and big boulders) are more resilient to fire than those associated to 
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vegetation (Santos et al., 2016; Ferreira et al., 2019). The maintenance and postfire restoration
of these structures can guide stakeholders to reduce the impact of megafires on wildlife.

Community composition 
During field surveys we found all twelve species known to occur in the study region 
(Pleguezuelos et al. 2002). Although the two studied sites (Andilla and Cortes) slightly 
differed in their reptile communities, the megafire only reduced the abundance of reptiles 
within each site but did not affect the community composition (e.g. no local extinction of any 
reptile species). Post-fire changes of the reptile community composition after a forest fire are 
a general result worldwide (Santos et al. 2016, Abom and Schwarzkopf 2016, Ferreira et al. 
2016b) and can be caused by direct individual mortality (Smith et al. 2012, Jordaan et al. 
2020) and by a drastic modification of the habitat (Costa et al. 2020). These two factors in 
concert can favour the abundance of species with preference for open habitats, at the short 
term, (Hu et al. 2016) that would be substituted by species of forested habitats from long-
unburnt patches (Santos and Cheylan 2013). However, we did not detect local extinction nor 
positive responses (increased abundance) of any reptile species caused by the high intensity 
megafires. In fact, for patches with higher fire recurrence within the megafire perimeters (e.g. 
three times in 50 years; central Cortes fire), reptile richness and P. algirus abundance showed 
higher scores than in areas burnt only once. This suggests that Mediterranean reptile species 
found in both sites are well suited to those fire-prone shrublands in limestone landscapes. The 
long history of fires in the study region (Pausas and Fernández-Muñoz 2012) might have 
regulated the composition of the reptile community as occurs in other ecosystem components 
(McLauchlan et al. 2020). 

Psammodromus lizards spatiotemporal dynamic
The presence of juveniles of P. algirus and the presence of P. edwarsianus (a small lizard of 
one-year lifespan) in the first year since fire confirms that individuals and their eggs can 
survive hidden underground, and thus the persistence of these species are ensured. 
Psammodromus is a genus of small lizards from the Mediterranean basin characterized by 
their long tail and overlapping dorsal scales that allow them to reduce water loss. These lizard 
species inhabit Mediterranean shrublands, and P. algirus can be considered a generalist reptile
from an ecological point of view as it inhabits all type of Mediterranean vegetation like 
scrublands, grasslands, oak and pine forest understory both in pristine and also degraded 
landscapes (Salvador 2015). In these habitats, Psammodromus lizards scape from predators by
quickly moving to vegetation roots where it can survive to the flames. In fact, P. algirus can 
recognize the threat of fire by detecting the smoke (Álvarez-Riuz et al. 2021a), which triggers 
a behavioral response to hide in those fire-protected microsites. 

Despite P. algirus is considered a fast colonizer of disturbed habitats (Márquez-
Ferrando et al. 2009) and it can even benefit from postfire environments (e.g. lower parasitic 
load; Álvarez-Ruiz et al. 2021b), in this study it showed no evidence of neither post-fire 
colonization from unburned (no spatial pattern) nor in-situ recovery of the abundance during 
the four years after megafires (Fig. 2). This slow recovery could suggest that some plots had 
suboptimal environmental conditions for reptiles after the megafire. For example, dry and 
harsh conditions, as well as limestone outcrops, may limit plant re-growth in many burnt plots
during the four post-fire sampling years. Additionally, the study area experimented a severe 
drought two years after the fire which affected both unburnt and burnt plots. Fast vegetation 
re-growth (e.g. herbaceous plants) is a major factor to understand short-term reptile recovery 
(Lindenmayer et al. 2008). Herbaceous plants can soon attract insect pollinators and other 
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arthropods (Pausas et al. 2018) that are food source for most Mediterranean lizard species 
such as P. algirus (Salvador 2015). Moreover, vegetation regrowth can improve micro-
environmental conditions such as moisture at the ground level. Experimentally, P. algirus has 
demonstrated to select body temperatures between 34-36º C and to suffer limited water stress 
in a dry environment compared to other Iberian lizards (Ferreira et al. 2016a, Sannolo and 
Carretero 2019). Despite its physiological characteristics and wide ecological valence 
(Salvador 2015), burnt plots showed notable differences in P. algirus abundance (from a 
complete absence of reptiles to abundances similar to unburnt plots) that were more related to 
environmental variations than to distance from unburnt areas.

Concluding remarks
The use of remote sensing data has allowed monitoring the spatiotemporal environmental 
variation that resulted to be correlated with P. algirus and P. edwarsianus abundances. These 
techniques provide complementary insights to in-field quantification of vegetation and 
structural layers (Pastro et al. 2013, Nimmo et al. 2014, Chergui et al. 2019) to better 
understand and predict the response of ectotherm species to megafires. 

The irruption of extreme climate events coupled with fuel accumulation in human 
occupied systems are promoting megafires. Reptiles survived megafires (adults and eggs), and
they were present into the burnt area during the four sampling years. Despite the limited 
recovery of the commonest lizard species, the reptile community  shows  resilience capacity 
to large fires. The lack of any spatial pattern (distance to unburnt) suggests that post-fire 
survival and local population persistence from refugia is a more prominent fire strategy than 
exogenous colonization for vagile species such as reptiles.
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Table 1. Mean number of sight (per plot) of each reptile species observed in unburnt and 
burnt plots during the 2013-2016 sampling period in Cortes and Andilla megafires (E Iberian 
Peninsula). The last column includes the percentage of sights of each reptile species (number 
of sights of one species/ total number of sights) as a measure of how dominant each species is 
in the community. In brackets are the species code used in Table 2.

Year 2013 2014 2015 2016 %
Fire condition no yes no yes no yes no yes

Species
Tarentola mauritanica (tm) 0 0.06 0.33 0 1.00 0.50 0 0.39 4.8

Hemidactylus turcicus (ht) 0 0 0.17 0 0.17 0.22 0.17 0 1.3

Chalcides bedriagai (cb) 0 0.17 0 0.17 0.17 0.17 0.17 0.06 2.3

Podarcis liolepis (pl) 1 0.06 0.17 0.06 0 0 0.17 0.17 2.5

Timon lepidus (tl) 0 0 0.17 0.06 0.17 0.06 0 0.06 1

Psammodromus algirus (pa) 7.33 3.78 4.17 2.11 7.83 2.44 11.33 4.28 79

Psammodromus edwarsianus (ph) 0 0.28 0.17 0.28 0.17 0.50 1.00 0.61 7.3

Malpolon monspessulanum (mm) 0.17 0.11 0.17 0.06 0 0.06 0.17 0 1.3

Hemorhois hippocrepis (hh) 0 0.06 0 0 0 0 0 0 0.2

Zamenis scalaris (zs) 0 0 0 0 0 0.06 0 0 0.2

Coronella girondica (cg) 0 0 0 0 0 0 0 0.06 0.2

Vipera latastei (vl) 0 0 0 0 0.17 0 0 0 0.2

Total abundance 8.50 4.50 5.33 2.72 9.67 4.00 13 5.61

Species richness 0.50 0.39 1.17 0.33 1.17 0.44 1 0.39
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Table 2. Reptile species occurrence along the study, specifying those found only at unburnt, 
only at burnt, and at both burnt and unburnt plots, during the four sampling years, considering
the burnt plot distance to the fire perimeter (centre, middle, and edge). The aim of this table is 
not to compare between burnt and unburnt (as the sampling effort was higher in the latter; Fig.
1) but to show that by no means the diversity of reptiles is concentrated in unburnt plots. *: 
cases with higher proportion of juvenile vs adult P. algirus in burn plots. Name of the species 
as indicated in Table 1.

Reptile species occurrence

Year
Only at 
unburnt

Burnt plot
distance

Only at 
burnt

At unburnt 
and burnt

2013 mm pl
Centre cb ph hh pa mm
Middle - pa*
Edge cb ph tm pa mm pl  

2014 mm ph ht tm tl pl 
Centre cb pa* tl pl  
Middle cb pa* mm  ph  
Edge cb pa ph

2015 ht tl vl cb
Centre - pa  ph cb  tm 
Middle mm pa* ph ht  cb  tm tl  
Edge zs pa ph ht  tm   

2016 cb mm ht pl
Centre tl cg pa* pl  ph  
Middle tm pa ph
Edge tm pa cb pl ph  
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Table 3. PERMANOVA results of the reptile community composition all plots and burnt 
plots only) in relation to fire condition (unburnt/burnt) site, and distance to fire perimeter (the 
latter for burnt plots only). In all cases, Site was considered as a random factor.

Abundance Presence/absence
F R2 P F R2 P

All plots
Fire condition (unburnt/burnt) 8.89 0.19 0.001 1.42 0.05 0.2
Time since fire (1, 2, 3, 4 years) 2.27 0.11 0.01 1.62 0.08 0.07
Fire * Time since fire 1.07 0.04 0.4 0.94 0 0.5
Site (Cortes, Andilla) 7.18 0.15 0.001 7.20 0.16 0.001

Burnt plots only
Burnt distance (edge, middle, centre) 1.10 0.03 0.4 1.35 0.06 0.2
Time since fire (1, 2, 3, 4 years) 2.17 0.12 0.03 2.15 0.12 0.01
Burnt plot * Time since fire 0.70 0 0.9 0.79 0 0.7
Site (Cortes, Andilla) 6.42 0.18 0.001 6.46 0.18 0.003
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Figure 1

Figure 1: Map of the study area in the Iberian context, detail of the location of the 24 
sampling points and distances to fire perimeter, and pictures of a female of  Psammodromus 
algirus,  an unburnt and a burnt plot at the area of study.
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Figure 2

Figure 2: Abundance of Psammodromus algirus along the four sampling years in relation to 
Fire condition (unburnt vs burnt plots). Boxes indicate the 25, 50% (median) and 75% 
quartiles, and lines show minimum and maximum values excluding outliers (indicated as 
dots).
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Figure 3

Figure 3: Ranking of the importance of explanatory variables considered to model 
Psammodromus algirus abundance. Analyses included: a) unburnt and burnt plots, and the 
variable Fire condition (Burnt); and b) only burnt plots, and the variable Distance to fire 
perimeter (Dist). Filled dots refer to positive effects and open dots to negative effects based 
on coefficient estimates. Variable names are: Burnt: fire condition (yes/no), Dist: plot 
distance to fire perimeter (edge, middle, centre), Elev: elevation, #Fires: number of fires, 
TSF: time since-fire in years; remotely-sensed variables names: aLST: Land Surface 
Temperature anomaly, aTCT: Tasseled Caps Transform anomaly (for wetness, greenness and 
brightness components), aNDVI: Normalized Difference Vegetation Index anomaly. The 
suffix for these latter variables relates to the annual statistic calculated: Q50 (median), Q5 
(5% percentile), Q95 (95% percentile) and, IQR (inter-quartile range).
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Figure 4

Figure 4: P. algirus abundance in relation to environmental variables for unburnt and burnt 
plots. Lines are the predicted values (GLMM models) with their confidence interval: (a) 
Annual precipitation, (b) Median annual LST, (c) Median annual TCT wetness, and (d) 
Maximum annual LST anomalies.
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Figure S1: Species accumulation curves showing an estimate of species richness 
(species counts) based on a matrix of abundance data (Chao I) and presence-absence 
data (Chao II). These estimators are calculated from a randomly increased number of 
samples from the total number of surveys (a), only unburnt surveys (b) and only burnt 
surveys (c). 

 

 

 

a All surveys 

b Only unburnt surveys 



 

 

  

c Only burnt surveys 



Table S1: Description of the 28 predictive variables (fixed factors) assessed to 
characterize each sampling plot and to be used in model development. Variables included 
Elevation, four fire history variables, and 23 environmental variables. (a) refers that the 
anomaly of the variable was used in the statistical analyses. Anomalies were calculated 
by comparing the average annual score of twelve months (July to June) before the field 
sampling with a pre-fire reference period (2001-2012). NDVI: Normalized Difference 
Vegetation Index; LST: Land Surface Temperature; TCT: Tasselled caps transform; 
TCTbri: brightness; TCTwet: wetness; TCTgrn: greenness. The last column shows 
variables included in the modelling analysis after excluding correlated predictors (see 
more details in the text). *Fire condition and Distance to the fire perimeter were included 
in the GLMM analysis with all the sampling plots and only with burnt plots, respectively. 
 

Variables Description Variables 
included 

Elev Elevation (in meters a.s.l.) Yes 
Burnt Fire condition (unburnt and burnt) Yes* 
TSF Time-since-fire (1, 2, 3, and 4 years since 2012) Yes 
#Fires Number of fires in the last 50 years Yes 
Dist Distance to the fire perimeter (edge, medium and centre) Yes* 
aPrec Total annual precipitation (mm) Yes 
aMinT Annual minimum temperature (ºC) No 
aMaxT Annual maximum temperature (ºC) No 
aNDVI-Q50 Annual average NDVI  No 
aNDVI-Q95  Annual 0.95 quantile NDVI No 
aNDVI-Q5  Annual 0.5 quantile NDVI  No 
aNDVI-IQR  Annual inter-quartile range (25%-75%) NDVI Yes 
aLST-Q50  Annual average LST  Yes 
aLST-Q95  Annual 0.95 quantile LST Yes 
aLST-Q5  Annual 0.5 quantile LST  Yes 
aLST-IQR Annual inter-quartile range (25%-75%) LST No 
aTCTbri-Q50  Annual average TCTbri  No 
aTCTbri-Q95  Annual 0.95 quantile TCTbri No 
aTCTbri-Q5  Annual 0.5 quantile TCTbri Yes 
aTCTbri-IQR Annual inter-quartile range (25%-75%) TCTbri Yes 
aTCTwet-Q50  Annual average TCTwet No 
aTCTwet-Q95  Annual 0.95 quantile TCTwet No 
aTCTwet-Q5  Annual 0.5 quantile TCTwet No 
aTCTwet-IQR Annual inter-quartile range (25%-75%) TCTwet Yes 
aTCTgrn-Q50  Annual average TCTgrn No 
aTCTgrn-Q95  Annual 0.95 quantile TCTgrn Yes 
aTCTgrn-Q5  Annual 0.5 quantile TCTgrn No 
aTCTgrn-IQR Annual inter-quartile range (25%-75%) TCTgrn Yes 

  



Figure S2: Variation of the annual precipitation in unburnt and burnt plots during the 
four years after the fire. Boxes indicate the 25, 50% (medina) and 75% quartiles, and 
lines show minimum and maximum values without outliers. 

 
  



Figure S3: Variation of the remote-sensing environmental variables in unburnt and 
burnt plots (for the best GLMM model) along the four sampling years after the fire: (a) 
Median Annual Land Surface Temperature (LST); (b) Median annual tasselled aps 
transform (TCT) wetness; (c) Maximum Annual Land Surface Temperature (LST); and 
(d) Median Annual Normalized Difference Vegetation Index (NDVI). Boxes indicate 
the 25%, 50% (median) and 75% quartiles, and lines show minimum and maximum 
values without outliers. 
 

 



Table S2. Model ranking of the variables that better explain Psammodromus algirus abundance in two megafires at Valencia province (E Iberian 
Peninsula). Lizard sampling was conducted in unburnt and burnt plots during four years after the fire. The ranking was based on AICc values and 
only models with Δ AICc < 2 are considered. Each row represents a model, and includes a description of the parameters and the variables used. 
Codes are the same as in Table S1. VIF: (Maximum) Variance Inflation Factor. 

Model df AICc Delta_AICc AICc weight mR2 VIF Model description 
1 8 491,961 0 0,150 0,431 2.46 Burnt, TSF, #Fires, aLST-Q50, aLST-Q95 
2 8 492,137 0,175 0,137 0,406 4.85 Burnt, TSF, #Fires, aLST-Q50, Burnt*TSF 
3 8 492,244 0,283 0,130 0,434 2.25 Burnt, TSF, #Fires, aPREC, aTCTwet-IQR 
4 8 492,575 0,614 0,110 0,420 5.18 Burnt, TSF, #Fires, aPREC, Burnt*TSF 
5 7 493,291 1,330 0,078 0,416 2.22 Burnt, #Fires, aLST-Q50, aTCTwet-IQR 
6 7 493,291 1,330 0,078 0,416 2.41 Burnt, #Fires, aLST-Q50, aTCTwet-IQR, Burnt*#Fires 
7 8 493,514 1,553 0,069 0,437 2.69 Burnt, TSF, #Fires, aPREC, aLST-Q95 
8 7 493,537 1,576 0,069 0,435 2.27 Burnt, TSF, #Fires, aPREC 
9 7 493,537 1,576 0,069 0,435 2.74 Burnt, TSF, #Fires, aPREC, Burnt*#Fires 
10 8 493,821 1,860 0,059 0,406 2.82 Burnt, #Fires, aLST-Q50, aTCTwet-IQR, Burnt* aTCTwet-IQR 
11 7 493,923 1,962 0,056 0,391 1.44 Burnt, TSF, aPREC, aTCTwet-IQR 

 

  



Table S3. Results of the best models for P. algirus abundance in Valencia megafires 
based on model averaging procedure and data dredging. 
 
 
Best model 1: Marginal R2 = 0.515 

Predictors  Incidence Rate 
Ratios  

std. 
Error  

std. 
Beta  CI  standardized 

CI  Statistic  

(Intercept)  10.18 ***  0.16  2.32  7.50 – 13.81  2.01 – 2.63  14.89  

aLST_Q50  0.82 **  0.06  -0.20  0.72 – 0.92  -0.32 – -0.08  -3.27  

aLST_Q95  1.26 **  0.08  0.23  1.08 – 1.47  0.08 – 0.39  2.92  

Burnt [yes] 0.29 ***  0.21  -1.22  0.20 – 0.44  -1.63 – -0.82  -5.93  

#Fires 1.23 *  0.09  0.21  1.03 – 1.47  0.03 – 0.39  2.29  

TSF  1.22 **  0.07  0.20  1.08 – 1.39  0.07 – 0.33  3.09  

• p<0.05   ** p<0.01   *** p<0.001  
 
 

Best model 2: Marginal R2 = 0.447 

Predictors  Incidence Rate 
Ratios  

std. 
Error  std. Beta  CI  standardized 

CI  Statistic  

(Intercept)  8.78 ***  0.17  2.17  6.34 – 12.14  1.85 – 2.50  13.11  

aLST_Q50  0.77 ***  0.06  -0.26  0.68 – 0.87  -0.39 – -0.13  -4.05  

Burnt [yes]  0.36 ***  0.21  -1.02  0.24 – 0.55  -1.44 – -0.60  -4.76  

#Fires  1.31 **  0.10  0.27  1.08 – 1.58  0.08 – 0.46  2.81  

TSF  1.24 **  0.07  0.22  1.08 – 1.42  0.08 – 0.35  3.11  

Burnt [yes] * 
TSF  

0.77 **  0.09  -0.27  0.64 – 0.92  -0.45 – -0.08  -2.84  

• p<0.05   ** p<0.01   *** p<0.001  
 
  



 Best model 3: Marginal R2 = 0.527 

Predictors  Incidence Rate 
Ratios  

std. 
Error  std. Beta  CI  standardized CI  Statistic  

(Intercept)  9.92 ***  0.16  2.29  7.25 – 13.58  1.98 – 2.61  14.32  

aPREC_SUM  1.23 ***  0.06  0.21  1.09 – 1.38  0.09 – 0.32  3.48  

aTCTwet_IQR  1.12  0.06  0.11  1.00 – 1.26  -0.00 – 0.23  1.89  

Burnt [yes]  0.30 ***  0.21  -1.19  0.20 – 0.46  -1.61 – -0.78  -5.68  

#Fires  1.23 *  0.09  0.20  1.02 – 1.47  0.02 – 0.39  2.15  

TSF 1.21 ***  0.05  0.19  1.09 – 1.35  0.09 – 0.30  3.55  

• p<0.05   ** p<0.01   *** p<0.001  
 

 Best model 4: Marginal R2 = 0.465  

Predictors  Incidence Rate 
Ratios  

std. 
Error  

std. 
Beta  CI  standardized 

CI  Statistic  

(Intercept)  9.72 ***  0.15  2.27  7.22 – 13.08  1.98 – 2.57  14.99  

aPREC_SUM  1.26 ***  0.06  0.23  1.12 – 1.41  0.11 – 0.34  3.89  

Burnt [yes]  0.31 ***  0.20  -1.16  0.21 – 0.47  -1.55 – -0.76  -5.78  

#Fires  1.25 *  0.09  0.22  1.05 – 1.49  0.05 – 0.40  2.49  

TSF  1.39 ***  0.07  0.33  1.21 – 1.61  0.19 – 0.47  4.51  

Burnt [yes] * 
TSF 

0.84  0.09  -0.17  0.70 – 1.01  -0.35 – 0.01  -1.83  

• p<0.05   ** p<0.01   *** p<0.001  
 

 Best model 5: Marginal R2 = 0.521  

Predictors  Incidence Rate 
Ratios  

std. 
Error  

std. 
Beta  CI  standardized 

CI  Statistic  

(Intercept)  9.20 ***  0.18  2.22  6.49 – 13.04  1.87 – 2.57  12.45  

aLST_Q50  0.81 ***  0.06  -0.22  0.72 – 0.90  -0.33 – -0.10  -3.80  

aTCTwet_IQR  1.16 **  0.06  0.15  1.04 – 1.30  0.04 – 0.27  2.64  

Burnt [yes]  0.33 ***  0.23  -1.09  0.21 – 0.53  -1.55 – -0.64  -4.75  

#Fires  1.26 *  0.10  0.23  1.03 – 1.55  0.03 – 0.44  2.26  

• p<0.05   ** p<0.01   *** p<0.001  
 



 Best model 6: Marginal R2 = 0.521  

Predictors  Incidence Rate 
Ratios  

std. 
Error  

std. 
Beta  CI  standardized 

CI  Statistic  

(Intercept)  9.20 ***  0.18  2.22  6.49 – 13.04  1.87 – 2.57  12.45  

aLST_Q50  0.81 ***  0.06  -0.22  0.72 – 0.90  -0.33 – -0.10  -3.80  

aTCTwet_IQR  1.16 **  0.06  0.15  1.04 – 1.30  0.04 – 0.27  2.64  

Burnt [yes]  0.33 ***  0.23  -1.09  0.21 – 0.53  -1.55 – -0.64  -4.75  

#Fires  1.26 *  0.10  0.23  1.03 – 1.55  0.03 – 0.44  2.26  

• p<0.05   ** p<0.01   *** p<0.001  
 

 Best model 7: Marginal R2 = 0.483  

Predictors  Incidence Rate 
Ratios  

std. 
Error  

std. 
Beta  CI  standardized 

CI  Statistic  

(Intercept)  10.51 ***  0.15  2.35  7.81 – 14.13  2.06 – 2.65  15.55  

aLST_Q95  1.15  0.09  0.14  0.97 – 1.36  -0.03 – 0.31  1.57  

aPREC_SUM  1.21 **  0.06  0.19  1.07 – 1.37  0.07 – 0.32  2.98  

Burnt [yes]  0.28 ***  0.20  -1.26  0.19 – 0.42  -1.66 – -0.87  -6.28  

#Fires  1.21 *  0.09  0.19  1.02 – 1.45  0.02 – 0.37  2.16  

TSF  1.34 ***  0.06  0.29  1.18 – 1.51  0.17 – 0.41  4.68  

• p<0.05   ** p<0.01   *** p<0.001  
 
 

 Best model 8: Marginal R2 = 0.480  

Predictors  Incidence Rate 
Ratios  

std. 
Error  

std. 
Beta  CI  standardized 

CI  Statistic  

(Intercept)  9.92 ***  0.15  2.29  7.39 – 13.33  2.00 – 2.59  15.23  

aPREC_SUM  1.26 ***  0.06  0.23  1.12 – 1.41  0.11 – 0.34  3.92  

Burnt [yes]  0.30 ***  0.20  -1.19  0.21 – 0.45  -1.58 – -0.80  -5.96  

#Fires 1.25 *  0.09  0.22  1.05 – 1.49  0.05 – 0.40  2.49  

TSF  1.26 ***  0.05  0.23  1.14 – 1.39  0.14 – 0.33  4.66  

• p<0.05   ** p<0.01   *** p<0.001  
 
  



 Best model 9: Marginal R2 = 0.480  

Predictors  Incidence Rate 
Ratios  

std. 
Error  

std. 
Beta  CI  standardized 

CI  Statistic  

(Intercept)  9.92 ***  0.15  2.29  7.39 – 13.33  2.00 – 2.59  15.23  

aPREC_SUM  1.26 ***  0.06  0.23  1.12 – 1.41  0.11 – 0.34  3.92  

Burnt [yes]  0.30 ***  0.20  -1.19  0.21 – 0.45  -1.58 – -0.80  -5.96  

#Fires 1.25 *  0.09  0.22  1.05 – 1.49  0.05 – 0.40  2.49  

TSF  1.26 ***  0.05  0.23  1.14 – 1.39  0.14 – 0.33  4.66  

Burnt * 
#Fires 

(dropped term) - - - - - 

• p<0.05   ** p<0.01   *** p<0.001  
 

 Best model 10: Marginal R2 = 0.445  

Predictors  Incidence 
Rate Ratios  

std. 
Error  

std. 
Beta  CI  standardized CI  Statistic  

(Intercept)  9.43 ***  0.17  2.24  6.73 – 13.22  1.91 – 2.58  13.04  

aLST_Q50  0.81 ***  0.06  -0.21  0.72 – 0.90  -0.32 – -0.10  -3.73  

aTCTwet_IQR  1.26 **  0.08  0.23  1.07 – 1.48  0.07 – 0.40  2.82  

Burnt [yes]  0.33 ***  0.22  -1.11  0.21 – 0.51  -1.54 – -0.67  -4.98  

#Fires 1.28 *  0.10  0.24  1.05 – 1.55  0.05 – 0.44  2.43  

aTCTwet_IQR * 
Burnt [yes]  

0.86  0.11  -0.15  0.70 – 1.07  -0.36 – 0.06  -1.37  

• p<0.05   ** p<0.01   *** p<0.001  

 Best model 11: Marginal R2 = 0.426  

Predictors  Incidence Rate 
Ratios  

std. 
Error  

std. 
Beta  CI  standardized 

CI  Statistic  

(Intercept)  7.81 ***  0.13  2.06  6.01 – 10.15  1.79 – 2.32  15.38  

aPREC_SUM  1.22 ***  0.06  0.20  1.09 – 1.37  0.09 – 0.32  3.39  

aTCTwet_IQR  1.14 *  0.06  0.13  1.02 – 1.29  0.02 – 0.25  2.23  

Burnt [yes]  0.42 ***  0.16  -0.88  0.30 – 0.57  -1.19 – -0.56  -5.41  

TSF  1.20 ***  0.05  0.18  1.08 – 1.34  0.08 – 0.29  3.38  

• p<0.05   ** p<0.01   *** p<0.001  
 



Table S4. Model ranking of the variables that better explain Psammodromus algirus abundance in burnt plots at two megafires from Valencia 
province (E Iberian Peninsula). Lizard sampling was conducted during four years after the fire. The ranking was based on AICc values and only 
models with Δ AICc < 2 are considered. Each row represents a model, and includes a description of the parameters and the variables used. Codes 
are the same as in Table S1. VIF – (Maximum) Variance Inflation Factor. 
Model df AICc Δ AICc AICc weight mR2 VIF Model description 

1 5 367,208 0,000 0,092 0,170 1.02 #Fires, aLST-Q50, 
2 6 367,294 0,086 0,088 0,193 1.07 #Fires, aLST-Q50, aTCTbri_Q05, 
3 7 367,571 0,363 0,076 0,207 2.57 #Fires, aLST-Q50, aLST_Q95, aTCTgrn_IQR, 
4 6 367,641 0,433 0,074 0,185 1.08 #Fires, aLST-Q50, aTCTbri_IQR, 
5 6 367,670 0,462 0,073 0,186 1.16 #Fires, aLST-Q50, aLST_Q95 
6 6 368,257 1,049 0,054 0,178 1.07 #Fires, aLST-Q50, aTCTwet_IQR 
7 8 368,356 1,147 0,052 0,232 2.77 #Fires, aLST-Q50, aLST_Q05, aLST_Q95, aTCTgrn_IQR, 
8 6 368,372 1,163 0,051 0,190 1.31 #Fires, aLST-Q50, aLST_Q05, 
9 8 368,451 1,243 0,049 0,212 5.59 #Fires, aLST-Q50, aLST_Q95, aTCTgrn_IQR, aTCTgrn_Q95, 
10 6 368,592 1,383 0,046 0,183 1.11 #Fires, aLST-Q50, aPREC, 
11 7 368,672 1,464 0,044 0,202 1.63 #Fires, aLST-Q50, aTCTbri_Q05, aTCTgrn_IQR, 
12 8 368,699 1,491 0,044 0,216 2.96 #Fires, aLST-Q50, aLST_Q95, aNDVI_IQR, aTCTgrn_IQR, 
13 6 368,761 1,553 0,042 0,175 1.36 #Fires, aLST-Q50, aNDVI_IQR, 
14 7 368,975 1,766 0,038 0,206 1.39 #Fires, aLST-Q50, aLST_Q05, aTCTbri_Q05, 
15 7 368,991 1,782 0,038 0,204 1.33 #Fires, aLST-Q50, aLST_Q05, aTCTbri_IQR, 
16 7 369,079 1,871 0,036 0,206 3.10 #Fires, aLST-Q50, aTCTgrn_IQR, 
17 5 369,096 1,888 0,036 0,127 1.01 aLST-Q50, aPREC, aTCTbri_IQR, 
18 6 369,192 1,984 0,034 0,177 1.57 #Fires, TSF, aLST-Q50, 
19 6 369,193 1,984 0,034 0,176 1.79 #Fires, aLST-Q50, aTCTgrn_Q95 

 

Table S5. Model ranking of the variables that better explain Psammodromus edwarsianus abundance in unburnt and burnt plots at the Andilla 
megafire from Valencia province (E Iberian Peninsula). Lizard sampling was conducted during four years after the fire. The ranking was based 



on AICc values and only models with Δ AICc < 2 are considered. Each row represents a model, and includes a description of the parameters and 
the variables used. Codes are the same as in Table S1. VIF: Variance Inflation Factor. 
Model aLST_Q05 aLST_Q50 aTCTbri_Q05 aTCTgrn_IQR aTCTwet_IQR Burnt Elev aTCTwet_IQR 

*Burnt R2M R2C VIF df AICc delta weight 

1         1.565 + 2.424 + 0.172 0.182 9.420 6.000 91.275 0.000 0.270 
2     0.477   1.539 + 2.518 + 0.177 0.177 9.926 7.000 91.431 0.157 0.249 
3 -0.196       1.633 + 2.564 + 0.182 0.193 9.708 7.000 92.827 1.552 0.124 
4       0.334 1.603 + 2.525 + 0.177 0.182 9.741 7.000 92.830 1.555 0.124 
5   -0.573 0.733       1.906   0.195 0.195 1.732 5.000 92.879 1.604 0.121 
6   -0.424 0.589   0.262   2.073   0.178 0.178 1.821 6.000 93.038 1.764 0.112 

  



Figure S4: (a) Abundance of Psammodromus edwarsianus along the four sampling 
years in relation to Fire condition (unburnt vs burnt plots). In Andilla. Boxes indicate 
the 25, 50% (median) and 75% quartiles, and lines show minimum and maximum 
values excluding outliers. (b) Ranking of the importance of explanatory variables 
considered to model Psammodromus edwarsianus abundance in Andilla. Analyses 
included unburnt and burnt plots, and variable names are as in Table S2. 
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