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Abstract 

Colour polymorphisms, the coexistence of two or more colour morphs of a species within a 

population, have long fascinated evolutionary biologists interested in the mechanisms generating and 

maintaining phenotypic variation in nature. The functional significance of colour polymorphisms (i.e. 

their adaptive value) is often linked to the selective mechanisms responsible for their maintenance 

over time. In lizards, the hypothesis that colour morphs may reflect alternative reproductive strategies 

involving differential sociosexual behaviour and/or alternative reproductive strategies has come to 

dominate the field. Wall lizards (family Lacertidae, genus Podarcis), with several geographically distant 

species that exhibit two or more alternative ventral colour morphs, have often been identified as a 

group in which alternative reproductive strategies and frequency-dependent selection likely underpin 

colour polymorphisms. However, several key aspects regarding the link between behaviour, fitness, 

and lacertid colour polymorphism remain overlooked or inadequately studied. In this thesis we tried 

to fill these gaps by experimentally addressing some of the most commonly assumed ideas about the 

functional significance of colour polymorphism in the European common wall lizard (Podarcis muralis, 

Laurenti 1768). In some populations of this species (e.g. eastern Pyrenees), adult lizards of both sexes 

may show up to three “pure” alternative colour morph (orange, white, yellow), and two mixed 

morphs consisting of a mosaic of differently-coloured scales (orange-white, yellow-orange). Although 

colour morphs are frequently thought to function as social signals mediating intraspecific interactions, 

morph categorization has been never assessed from the viewpoint of the intended receivers (i.e. 

conspecifics). Here, using a discrimination experiment and visual modelling, we found that lizards 

likely perceive the alternative colour morphs as chromatically distinct and show evidence of 

discriminating among them based on hue, rather than luminance. To evaluate the role of male 

coloration (including alternative colour morphs) in intra-sexual competition), we conducted lab-

staged dyadic contests among size-matched males. We found lower fighting ability in lizards showing 

a smaller fraction of their outer ventral scales covered with dark melanin-based spots, and in lizards 

with orange ventral colour (which could result from the existence of a subordinate non-territorial 

strategy in this morph). However, our results in later studies (with a free-ranging population and ten 

experimental mesocosm enclosures), strongly refute the hypothesis that alternative socio-sexual 

behaviour or space use strategies characterize colour morphs when lizards interact under more natural 

conditions. In the free-ranging populations, colour morphs did not differ in inter-annual site-fidelity, 

home-range size, or male-female overlap. In the mesocosm enclosures, spatial dominance was the 

prime determinant of male fitness across colour morphs. In a later experiment, we conducted 

controlled matings among pure colour morphs and found no overall effect of female morph on clutch 

size or juvenile mass, and no effect of morph combination on offspring viability or prospective 

fitness. These results refute the existence of alternative reproductive strategies in female morphs and 

are also in disagreement with predictions from both correlational selection and heterosis. Lastly, by 

keeping the juveniles of known crosses in outdoor enclosures for a year, we studied the inheritance 

and ontogeny of P. muralis colour polymorphism. Specifically, our results confirmed that orange and 

yellow colour expression depends on two recessive alleles located at two separate autosomal loci and 

revealed that the whitish coloration exhibited by newborn lizards is likely perceived by conspecifics 

as a chromatically distinct colour different from any of the morph colours expressed by adult lizards. 

Overall, in this thesis we have hopefully presented compelling arguments to revise our perspective 

on the functional significance of lacertid colour polymorphisms, suggested promising lines of 

research for future work, and generally contributed to our understanding of the processes maintaining 

intra-specific variation in natural populations at large. 
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Chapter I 
 

“I find the style incredibly bad…How I could have written so badly is quite inconceivable”.  

·Charles Darwin, Letter to John Murray (1858)·  

“What you own is your own kingdom, what you do is your own glory, 

What you love is your own power, what you live is your own story, 

In your heart is the answer, let it guide you all along, 

Let your heart be the anchor, and the beat of your own song”  

·Rush, Something for Nothing, 2112 (1976)· 
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Chapter I:  

General introduction 

 

1.1. Definition of colour polymorphism  

Life on Earth takes an almost endless variety of forms. Although biologists tend to focus on 

differences between species or higher taxa, diversity within a single species, the main driver of 

adaptive evolution, is often striking. Numerous organisms show two or more discrete phenotypic 

forms (i.e. morphs) among individuals of the same sex and age coexisting within a single interbreeding 

population, with the rarer morph being too frequent to be solely the result of recurrent mutation (i.e. 

population polymorphism; Ford 1945; Huxley 1955). Often, this phenotypic variability takes the form 

of distinct colour morphs that are genetically-inherited, fixed in adults, and not condition-dependent 

(i.e. colour polymorphism; Galeotti et al. 2003; Roulin 2004; Mckinnon and Pierotti 2010). By this 

definition, colour polymorphism may coexist with sexual dimorphism or ontogenetic changes, as 

long as alternative morphs are found within the same age and sex classes. By contrast, when inter-

individual differences in coloration are only seasonal, or show either environmental or condition-

dependence, the species is not considered to be polymorphic (Roulin 2004). The production of such 

conditional, discontinuous morphs is referred to as polyphenism, instead of polymorphism (Nijhout 

2003). Recent studies describing continuous variation between two or more extreme phenotypes in 

several polymorphic species has led to the relaxation of the condition that a polymorphic species 

must always show discrete morphs (Buckley 1987; Roulin 2004). 

1.2. Colour polymorphism as a long-standing 

question in evolutionary biology 

For several reasons, colour polymorphism remains an active field of research in evolutionary biology. 

Colour polymorphism is widely thought to provide the sort of raw material which facilitates sympatric 

speciation (Gray and McKinnon 2007). Yet, many phylogenetically distant taxa show heritable, life-

long stable colour morphs which are maintained at different equilibrium levels over time (e.g. Rohwer 

and Paulson 1987; Johannesson and Ekendahl 2002; Maan and Cummings 2008; Olsson et al. 2013; 

Briolat et al. 2018). Selectively neutral polymorphisms can only prevail provided that the population 

is large enough so that alternative forms are unlikely to disappear through stochastic processes (i.e. 

genetic drift; Roulin 2004). In contrast, disruptive selection favouring extreme phenotypes of a 

normally-distributed population, coupled with assortative-mating, might lead to population 

polymorphism, but only as a transitional phase preluding speciation (Gray & McKinnon, 2007). 
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Hence, explaining the long-term maintenance of colour polymorphism in natural populations 

remains a major challenge in evolutionary biology, as it requires some form of selective balance which 

counteracts the eroding effects of either differential morph fitness or stochastic processes (Galeotti 

et al. 2003; Roulin 2004; Gray and McKinnon 2007).  

1.3. Mechanisms for the maintenance of 

colour polymorphism 

1.3.1 Alternative phenotypic optima (i.e. alternative strategies) 

The functional significance of colour polymorphisms (i.e. their adaptive value) is often linked to the 

selective mechanisms responsible for their maintenance over time (Roulin 2004). Colour morphs 

often differ in features other than colour (Forsman et al. 2008; Mckinnon and Pierotti 2010). Such 

co-variations are thought to have originated via disruptive, correlational selection favouring optimal 

trait combinations representing alternative adaptive peaks (i.e. alternative strategies) (Sinervo and 

Svensson 2002; Shuster and Wade 2003; Gray and McKinnon 2007). Consider the classical example 

of the Peppered Moth (Biston betularia). During the early part of the XIX century, the darkening of 

tree trunks and barks caused by pollution conferred a cryptic advantage to dark-coloured moths 

which resulted in the increased frequency of this morph in detriment of the alternative light-coloured 

morph. Genetic correlations between colour morph and behaviour (i.e. background selection) would 

be expected to arise, as individuals that choose backgrounds matching their own colour survive, while 

those with the wrong preference perish (Kettlewell 1955; Majerus 1998, 2005 ; Sinervo and Svensson 

2002; Cook et al. 2012). Such genetic correlations may arise from two non-exclusive mechanisms: 

linkage disequilibrium (i.e. the non-random association of alleles at two or more loci) and pleiotropy 

(i.e. which occurs when a single gene influences two or more traits; Sinervo and Svensson 2002; 

Mckinnon and Pierotti 2010). Discrete colour variation may thus represent either a non-adaptive 

correlate of selection on other traits (i.e. morphology, physiology, behaviour), or a central feature of 

the alternative strategies playing a role in a selectively relevant context (e.g. crypsis, mimicry, 

aposematism, sensory traps, thermoregulation, signalling; Roulin 2004; Roulin et al. 2004; Ducrest et 

al. 2008; Stevens 2013; Rojas et al. 2014; Twomey et al. 2014; White and Kemp 2015, 2016; Rönkä et 

al. 2020). Although alternative reproductive strategies (i.e. ARS) have received much attention in the 

literature, the advantages conferred by each alternative phenotype do not necessarily need to concern 

reproduction. In fact, a growing body of evidence is documenting the existence of alternative 

foraging, anti-predator, or physiological strategies in colour polymorphic organisms (Losey et al., 

1997; Roulin et al., 2000; Johannesson & Ekendahl, 2002; Galeotti et al., 2003; Calsbeek et al., 2010).  

In contrast with conditional strategies, the kind of alternative strategies that are usually linked 

with colour polymorphism show irreversible genetically-determined expression (i.e. adult lifetime 

patterns; Brockmann, 2002), which means that individuals showing a particular strategy usually do so 
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for life and cannot change to another depending on context (i.e. they are not condition-dependent, 

facultative, or phenotypically plastic strategies; Brockmann, 2002; Zamudio & Sinervo, 2003; Roulin, 

2004). Genetically fixed strategies are favoured when the environment varies in a coarse-grained 

manner (i.e. environmental changes are unpredictable and occur at a spatiotemporal scale that exceeds 

both the typical dispersal distance and life expectancy of the species) so that individuals tend to 

experience only one selective regime during their lifetime. Under these conditions, individuals will 

obtain higher fitness payoffs from specializing in alternative solutions to trade-offs in resource 

allocation (i.e. genetically-determined strategies) rather than being a plastic generalist (Gross 1996; 

Brockmann 2002; Shuster and Wade 2003; Zamudio and Sinervo 2003; Roulin 2004).  

However, the existence of alternative phenotypes that are equally adaptive does not mean 

that the polymorphism is balanced and stable in time. In fact, the evolution of alternative strategies 

may give rise to both pre- and post-zygotic barriers among the different morphs (and eventually even 

lead to speciation) by penalising the production of offspring with sub-optimal trait combinations. 

Numerous examples in the literature attest how correlational selection (i.e. selection on optimal trait 

combinations) favours both the emergence of assortative mating and the rise of post-zygotic genetic 

incompatibilities between morphs (Sinervo and Svensson 2002; Gray and McKinnon 2007; Pryke 

and Griffith 2009a; Mckinnon and Pierotti 2010; Lancaster et al. 2014). Therefore, colour 

polymorphic strategies can persist over long timescales only if they show the same average fitness 

over time, which may occur under four main mechanisms of balancing selection: i) when the relative 

fitness obtained by each strategy is dependent on its frequency in the population (e.g. apostatic, or 

negative frequency-dependent selection; NFDS), ii) when the fitness of each strategy depends on the 

absolute number of individuals showing each morph (density-dependent selection), iii) when 

competitive interactions between the strategies are non-transitive (i.e. akin to a rock-paper-scissors 

game; RPS), and iv) when environmental heterogeneity causes selection on the different strategies to 

vary either in space and/or time (i.e. spatiotemporally varying selection). These mechanisms often 

act in conjunction with other processes (such as source-sink migratory dynamics, morph-biased 

mating preferences, or genetic incompatibilities), so that starkly different evolutionary scenarios seem 

to underlie the maintenance of colour polymorphism in different species (Losey et al. 1997; Galeotti 

et al. 2003; Zamudio and Sinervo 2003; Roulin 2004; Gray and McKinnon 2007; Roulin and Bize 

2007; Gosden and Svensson 2009; Mckinnon and Pierotti 2010; Johnston et al. 2013; Wellenreuther 

et al. 2014; Svensson 2017). 

Some representative examples may help clarify these evolutionary dynamics (Fig. 1.1). 

Alternative anti-predator strategies often involve polymorphic coloration. In the pea aphid 

(Acyrthosiphon pisum), green morph individuals suffer higher rates of parasitism by the parasitoid wasp 

Aphidius ervi than red morph conspecifics, whereas the more conspicuous red morph is more likely 

to be preyed on by ladybird beetles (Coccinella septempunctata). Both predatory species show coupled 

population dynamics with their host/prey, so that fields with high aphid abundance also show greater  
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predator densities. Colour morphs can hence be viewed as alternative life-history strategies 

minimizing mortality from two exploitative species preferentially attacking alternate morphs, and the 

coexistence of the two morphs may derive from balanced density-dependent mortality from either 

the parasitoid or predator (Losey et al. 1997). In the cydno longwing butterfly (Heliconius cydno), 

selection for Müllerian mimicry with several co-models has favoured the evolution of alternative 

mimetic morphs, each mimicking a different unpalatable co-model (Kapan 2001). Morph extinction 

is prevented by the existence of multiple spatially-segregated co-models (i.e. mimicry rings), which 

results in colour morphs that can migrate between different patches of habitat where they experience 

positive frequency-dependent selection when matching the locally-abundant co-model (i.e. 

geographically varying selection; Joron and Iwasa 2005). Similar mimetic morphs have been observed 

in poison frogs and other aposematic species (Fig. 1.1; Twomey et al. 2014; Briolat et al. 2018). For 

instance, mimetic morphs inhabiting a narrow phenotypic transition zone in the Peruvian poison frog 

(Ranitomeya imitator) show both assortative mate choice preferences and neutral genetic divergence, 

suggesting that mimetic radiations can drive reproductive isolation and potentially, speciation 

(Twomey et al. 2014). Sensory ecology also seems to play a role in favouring the evolution of equally-

adaptive polymorphic colorations. For instance, polymorphic warning colours in the dyeing poison 

frogs (Dendrobates tinctorius) may have evolved to maximise detectability by their putative vertebrate 

predators under varying lighting conditions (Rojas et al. 2014; Lawrence et al. 2019). Similarly, 

deceptive colour-based lures exploiting perceptual biases in the receiver to attract prey have often 

found to be polymorphic. This variability is thought to originate from colour morphs representing 

alternative colour lures either i) aimed at multiple prey receivers, ii) optimised for maximising efficacy 

at varying lighting conditions, or iii) exploiting different perceptual biases (e.g. chromatic vs. 

achromatic contrast) in a group of prey receivers (Fig. 1.1; White and Kemp 2015, 2016, 2017).  

Sexual selection is often involved in the maintenance of colour polymorphism and it is 

perhaps in this context where the link between colour morphs and alternative strategies has received 

greater attention (Roulin 2004; Roulin and Bize 2007; Wellenreuther et al. 2014). Alternative 

reproductive strategies are particularly frequent in males of polygynous (or polygynandrous) species, 

which experience a high variance in mating success and, thus, intense sexual selection. In these 

species, the uneven distribution of fertilizations among males playing the conventional strategy 

promotes the evolution of alternative socio-sexual behaviours adapted to exploit distinct mating 

niches (e.g., monogynist, satellite, sneaker) which, in turn, may benefit from being signalled through 

its association with a specific colour morph (Brockmann 2001; Shuster and Wade 2003; Zamudio 

and Sinervo 2003; Taborsky et al. 2008; Taborsky and Brockmann 2010). One of the best-studied 

examples is the side-blotched lizard (Uta stansburiana). In this species, adult males present one of three 

alternative throat colours (i.e. orange, blue, yellow), which are associated with different socio-spatial 

behaviours. Orange‐throated males establish large territories overlapping with several females by 

outcompeting blue‐throated males in territorial disputes. These large territories make orange males 
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vulnerable to losing fertilizations in favour of the non-territorial yellow morph, which uses female 

mimicry to sneak copulations opportunistically. In turn, blue‐throated males compensate their 

competitive disadvantage by guarding females directly and hence securing more fertilizations against 

the yellow sneaker males (Sinervo and Lively 1996; Zamudio and Sinervo 2000, 2003; Alonzo and 

Sinervo 2001; Sinervo and Zamudio 2001; Calsbeek and Sinervo 2002a; Sinervo and Calsbeek 2006; 

Sinervo et al. 2006b, 2007). This dynamic gives rise to periodic oscillations in the relative frequencies 

of U. stansburiana male colour morphs, in a cyclical “rock–paper–scissors” (RPS) game whereby each 

colour morph (i.e. strategy), when predominant, is vulnerable to invasion by another morph (Sinervo 

and Lively 1996; Sinervo et al. 2006b, 2010). These frequency-dependent cycles (lasting 5-6 years), are 

linked with periodic two-year oscillations in female morphs, where orange and yellow throat 

coloration reflect two alternative breeding strategies differing in their trade-off between offspring 

quantity and quality (respectively), and whose fitness varies with population density (Sinervo et al. 

2000b; Sinervo and Zamudio 2001; Calsbeek and Sinervo 2002a). Sexual conflict can also act as an 

agent of selection and promote the evolution of alternative strategies, for example when the benefits 

of mating with multiple partners outweighs its costs in one sex but not the other (Neff and Svensson 

2013; Wellenreuther et al. 2014). This has been particularly well studied in Odonates (such as the 

blue-tailed damselfly, Ischnura elegans), where males often harass multiple females over mating and 

intense sperm competition has favoured prolonged copulation times (which can last for several 

hours) to secure female fertilisation (Cordero et al. 1998; Neff and Svensson 2013). This creates a 

marked sex-imbalance in the fitness returns of multiple matings as evidence from both laboratory 

experiments and natural populations suggests that male harassment decreases female reproductive 

success by limiting fecundity and food intake (Cordero et al. 1998; Gosden and Svensson 2009; 

Takahashi and Watanabe 2010; Takahashi et al. 2010; Neff and Svensson 2013). Interestingly, females 

of many Odonate species show sex-limited colour polymorphism where one morph resembles the 

conspecific male in body colour and other traits (i.e. androchromes) while one or more other morphs 

differ from the male (i.e. gynochromes). Androchromic females are approached by almost three times 

less males than gynochromes in field experiments, suggesting that male mimicry may lower detection 

rate and correct categorization as a sexually-mature female by males, thereby reducing costly male 

harassment (Svensson et al. 2009; Willink et al. 2019). An alternative (though non-exclusive) 

explanation is that males form a “search image” based on the most common morph at any time in a 

given population, which would experience higher levels of male mating harassment causing both their 

fitness and future frequencies to decline. Increasing male search costs in future generations would 

then make it more profitable for males to switch target female morph, leading to the long-term 

maintenance of colour polymorphism through both frequency- and density-dependent selection 

(Svensson and Abbott 2005; Svensson et al. 2005; Gosden and Svensson 2009; Takahashi and 

Watanabe 2010; Takahashi et al. 2010).  
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In conclusion, the long-term maintenance of genetic morph-specific strategies requires the 

build-up of disassortative mating preferences, gene flow and/or balancing selective regimes 

counteracting the rise of reproductive barriers between the alternative morphs (Sinervo and Svensson 

2002; Roulin 2004; Roulin et al. 2004; Chunco et al. 2007; Gray and McKinnon 2007; Roulin and 

Bize 2007; Mckinnon and Pierotti 2010; Wellenreuther et al. 2014; Svensson 2017; Iversen et al. 2019). 

1.3.2 Other mechanisms for the maintenance of colour polymorphism 

At least three other mechanisms (apart from the existence of alternative equally-adaptive strategies) 

have been suggested to explain how colour polymorphisms can be maintained over long timescales: 

i) heterosis, ii) non-random mating, and iii) balanced source-sink dynamics (Galeotti et al. 2003; 

Roulin 2004; Wellenreuther et al. 2014).  

a) Heterosis 

Two or more alternative morphs may persist in sympatry over long timescales if the genetically 

intermediate (i.e. heterozygote) morph shows a fitness advantage, known as heterosis, overdominance 

or heterozygote advantage in the literature (Roulin 2004; Roulin and Bize 2007; Johnston et al. 2013; 

Wellenreuther et al. 2014). The fitness advantage of heterozygous individuals may result from being 

less inbred than homozygous ones and thus expressing less deleterious recessive traits, which allows 

them to cope with a wider range of stress-inducing factors (Roulin 2004). Testing this hypothesis in 

a polymorphic species requires some knowledge of the genetic architecture governing the inheritance 

and expression of colour morphs, as the fitter heterozygotes could be phenotypically 

indistinguishable from other genotypes. This was found to be the case in an island population of the 

Soay sheep (Ovis aries), where heterozygous individuals for two polymorphic traits (i.e. coat colour 

polymorphism and horn size) experience higher reproductive success and survival than their 

phenotypically identical homozygous counterparts (Gratten et al. 2008, 2010; Johnston et al. 2013). 

The existence of a heterozygote advantage may have important implications regarding mating 

behaviour. If heterozygosity at the genes coding for the colour polymorphism (or at genes linked to 

them) provides a fitness advantage, selection is likely to favour the evolution of disassortative mating 

preferences as a mean to avoid the production of sub-optimal homozygous progeny. However, if the 

heterozygote advantage concerns only viability selection (i.e. survival to adulthood), the colour 

polymorphism may be maintained even if the morphs show random or even maladaptative (i.e. 

assortative) mating preferences (Krüger et al. 2001; Roulin and Bize 2007).  

b) Non-random mating 

Sexual selection often contributes to the maintenance of colour polymorphisms through the 

establishment of non-random mating preferences with respect to morph (Roulin and Bize 2007; 

Wellenreuther et al. 2014). The attractiveness (i.e. sexual appeal to conspecifics) of individuals from 

each morph may vary either spatially or temporally, with immigration between habitat patches or 
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seasonal fluctuations occurring with sufficient frequency so as to avoid the depletion of genetic 

variance in the population (Osawa and Nishida 1992). Alternatively, colour polymorphism may 

persist in time if individuals mate preferentially with conspecifics displaying an uncommon (or novel) 

morph (Farr 1977). Antagonic mate choice preferences (i.e. where males prefer to mate with females 

displaying a given morph whereas females prefer to mate with males showing another morph), can 

also result in stabilizing selection (Houtman and Falls 1994). Mate choice preferences may also vary 

among individuals if the expected benefits derived from mating with differently coloured individuals 

differ depending on the chooser’s morph (e.g. genetic compatibility), or if colour polymorphism 

evolved in allopatry and a non-adaptive assortative mate choice preference is maintained when the 

morphs meet in secondary contact (Roulin 2004; Roulin and Bize 2007; Mckinnon & Pierotti 2010; 

Wellenreuther et al. 2014). 

c) Balanced source-sink dynamics 

When a morph is selected against in a given population, polymorphism may still be maintained 

through immigration of the counter-selected morph from neighbouring populations where it is not 

at a selective disadvantage (Roulin 2004; Chunco et al. 2007; Gray and McKinnon 2007). As 

exemplified above, mimetic radiations in which a species evolves several alternative morphs (each 

resembling a different suite of spatially-segregated and unpalatable models) provide a good example 

of this evolutionary mechanism. Predator generalization on prey search image should result in 

positive frequency-dependent selection and morph fixation yet, in numerous species, counter-

selected morphs have been found to be replenished by recurrent immigration from other patches of 

habitat (Kapan 2001; Joron and Iwasa 2005; Gordon et al. 2015; Rojas et al. 2015; Rojas 2017; Rönkä 

et al. 2020). 

1.4. Lizard colour polymorphisms 

Among the many of species showing colour polymorphism, lizards have received particular attention 

(Sinervo and Svensson 2002; Zamudio and Sinervo 2003; Olsson et al. 2013; Svensson 2017; Stuart-

Fox et al. 2020). Colour polymorphism seems to have evolved multiple times in distantly related 

families of lizards, providing an opportunity to study convergence and divergence in the design, 

genetic bases, ontogeny, and functional significance of such alternative colorations (Fig. 1.2). 

Although alternative dorsal or lateral colour patterns have been reported in many lizard species, 

polymorphic colour variation in lizards typically involves the throat, head, or ventral surface of the 

animals. Ventral colour polymorphism has been reported in at least seven different families of lizards, 

both geographically and phylogenetically distant (i.e. Agamidae, Dactyloidae, Lacertidae, Liolaemidae, 

Phrynosomatidae, Sphaerodactylidae, and Tropiduridae; reviewed in Stuart-Fox et al. 2020). What is 

more, there seems to be remarkable convergence regarding colour hue among these distantly related 

groups, with morph diversity in most polymorphic species typically combining three alternative 
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colours: orange/red, yellow, and white/blue (Fig. 1.2). Polymorphic lizards may show anywhere from 

two to six different morphs, usually comprising up to three “pure” morphs showing uniform 

coloration, and up to three mixed morphs showing either a central coloured patch different from the 

surrounding colorations in some iguanians and agamids, throat stripes in some iguanians, or a mosaic 

of differently coloured scales in lacertids (Stuart-Fox et al. 2020). Despite this convergence, the 

available evidence on the biochemical and cellular basis of lizard colour polymorphism has revealed 

that equivalent colour morph hues are often produced through different mechanisms in each 

polymorphic species. 

 

Figure 1.2. Convergence in colour morph hues across the order Squamata (lizards and snakes). Black 

branches contain species with known throat/head/ventral colour polymorphism while grey branches 

do not. Phylogenetic tree based on Pyron et al. (2013). R/O = red, orange; Y = yellow; B/W/G = 

blue, white, grey; R/O = red/orange. Reproduced from Stuart-Fox et al. (2020) with permission from 

the author. 
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1.4.1 Mechanisms for colour production in lizards 

Lizard coloration depends on the interaction between light and pigment molecules or nanoscale 

structures present in the integument. Pigments and nanostructures reside inside specialized cells (i.e., 

chromatophores) located in the dermal layer of the skin. The xantophores are the most superficial 

chromatophores and contain pigments (i.e., pteridines and/or carotenoids) that absorb short-

wavelength light and reflect (or transmit) long wavelengths. Iridophores contain intracellular guanine 

platelets that scatter the incident light (Bagnara et al. 2007; Haisten et al. 2015; Kuriyama et al. 2017, 

2020). Melanophores occupy a basal position in the dermis (although may present dendritic processes 

extending around and above the overlying iridophores) and contain eumelanin that absorbs all light 

transmitted by the xantophores and the iridophores (Cooper and Greenberg 1992). Variation in the 

relative abundance and spatial arrangement of these cell types, as well as in the type and concentration 

of pigments within them, can produce the great array of skin colours found in lizards (Macedonia et 

al. 2000; Grether et al. 2004; Bagnara et al. 2007; Olsson et al. 2013; Saenko et al. 2013).  

Long wavelength colours (red to yellow) result from two different classes of pigments in the 

xantophores: pteridines and carotenoids. Carotenoids are hydrophobic molecules that typically 

absorb visible light primarily in the 400–500 nm range (producing yellow to red colours), and that 

must be obtained directly from the diet, or metabolically converted from dietary precursors (Hill and 

McGraw 2006). Pteridines are hydrophilic compounds that primarily absorb light between 340 and 

500 nm, can be synthesised within chromatophores from purine molecules, and may appear yellow 

(xanthopterin and sepiapterin), red (drosopterin or erythro- pterin), or colourless to the human eye 

(Kayser 1985; Grether et al. 2004). Despite red/orange and yellow morphs being present in most 

polymorphic lizards, equivalent colour morph hues from different species (or even populations of 

the same species; McLean et al. 2019) often diverge in their biochemical and cellular basis (Stuart-

Fox et al. 2020). In the European common lizard (Zootoca vivipara), red to yellow hues are produced 

exclusively by carotenoids (i.e. orange coloration resulting from higher carotenoid concentrations), 

with changes in the iridophores also playing a fundamental role modulating the spectral properties of 

throat reflectance (Fitze et al. 2009; San-Jose et al. 2013). Iridophores influence orange and yellow 

colour production also in the eastern fence lizard (Sceloporus undulatus erythrocheilus), although in this 

species carotenoid vesicles are absent and long-wavelength colours result solely from pteridines (i.e. 

orange morph having higher drosopterin concentration; Morrison et al. 1995). In the side-blotched 

lizard (Uta stansburiana), the swift rock dragon (Ctenophorus modestus), and the European common wall 

lizard (Podarcis muralis), orange and yellow morphs result both from a combination of pteridines and 

carotenoids (as well as from the light-scattering properties of the underlying layer of iridophores), but 

differ in the relative proportions of each pigment family (Haisten et al. 2015; McLean et al. 2017; 

Andrade et al. 2019). In all three of these species, orange-coloured scales show a relatively high 

concentration of red/orange pteridines (e.g. riboflavin and drosopterin) while yellow-coloured scales 
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have a relatively high concentration of dietary yellow carotenoids (e.g. zeaxhantin, lutein; Stuart-Fox 

et al. 2020). Short-wavelength colours (also involved in some lizard polymorphisms), are structural 

colours produced by light scattering in the iridophores, although these colours also depend on 

interactions with xanthophores and the underlying layer of melanophores (Bagnara et al. 2007; 

Saenko et al. 2013; Umbers 2013). Specifically, UV and blue colours are produced when xanthophores 

contain few or no pigments (allowing almost all wavelengths of the incident light to interact directly 

with the iridophores), and iridophores contain regularly-spaced guanine crystals producing thin-film 

interference (Bagnara et al. 2007; Olsson et al. 2013; Umbers 2013; Stuart-Fox et al. 2020). 

Additionally, variation in the density of underlying melanophores may also influence the saturation 

of UV and blue colours by absorbing any long-wavelength light transmitted by the upper layers of 

xanthophores and iridophores (Bagnara et al. 2007; Pérez i de Lanuza and Font 2010; Raia et al. 2010; 

Saenko et al. 2013; Umbers 2013).  

1.4.2 The genetic architecture of lizard colour polymorphism 

Polymorphisms are often expected to have a simple genetic basis. Since morph differences often 

comprise other traits besides coloration, the genetic basis of colour polymorphism is thought to 

involve either pleiotropic regulation, or tight physical linkage between genes associated with colour 

production and co-adapted traits (thus resulting in few loci of major phenotypic effects; Roulin 2004; 

Mckinnon and Pierotti 2010; Jamie and Meier 2020; Stuart-Fox et al. 2020). The rationale behind this 

idea is that polymorphisms are subject to high levels of gene flow among morphs and therefore, if 

polymorphisms were based on multiple unlinked genes, inter-morph mating would easily lead to 

mismatched sub-optimal recombinants (Sinervo and Svensson 2002a; Jamie and Meier 2020; see 

1.3.1). To maintain adaptive gene combinations, inversions (or other recombination suppressors) are 

strongly favoured by selection as well as a dominance hierarchy preventing the expression of 

intermediate phenotypes. Likewise, due to the lower effective population size and enhanced genetic 

drift inherent to the sex chromosomes, genes coding for colour polymorphism and its co-adapted 

traits are expected to show autosomal inheritance patterns (Roulin 2004; Mckinnon and Pierotti 2010; 

Jamie and Meier 2020). 

Although few studies have examined the genetic basis of lizard colour polymorphism, the 

available evidence suggests a rather simple genetic basis (Stuart-Fox et al. 2020). In Uta stansburiana, 

polymorphism seems to be governed by a single autosomal locus with three, codominant alleles (o, 

b and y). In males, homozygous lizards have uniform throat colours [oo (orange), bb (blue), or yy 

(yellow)] whereas heterozygotes show throats striped with two colours corresponding to their two 

different alleles (e.g. orange and yellow in oy lizards). Despite their codominant effects on colour 

expression, these alleles show a marked dominance hierarchy over male reproductive strategy (see 

1.3.1), with the o allele (i.e. usurper) being dominant to the y allele (i.e. sneaker), which is dominant 

to the b allele (i.e. mate-guarder) (Sinervo 2001; Sinervo and Clobert 2003). A similar genetic basis 
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(i.e. a single autosomal locus with three co-dominant alleles) was assumed to underpin colour 

polymorphism in the lacertid Zootoca vivipara (Sinervo et al. 2007) and could not be rejected in a 

coetaneous study of Ctenophorus pictus due to limited data (Olsson et al. 2007b). There are, however, 

strong reasons to believe that a few (rather than a single) loci govern morph expression in lizards. 

First, none of these studies considered alternative models of inheritance with more than one locus. 

Second, the patterns of geographic variation in Uta stansburiana, with some populations fixed for 

orange-blue throats, appear inconsistent with a single autosomal oby locus (Corl et al. 2010; Stuart-

Fox et al. 2020). Third, a recent pedigree study on Ctenophorus modestus found that the best supported 

model was one with two bi-allelic loci showing complete dominance of the two alleles coding for 

orange and yellow coloration (Rankin et al. 2016). A genomic study with Podarcis muralis found that 

the presence of orange and yellow ventral coloration is determined by two recessive alleles at two 

separate loci (both of them autosomal) associated with the regulatory regions of pteridine [sepiapterin 

reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism (Andrade et al. 

2019). Interestingly, alleles at those two loci are shared by at least six other Podarcis species exhibiting 

similar colour polymorphism, and haplotype divergence suggests that both ancestral genetic diversity 

and introgression by hybridisation underpin between-species variation at these loci (Andrade et al. 

2019). Together, these studies confirm that discrete colour polymorphism in lizards is controlled by 

a few loci of major effects, as expected if correlational selection had favoured the evolution of 

alternative, morph-specific phenotypic optima. 

1.4.3 The functional significance of lizard colour polymorphism 

In lizards, the hypothesis that colour morphs may reflect underlying alternative reproductive 

strategies involving complex suites of morphological, behavioural, physiological, and life-history traits 

has come to dominate the field since Hover's (1985) pioneer work on the ornate tree lizard (Urosaurus 

ornatus). Morph composition varies greatly across this species’ distribution. In some populations only 

blue-throated adults can be found, whereas in other populations male throat coloration may vary 

among solid blue, orange or yellow coloration, or two mixed morphs (orange or yellow background 

with a blue central patch; Carpenter 1995; Meyers et al. 2006). Hover’s key observation was that males 

showing blue throat coloration (solid or in the form of a central patch) outcompeted orange- and 

yellow-throated males in dyadic territorial contests (Hover 1985). His results were replicated in later 

studies in which male throat coloration was experimentally altered with dye, and males showing a 

larger blue throat patch dominated males without blue dye, or with a smaller blue patch (Thompson 

and Moore 1991). Orange-throated males, which were initially characterized as always nomadic, have 

been later suggested to show a conditional strategy based on environmental conditions: they seem to 

maintain small undefended home-ranges (about the size of a female home-range) in humid years but 

are nomadic in drought years (Moore et al. 1998). Lastly, yellow-throated males have been found to 

preferentially settle in the vicinity of blue male territories and are therefore thought to play a fixed 

satellite strategy to sneak copulations (Waltz 1982; Lattanzio and Miles 2016). The level of 
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specialisation required for each of these behavioural strategies is expected to result in further 

differences between morphs. In Urosaurus ornatus, for example, morphs have been found to vary in 

body size, diet, habitat use, and early-life hormonal (i.e. progesterone) levels (Moore et al. 1998; 

Lattanzio and Miles 2014, 2016; Paterson and Blouin-Demers 2018). 

 The most detailed description of a polymorphic lizard showing alternative reproductive 

strategies is arguably that of the iconic side-blotched lizard (Uta stansburiana). In a series of landmark 

studies, Barry Sinervo and colleagues outlined the functional significance of male colour 

polymorphism in this species as an easily-scored phenotypic correlate of three different male 

strategies playing a rock-paper-scissors game (Fig. 1.3.; Sinervo and Lively 1996). Briefly, populations 

dominated by ultra-aggressive orange males (which outcompete and usurp blue male territories) are 

easily invaded by yellow female-mimicking males which are, in turn, vulnerable to invasion from blue 

subordinate males playing a mate-guarding strategy (DeNardo and Sinervo 1994; Zamudio and 

Sinervo 2000; Sinervo and Zamudio 2001; Calsbeek and Sinervo 2002b, 2002c; Calsbeek et al. 2002; 

Sinervo and Calsbeek 2006). Apart from differential socio-sexual behaviour and space use, each 

strategy entails correlated physiological and life-history traits: orange males disperse further from their 

natal site and show higher levels of testosterone, activity and endurance than blue and yellow males, 

but also lower levels of inter-annual survival (Sinervo et al. 2000a, 2006a; Sinervo and Clobert 2003). 

Encouraged by these results, Zamudio and Sinervo (2003) noted that lizards share several key features 

in their behavioural ecology which could have favoured the evolution of fixed alternative 

reproductive strategies. For instance, many lizards occupy isolated patches of habitat where resources 

are unevenly distributed (promoting territoriality while hindering dispersal), are either short-lived or 

restricted in their activity to short breeding seasons, and show pronounced sex differences in 

morphology and behaviour (with males being markedly larger and more aggressive towards 

conspecifics; Calsbeek et al. 2002; Zamudio and Sinervo 2003; Baird 2013). In these species, intense 

male-male competition over resource monopolisation and adaptive site-fidelity give rise to mating 

systems where subordinate males are unlikely to experience more than one social environment during 

their lifetime (hence promoting the evolution of fixed reproductive strategies in this sex; Brockmann 

2001; Shuster and Wade 2003; Taborsky and Brockmann 2010; Neff and Svensson 2013). These ideas 

ignited research on lizard colour polymorphism, with most studies seeking to detect evidence of 

multi-trait reproductive and life-history strategies in male colour morphs that could help to clarify 

the long-term maintenance of discrete colour variation. After nearly three decades of research on the 

topic there is now abundant evidence documenting the existence of morphological, physiological, 

behavioural and life-history differences among the colour morphs of many geographically and 

phylogenetically distant lizards (Huyghe et al. 2007, 2009a; Olsson et al. 2007a, 2009, 2013; Healey 

and Olsson 2008; Runemark and Svensson 2012; Bastiaans et al. 2013; San-Jose et al. 2014; Yewers 

et al. 2016, 2018; Yewers 2017; McDiarmid et al. 2017; Fernández et al. 2018). 
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Figure 1.3. Colour polymorphism in Uta stansburiana is maintained over time through the association 

of male colour morphs with three alternative reproductive strategies showing intransitive fitness 

payoffs akin to a rock-paper-scissors (RPS) game. Due to the short lifespan of this species (1 year), 

this RPS dynamic gives rise to periodic 5-6 year-long cycles in the relative frequencies of male colour 

morphs (blue: 1990-1995; red: 1995-2000; green: 2000-2005). Ternary plots modified from Sinervo 

and Calsbeek (2006) and Sinervo et al. (2007, 2010). 

 

For a number of reasons, morph-specific ARS, morph fluctuations, and rock-paper-scissors 

dynamics similar to those described in Uta stansburiana have been predicted to occur in Eurasian 

lacertids, particularly in wall lizards (genus Podarcis, family Lacertidae; Sinervo et al. 2007; Calsbeek et 

al. 2010; Mangiacotti et al. 2019). First, ventral colour polymorphisms involving three alternative 

colours (i.e. orange, white, and yellow) have been documented in adult individuals of at least 13 out 

of the 24 species currently recognized within the Podarcis genus, and are thus thought to have an 

ancestral origin in this group (Arnold et al. 2002; Galeotti et al. 2007; Huyghe et al. 2007; Sacchi et al. 

2007; Runemark et al. 2010; Andrade et al. 2019; Pérez i de Lanuza et al. 2019; Brock et al. 2020b; 

Jamie and Meier 2020). Second, many of these species show high site-fidelity, low inter-annual 
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survival, and occupy habitats where resources relevant to reproduction (e.g. stone-walls) are unevenly 

distributed (Strijbosch et al. 1980; Barbault and Mou 1988; Edsman 1990, 2001; Carretero 2007; 

Sinervo et al. 2007; Calsbeek et al. 2010; Font et al. 2012a). Third, males of many wall lizards 

experience strong intra-sexual competition, mainly in the contexts of territorial disputes and sperm 

competition. Females seem to be attracted to high quality and/or familiar patches of habitat rather 

than to males with certain phenotypic characteristics (Edsman 1990, 2001; Font et al. 2012a). 

Moreover, behavioural observations and genetic analyses have confirmed that receptive females often 

mate with more than one male before oviposition, which results in a high incidence of multiple 

paternity (Oppliger et al. 2007; Uller and Olsson 2008; Heathcote et al. 2016). Consequently, adult 

males try to secure fertilizations by investing significant time and energy in the defence of territories 

offering resources valuable to females (such as basking spots, shelters, optimal egg-laying sites, etc.) 

against other males (Edsman 1990; Font et al. 2012a; Baird 2013). The outcome of these territorial 

disputes is crucial to male reproductive success, and patterns of shared paternity have often been 

found to reflect spatial and social dominance among males (Oppliger et al. 2007; Uller and Olsson 

2008; While et al. 2015; MacGregor et al. 2017b). For these reasons, alternative colour morphs in 

many wall lizards are often believed to represent the visible mark of heritable ARS involving 

differential socio-spatial behaviours in males (Huyghe et al. 2007; Sinervo et al. 2007; Calsbeek et al. 

2010; Pérez i de Lanuza et al. 2017; Andrade et al. 2019). Although alternative reproductive strategies 

have been more commonly described in males, this bias could simply result from female alternative 

strategies having been traditionally overlooked. While the ecological factors generating variance in 

male fitness are relatively easy to identify and quantify (i.e. number of partners), the factors generating 

fitness variance among females are less well understood (e.g. condition, fecundity, survival, direct or 

indirect costs and benefits of mating; Neff and Svensson 2013). However, females often vary in 

fitness and several studies suggest the existence of alternative breeding strategies in polymorphic 

lizards (including lacertids) whereby one female morph conceives many, small offspring (r-strategists) 

while another produces fewer, large offspring (K-strategists; Zucker and Boecklen 1990; Sinervo et 

al. 2000b, 2000a; Svensson et al. 2001, 2002; Comendant et al. 2003; Vercken et al. 2007; Galeotti et 

al. 2013). 

 

1.5. Study species and area 

 1.5.1 The European common wall lizard (Podarcis muralis) 

Among the numerous species showing colour polymorphism within the genus Podarcis, the European 

wall lizard (Podarcis muralis, Laurenti 1768) has been the most studied. This species shows the widest 

distribution in the genus Podarcis, with populations spreading across Europe (from northern Iberia to 

the west coast of the Black Sea and North-Western Anatolia), and several sub-lineages corresponding 
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to southern refugia in the Mediterranean islands and peninsulas (Arnold et al. 2002; Salvi et al. 2013). 

Podarcis muralis typically inhabits sunny semi-open areas with abundant rocky outcrops interspersed 

with vegetation, but it can also be found using human structures in anthropized areas (e.g. stone-

walls between abandoned agricultural fields). Its diet consists mainly of small arthropods with 

arachnids and some insect groups (i.e. Diptera, Homoptera, Orthoptera, Coleoptera, Lepidoptera) 

usually composing over 75% of prey, although plant consumption (i.e. flowers and berries) has also 

been reported (Arnold et al. 2002; Rasilla 2009; Scali et al. 2016). Its natural predators include 

ophidians (e.g. Coronella girondica, C. austriaca, Vipera seoanei, V. aspis, Hierophis viridiflavus, Zamenis 

longissimus), birds of prey (e.g. Falco tinnunculus, Buteo buteo, Circaetus gallicus, Tyto alba, Strix aluco, Pica 

pica), and mammals (e.g. Martes martes, Mustela nivalis, Crocidura russula), especially domestic cats (Felis 

s. domesticus) (Martin and López 1990; Arnold et al. 2002; Rasilla 2009).  

While lizards are active throughout the year under mild weather conditions, in mountain and 

northernmost populations they hibernate for 10-14 weeks before the onset of the spring breeding 

season. Males precede females in coming out of hibernation and engage in contests with other males 

to secure a territory including resources valuable to females. Aggression between females is 

uncommon and groups of females are frequently observed basking in close vicinity (often 

accompanied by a single male; Edsman 1990, 2001; Pérez i de Lanuza et al. 2013). Despite this, 

females often copulate with more than one male during the ovarian cycle and multiple paternity 

affects more than 87% of clutches in natural populations (Oppliger et al. 2007). Females typically 

produce two to three clutches per year, laying more and larger eggs in earlier clutches (Van Damme 

et al. 1992; Ji and Braña 2000). Newborn lizards hatch in late summer and take at least a year to reach 

sexual maturity, with some populations in cold climates reportedly taking up to 2-3 years (Eroǧlu et 

al. 2018; Kolenda et al. 2020). Using both capture-re-capture methods and skeletochronological 

analysis, maximum life expectancy in P. muralis populations from cold climates has been estimated to 

be seven-eight years (Castanet and Smirina 1990; Vollono and Guarino 2002; Eroǧlu et al. 2018; 

Kolenda et al. 2020). 

1.5.2 Colour polymorphism in the European common wall lizard 

(Podarcis muralis) 

As most Podarcis species, P. muralis shows a cryptic dorsal coloration that probably evolved to avoid 

predators and enhance thermoregulation, and conspicuous ventral and lateral colour patches that are 

commonly thought to function as chromatic signals (Pérez i de Lanuza et al. 2014). Many populations 

of P. muralis exhibit a ventral colour polymorphism. Adults of both sexes may show up to five 

alternative ventral colour morphs: three solid (pure) morphs, i.e. orange (O), white (W) and yellow 

(Y), and two intermediate mosaics combining orange and white (OW) or yellow and orange (YO) 

scales (Pérez i de Lanuza et al. 2013, 2019; Fig. 1.4). Individuals showing pale yellow ventral 

coloration, initially considered as pertaining to an additional mixed-morph (i.e. white-yellow), have 
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been identified as subadults not yet expressing the full yellow coloration due to their relatively smaller 

body sizes and scarcity in natural populations (Calsbeek et al. 2010; Sacchi et al. 2013). Recent 

research suggests that orange and yellow colour expression are caused by recessive homozygosity at 

two separate loci involved in the metabolism of pteridines and carotenoids (Andrade et al. 2019; see 

1.4.1 and 1.4.2). Interestingly, these colour morphs are shared by geographically distant lineages of 

the species thought to have diverged up to 2.5 million years ago (Salvi et al. 2013; Andrade et al. 2018; 

Pérez i de Lanuza et al. 2019). Local morph composition shows considerable geographic variation, 

although white ventral coloration is typically the most common (>50%), while the orange and 

especially the yellow morph rarely predominate (Sacchi et al. 2007; Pérez i de Lanuza et al. 2017, 

2018b; see Fig 1.4). Adult ventral colours are fixed at maturity (i.e. one or more years after hatching, 

depending on the population), and chromatic differences between pure colour morphs are due mainly 

to variation in reflectance between 400 and 600 nm, suggesting that they can be correctly 

discriminated by the human eye (Pérez i de Lanuza et al. 2014, 2018a). However, no study to date 

has confirmed this morph classification by quantifying the clustering of colour variation according to 

the species colour sensitivity, and/or testing the behavioural discrimination of these colours by P. 

muralis lizards (see Box 1 and Box 2). Likewise, newborn ventral coloration (which is perceived as 

identical to the white morph by human observers; Pérez i de Lanuza et al. 2013) has never been 

objectively characterized and we ignore how it may be perceived by conspecifics.  

Because of their ventral position (which allows the lizards to control their exposure through 

posture) and conspicuousness to the species’ visual system (Pérez i de Lanuza and Font 2015; Pérez 

i de Lanuza et al. 2018a), P. muralis colour morphs have been thought to reflect an underlying set of 

alternative phenotypic optima (e.g. reproductive or life-history strategies), the ventral colours 

functioning as chromatic signals during social interactions (Calsbeek et al. 2010; Sacchi et al. 2017a; 

Mangiacotti et al. 2019). In particular, the hypothesis that colour morphs may show differential socio-

sexual behaviour similar to those described in Uta stansburiana has received much attention in the 

literature (Sinervo et al. 2007; Calsbeek et al. 2010; Scali et al. 2013; Sacchi et al. 2017b). Research on 

P. muralis colour morphs has detected inter-morph differences in several (mostly physiological) traits 

relevant to fitness such as immune response, hormonal profile, and prevalence of infection by 

parasites, indirectly suggesting the existence of alternative fitness optima (i.e. strategies) in the 

different morphs (Galeotti et al. 2007, 2010, 2013; Calsbeek et al. 2010; Zajitschek et al. 2012; Sacchi 

et al. 2017b, 2017a). Female colour morphs from Italian polymorphic populations have also been 

suggested to show differential breeding investment strategies (r/k) in a controlled mating experiment 

in which reproductive output and offspring quality were also found to vary depending on parental 

morph combination (Galeotti et al. 2013). In addition, field observations suggest an assortative 

morph bias in pair formation (68% of male-female pairs observed in the wild are homomorphic; 

Pérez i de Lanuza et al. 2013, 2016) and early microsatellite analyses revealed reduced gene flow 

between some of the colour morphs (Bellati 2011). 
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Figure 1.4. Ventral colour polymorphism in the European common wall lizard (Podarcis muralis). Up, 

representative examples of the discrete variation in the ventral surface of adult lizards. Males and 

females may show up to five different morphs, three pure morphs showing solid orange, white or 

yellow coloration, and two mixed morphs combining two colours in a mosaic of scales (orange-white 

and yellow-orange). The coloration extends to the belly in males but is sometimes restricted to the 

throat in females. Below, native distribution of Podarcis muralis (green shading) with pie charts 

representing the natural morph frequencies pooled by geographically distant sub-lineages. White 

morph lizards are usually the most common. The number of lizards sampled is indicated inside the 

pie charts. Figure extracted from Andrade et al. (2018) and reproduced here with permission from 

the authors. 

Taken together, these findings suggest that disruptive, correlational selection coupled with 

assortative mating may have favoured different co-adapted trait complexes in each morph while 

simultaneously introducing some degree of genetic divergence among them. However, it still unclear 

how these correlated traits in P. muralis morphs may fit within a set of coherent and discrete alternative 

fitness optima, whether in the context of sexual or natural selection. In fact, as is often the case with 
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studies on polymorphic lizards (see Box 2), the existence of alternative behavioral strategies in P. 

muralis colour morphs has been frequently assumed based on indirect physiological evidence rather 

than formally tested through quantitative ethological methods (but see Sacchi et al. 2009; Scali et al. 

2013, 2019). What is more, the same behavioural strategy has been sometimes attributed to different 

morphs in different studies: a “high reproductive investment syndrome” (where individuals invest 

heavily in demanding sexually-selected traits such as body size, hyper-aggressiveness, spatial 

dominance and exploratory behaviour at the cost of reduced immune function) has been suggested 

for either orange or yellow males in two separate studies, even though behaviour was not assessed in 

neither of these studies (Calsbeek et al. 2010; Sacchi et al. 2017b). In fact, no previous study has 

investigated the alignment of polymorphic coloration, socio-spatial behavior, and shared paternity in 

sufficient detail to draw firm conclusions about the existence of ARS in P. muralis. At the same time, 

insufficient attention has been given to other functional explanations of colour polymorphism 

maintenance such as the existence of spatio-temporally varying selection or heterosis (see 1.3.2).  

1.5.3. Study area 

We have investigated colour polymorphism and its correlated traits in the dense P. muralis population 

inhabiting rocky outcrops and human structures found in the Cerdanya plateau (eastern Pyrenees). 

Lizards in this area might experience more favourable conditions than in other locations in the 

Pyrenees, as abandoned fields oriented to the south and isolated granite boulders surrounded by 

sparse vegetation provide abundant suitable habitat, while the dominant East-West orientation of 

Cerdanya guarantees over 3000 h of sunlight per year (Fig. 1.5). The dominant vegetation in our 

main study site consists of Fraxinus excelsior, Crataegus monogyna and Rosa canina. The main lizard 

predator appears to be the diurnal snake Hierophis viridiflavus, but other potential predators (i.e. 

raptors) are common in this area (Font et al. 2012b; Pérez i de Lanuza and Font 2015; Pérez i de 

Lanuza et al. 2016a). Wall lizards can be found continuously across the plateau, yet morph richness 

and ratios have been found to vary greatly among relatively close localities with both biotic (i.e. sex 

ratio) and abiotic factors (e.g. seasonality and precipitation) apparently playing a role in shaping 

morph composition (Pérez i de Lanuza et al. 2017, 2018b). 
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Figure 1.5. Study area and lizard inter-sexual behaviour. a) Satellite image of the Pyrenees, with the 

location of the Cerdanya plateau encircled. b) Satellite image of the Cerdanya plateu showing a subset 

of representative P. muralis capture localities sampled in this thesis. c) Landscape view from 

Angoustrine-Villeneuve-des-Escaldes, in the Cerdanya valley (eastern Pyrennees). d) Male and female 

engaged in the doughnut-shaped copulation posture typical of lacertid lizards. e) early stages of a 

male-female interaction, when both males and females show sex-specific behaviour (♂: gular 

extension, back arching, lateral compression; ♀: rapid waving of the anterior limbs in the air, body 

flattening against substrate, tail vibration). f) pair of lizards lying in physical contact (female on top). 

These associations become more frequently later in the breeding season and are interpreted as a form 

of mate-guarding and/or deterrent of male harassment (Censky 1997; in Den Bosch and Zandee 

2001; Drummond and Zaldívar-Rae 2007; Heathcote et al. 2016). 
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Box 1. How do lizards see each other? Studying colour vision 

from a non-anthropocentric perspective 

Colour is not a physical property of natural objects. Rather, colour perception is a 

psychophysical phenomenon; a fundamentally subjective experience stemming from the 

interaction between light, a colour-sensitive visual system, and a brain (Kelber et al. 2003; 

Stevens 2013). First, light needs to impinge on a retina equipped with at least two types of 

wavelength-dependent photoreceptor cells (i.e. cones). Then, relative comparisons of the 

input received from the different cones must be performed by the nervous system so as to 

integrate the information received and allow for wavelength discrimination. Colour is usually 

defined by three qualities: luminance, chroma, and hue (Endler 1990; Kelber et al. 2003; 

Osorio and Vorobyev 2008). Luminance is the value in the dark to light scale. Hue is 

determined by the wavelength in which an objects shows peak reflectance, and is the attribute 

denoted by terms such as red, green, or purple. Chroma (saturation) describes how 

reflectance is distributed around its peak: a grey object with a small reddish tint has low 

saturation, whereas a red object with little white or grey tint is highly saturated. Colour 

information processing could be carried out in the absence of conscious sensations, yet in 

humans (and by evolutionary continuity possibly in other animals), it is accompanied by 

qualia, the subjective experiences that we associate with colour perception (Nagel 1974; Clark 

1985; Osorio and Vorobyev 2008). Clearly, colour perception is a far less intuitive 

phenomenon than commonly believed. 

Through history, we have often assumed that other animals perceive their 

surroundings in a similar way to us. This erroneous assumption is often termed 

anthropomorphism by omission, as it neglects the fact that animals differ starkly from us in 

their sensory systems, and many perceive sensory modalities to which humans are entirely 

insensitive (Rivas and Burghardt 2002). Each species lives in a unique perceptual world (i.e. 

Umwelt) different from that of any other species, which results from the specific set of 

physiological, behavioural, and environmental constraints that evolution has imposed on its 

sensory organs and nervous system (von Uexküll 1934; Caves et al. 2019). The risk of 

misinterpretation associated with an anthropomorphic stance is particularly strong when 

studying sensory modalities shared by humans and other animals (e.g. vision; Kelber et al. 

2003; Osorio and Vorobyev 2008; Stevens 2013; Caro et al. 2017). Probably because we are 

primarily driven by sight, we have often assumed that vision in most other animals must be 

poorer, or at best equal to our own.  
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Sir John Lubbock (1882) seriously challenged this idea when he exposed ants to a beam of 

light decomposed with a prism and found them particularly anxious to remove their larvae 

from the apparently dark region (to our sight) well beyond the violet end of the spread-out 

spectrum. Further research has demonstrated that many organisms, both vertebrate and 

invertebrate, possess sophisticated visual systems allowing them to perceive light in the 

near ultraviolet (UV-A) waveband (320-400 nm), which is invisible to us (Cronin and Bok 

2016). As stated above, the number of receptor types involved in colour vision (i.e. cones) 

determines the range of colours an animal could potentially see. Photoreceptor 

nomenclature is complicated, and potentially confusing. Receptors have been named either 

according to the part of the spectrum (i.e. colours) to which they are most sensitive, or by 

their sensitivity relative to other receptors in the eye. As many other catarrhine primates, 

humans show three types of cones termed SWS (showing relatively higher sensitivity within 

short wavelengths), MWS (medium wavelengths), and LWS (long wavelengths; Kelber et 

al. 2003; Osorio and Vorobyev 2005; Wuerger et al. 2005). Along with these, lizards (and 

many other vertebrates) show a fourth type of photoreceptor cell with its peak sensitivity 

in the near ultraviolet waveband (i.e. UWS; Cronin and Bok 2016). Colour stimuli that 

closely match the sensitivity of a single cone are termed primary colours, and for this reason 

human cones are sometimes referred as blue, green, and red (corresponding to the SWS, 

MWS and LWS cones, respectively). This nomenclature, though intuitive, should better be 

avoided since it may lead to the wrong assumption that perception of primary colours 

depends on a single type of cone. In reality, colour vision depends on the opponent 

processing of output from the different cones, so that all receptor types are involved in 

perceiving colour (Kelber et al. 2003; Stevens 2013). Stimuli eliciting a similar response 

from two or more types of cones may lead to the perception of intermediate colorations 

(e.g. for example when our SW and MW cones are similarly stimulated and we sense a sort 

of bluish green) or, alternatively, give rise to an entirely different chromatic experience (i.e. 

secondary colours; Cuthill et al. 2000; Jones et al. 2001; Ham and Osorio 2007). An example 

of this latter phenomenon is our yellow, which results from the similar activation of our 

LW and MW cones (and yet is not perceived as a sort of reddish green). Other eye 

structures may introduce further complexity by altering the light spectrum arriving to the 

photoreceptors. In lizards, for instance, there are four types of oil droplets (each associated 

with a different type of cone and located in front of them in the retina) whose spectral 

properties are attuned to the type of photoreceptor they accompany. These oil droplets 

filter the light that arrives at the photoreceptors below certain wavelengths (which reduces 

the overlap in stimulation between different types of cones) and are thus thought to allow  
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for a more precise discrimination between different wavelengths (i.e. colour discrimination; 

Loew et al. 1996; Bowmaker and Hunt 2006; Fleishman et al. 2011; Pérez i de Lanuza and 

Font 2014; Martin et al. 2015). 

Note that finding a given number of cones in a species does not imply that the 

species’ colour vision comprises that same number of dimensions (e.g. despite showing 12 

different photoreceptors in their retina, mantis shrimps seem to use a unique colour 

recognition system based on temporal signalling and scanning eye movements rather than 

a 12-dimensional colour space; Thoen et al. 2014). Ultimately, the dimensionality of colour 

perception in a species depends on the number of post-receptional neural channels 

comparing the input of the different types of cones. Humans are trichromats because we 

present two neural channels involved in colour perception. The first channel compares the 

input of the red and green cones (i.e. LW-MW), while the second channel obtains the 

difference between the sum of these two cones and the input from the blue cones (SW- 

(LW+MW)). Knowledge of the dimensionality of colour vision in other species is scarce, 

but there is both behavioural and physiological evidence supporting dichromatic and 

trichromatic vision in some mammals, while many insects, birds, reptiles and fish (which 

show a fourth type of UV-sensitive photoreceptor cell) are reasonably presumed to be 

tetrachromats (Bowmaker and Dartnall 1980; Kelber et al. 2003; Osorio and Vorobyev 

2008; Jacobs 2009; Stevens 2013; Cronin and Bok 2016; Caro et al. 2017).  

Knowledge on other types of perceptual constraints of a species is also crucial if we 

aim to understand the biological function of its colour traits (Kelber et al. 2003; Osorio and 

Vorobyev 2005). Visual acuity (i.e. the ability to resolve the spatial details of an object) may 

be particularly important to consider (Kelber et al. 2003; Osorio and Vorobyev 2005). In 

general, visual acuity is thought to correlate positively with eye size because (if eye shape is 

held constant), an increase in eye length produces a longer posterior nodal distance which, 

in turn, increases the size of the retinal image (Stevens 2013; Veilleux and Kirk 2014). 

Larger retinal images will generally be sampled by a greater number of independent 

ganglion cell receptive fields and hence allow for finer spatial detail resolution (i.e. visual 

acuity). Two further situational factors affect visual acuity: resolving power declines with i) 

distance to the viewer and ii) when the image is formed on the peripheral retina (low-acuity) 

instead than on the central foveal region (high acuity) (Stevens 2013; Fleishman et al. 2017). 

In Anolis lizards, considering the limits imposed on acuity by the species’ eye Fleishman et 

al. (2020) revealed that the finer details of the colourful dewlap patterns exhibited by male 

lizards could only be resolved (for central foveal vision) from a distance of 0.5 m or shorter 

(Fleishman et al. 2020). In light of these results, the authors infer that while the fine-scale 

details of Anolis dewlap patterns may convey information about individual identity,  
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health status, mate quality or motivational state during close-range social interactions, other 

long-held hypothesis about the role of Anolis dewlaps (such as in signalling species identity 

through assertion displays broadcasted over longer distances) should be revised. Thus, 

knowledge on an animal’s perceptual world can allow researchers to greatly refine 

hypotheses about signal function. 

The analysis of perceptual processes by studying the effect on a subject’s experience 

or behaviour of systematically varying the physical properties of a stimulus is termed 

psychophysics (Gescheider et al. 1997). In the absence of easily-implemented methods to 

investigate neural activity, behavioural experiments offer a suitable way to investigate 

questions related to colour vision in other animals (Kelber et al. 2003). For instance, Osorio 

et al. (1999) demonstrated tetrachromatic colour vision in domestic chicks (Gallus gallus) by 

training them to feed from coloured containers designed to be distinguished only by 

specific combinations of photoreceptors. In addition, modern techniques for colour 

measurement and analysis have brought significant progress to the field of animal colour 

vision. Spectrophotometry, for instance, allows researchers to objectively characterize the 

spectral properties of an animal’s colour patches (or surroundings) over a range of 

wavelengths beyond those perceived by the human visual system (Font et al. 2009; Pérez i 

de Lanuza 2012; Badiane et al. 2017). Visual modelling can then be used to summarise the 

chromatic information of a spectrum according to our knowledge of the species’ visual 

system. When studying presumably tetrachromatic animals (e.g. Podarcis lizards), we can 

represent a three-dimensional (i.e. tetrahedral) colour space where each of the four vertices 

corresponds to maximum stimulation of a different type of cone. The centre of this 

tetrahedron corresponds to a colour eliciting equal stimulation from every type of cone (i.e. 

achromatic centre), and spectra varying in their stimulation of one or more types of cones 

will be represented as a chromatic point displaced from this centre in at least one axis 

(Vorobyev and Osorio 1998; Kelber et al. 2003; Pérez i de Lanuza et al. 2013b). Chromatic 

distances between two spectra can then be calculated as the Euclidean distance between 

their chromatic points projected on the tetrahedral colour space, which is often used to 

investigate the discriminability of two colours (according to a particular species visual 

system and some theoretical assumptions; Vorobyev and Osorio 1998; Kelber et al. 2003; 

Pérez i de Lanuza 2012).  

In short, if we aim to study questions related with colour and colour vision in a 

species (e.g. lizards), we should try, as far as possible, to view the world through the eyes 

of that species. In this thesis, we have used behaviour experiments, spectrophotometry, 

and visual modelling techniques to investigate colour discrimination (Chapter II), and to 

characterize the spectral properties of lizard colour patches (Chapters III and V).  
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Box 2. Pending questions on the link between behaviour and 

lizard colour polymorphism  

Despite the large volume of studies suggesting a role of behaviour in the maintenance of 

lizard colour polymorphisms, there remain several unresolved questions. Morph 

classification within each species often varies across studies, as morph categories have often 

been defined subjectively (i.e. based on human perception; Thompson and Moore 1991; 

Carpenter 1995; Calsbeek and Sinervo 2002c; Sacchi et al. 2013). Several factors contribute 

to these inconsistencies: i) quantitative variation in the size or spectral properties of the 

polymorphic colour patch, ii) mixed-morphs combining two or more colours, and iii) inter-

observer variation in colour categorization (Stuart-Fox et al. 2020). For instance, in Urosaurs 

ornatus different researchers have categorized the same male morph as either yellow or 

green. Moreover, lizards showing yellow or orange throats with a central blue spot have 

been sometimes conflated in a single morph (i.e. green), and sometimes separated into two 

different mixed morphs (i.e. orange-blue and yellow-blue; Thompson and Moore 1991; 

Moore et al. 1998; Lattanzio and Miles 2016; Taylor and Lattanzio 2016). Ultimately, if we 

aim to study the role of animal coloration, we must obtain an objective, non-

anthropomorphic assessment of such coloration informed by our knowledge of the species 

visual system (see Box 1). In the case of lizard colour polymorphism, overcoming this 

challenge requires the use of visual modelling and behavioural experiments to examine 

what morph classification emerges from the clustering of quantified colour variation 

according to the species colour sensitivity, and which colours are effectively discriminated 

by the intended receivers (i.e. conspecifics or else). 

Two further deficits undermine the alleged link between lizard colour 

polymorphism and behaviour. Upon finding morph-specific differences in physiological or 

life-history traits relevant to fitness, many studies suggest the existence of alternative 

reproductive strategies involving differential behaviour in social interactions (Galeotti et al. 

2007; Calsbeek et al. 2010; Sacchi et al. 2017b, 2017a; Stuart-Fox et al. 2020). Following this 

reasoning, colour morphs are often thought to function as visual signals conveying 

information about their owner’s strategy (Sinervo et al. 2006b; Huyghe et al. 2007, 2009b; 

San-Jose et al. 2014; Yewers et al. 2016; Scali et al. 2019; Mangiacotti et al. 2020; McLean 

et al. 2020). However, for many species the existence of differential socio-sexual behaviour 

among colour morphs has rarely been assessed in sufficient detail to draw firm conclusions, 

and the question of why these alternative reproductive strategies should be associated with 

different colorations is seldom justified and never formally tested.  
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Communicative systems are expected to arise when both the sender and the receiver 

benefit, on average, from signalling and responding to a given signal (Maynard-Smith and 

Harper 2003; Font and Carazo 2010; Stevens 2013). Honest signals conveying functional 

information (sensu Carazo and Font 2010; Font and Carazo 2010) about the sender’s 

strategy may evolve when animals can form cooperative morph-dependent alliances (e.g. a 

dominant male may tolerate losing some fertilisations to a subordinate satellite if its 

presence facilitates territory defence against other dominant males; Waltz 1982; Greenfield 

and Shelly 2008; Tibbetts et al. 2017). Deceptive signals are expected to evolve when 

individuals of one morph may benefit from exploiting a behavioural response in the 

receiver which is adaptive in another context (i.e. female-mimicry complementing a sneaker 

strategy to bypass male territorial defence; Mason and Crews 1985; Shine et al. 2001; 

Whiting et al. 2009; Carazo and Font 2013; Stevens 2013; Tibbetts et al. 2017; Font 2019). 

How much these questions (i.e. morph classification, behaviour, and signaling 

theory) have been overlooked may be best exemplified by research on Uta stansburiana. In 

this species, yellow males have been reported to reduce the aggression received from the 

orange and blue territorial morphs by resembling females both in behaviour (i.e. by 

performing “female rejection displays” towards approaching males) and coloration (i.e. 

showing throat colour and dorsal patterning similar to those of females). Unfortunately, 

these claims seem to be entirely based on early field observations from Sinervo and 

colleagues, and have never been subject to rigorous scientific scrutiny. Distinctive “female 

rejection displays” have been characterized in Sceloporus virgatus and other Iguanian lizards 

(Martins 1991, 1993, 1994; Weiss 2002), yet no studies have investigated the existence of 

such displays in Uta stansburiana, nor quantified the frequency with which they are 

performed by the different male morphs. Likewise, although early work on Uta stanburiana 

claimed that “receptive females have yellow stripes in their throats” (Sinervo and Lively 

1996), the number of female morphs has grown in later studies until equating the diversity 

found in males (Corl et al. 2010), thus obscuring the presumed role of yellow throat 

coloration in female-mimicry (Sinervo and Lively 1996; Sinervo et al. 2000a; Zamudio and 

Sinervo 2000; Calsbeek and Sinervo 2002b). In a similar vein, blue throat coloration has 

been proposed to function as a phenotypic identifier allowing cooperation between 

unrelated individuals of a given genotype (i.e. greenbeard effect; Gardner and West 2010; 

Dawkins 2016). These claims are supported by the observation that blue males tend to 

settle together and through this achieve higher fitness, in contrast to orange males (whose 

fitness is negatively affected by other orange neighbours) and yellow males (that are 

unaffected by the presence of other yellow males (Sinervo and Clobert 2003).  
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This gain in fitness has been assumed to derive from morph recognition and 

cooperative territory defence among blue males, although a direct evaluation of these rather 

complex behaviours is still lacking (Sinervo et al. 2006b). Moreover, the alternative 

hypothesis that the benefits of co-settling in blue males may constitute a transient corollary 

to settling far from both usurper and sneaker males has not been formally considered 

(Olsson et al. 2013). These examples from Uta stansburiana (mirrored in other polymorphic 

lizards) suggest the need to devote much more attention to the quantitative examination of 

behavioural morph differences rather than assuming the existence of alternative 

reproductive strategies from indirect evidence. This, together with a stronger emphasis on 

sensory ecology and animal communication theory, should help to bridge the gap between 

behaviour and colour polymorphism in future studies. 
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1.6. Thesis aims 

In this doctoral thesis, we seek to contribute to our understanding of the mechanisms generating and 

maintaining phenotypic variability in nature. We will delve into general principles rooted in evolution, 

sensory ecology, and animal communication theory to investigate the evolutionary causes and 

consequences of colour polymorphism in the European common wall lizard (Podarcis muralis). We 

will focus on frequently overlooked aspects regarding the link between behaviour, fitness, and colour 

polymorphism to ascertain whether P. muralis colour morphs reflect a set of alternative behavioural 

or life-history strategies evolved by correlational selection, as is frequently assumed in the literature. 

Specifically, our thesis aims to i) improve the way we categorize colour morphs by assessing the 

discriminability of chromatic variation through both visual modelling and behavioural experiments, 

ii) examine the role of male coloration (including polymorphic throat patches) in the outcome of 

dyadic male-male contests, iii) investigate whether colour morphs differ in key aspects of their 

behavioural (i.e. aggressiveness, territoriality, mate-guarding) or life-history traits (i.e. investment in 

offspring quality vs. quantity) in a way compatible with alternative fitness optima, iv) testing the 

existence of morph combination effects on reproductive output and offspring viability, and v) 

contribute to the still limited knowledge on the ontogeny and heritability of colour polymorphism in 

this species. We will address specific questions in the five following areas. 

a) Colour morph categorization based on the species visual system and behavioural 

discrimination by conspecifics (Chapter II); 

b) Relationship between colour morph, agonistic behaviour, and fighting ability in 

dyadic confrontations between males (Chapters II and III); 

c) Search for consistent differences among P. muralis colour morphs in key aspects of 

their behavioural (i.e. aggressiveness, territoriality, mate-guarding) or life-history 

traits (i.e. investment in offspring quality vs. quantity) compatible with alternative 

fitness optima (Chapters III and IV). 

d) Test predictions of correlational selection and heterosis regarding the effect of 

parental morph combination on reproductive output and offspring viability 

(Chapter IV). 

e) Colour morph inheritance and ontogeny (Chapter V). 

Chapters II, III, and IV have been published in Journal of Experimental Biology, Behaviour, and Ecology 

and Evolution, respectively. Chapter V is currently undergoing review. Each chapter has been written 

and formatted as a stand-alone piece for publication, so there is some redundancy among them in 

methodological details.
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“The real thing is that there is no real world but as many worlds as species”. 

·Jakob von Uexküll (1920)·

This chapter reproduces entirely the published manuscript: 

Pérez i de Lanuza, G.*, Abalos, J.*, Bartolomé, A, and E. Font. (2018). Through 

the eye of a lizard: Hue discrimination in a lizard with polymorphic ventral 

coloration. Journal of Experimental Biology 221(5): jeb169565. doi: 10.1242/jeb.169565 

*Both authors contributed equally to this work 
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Chapter II: 

Through the eye of a 

lizard: hue discrimination 

in a lizard with ventral 

polymorphic coloration 

 

 

2.1. Abstract 

Colour polymorphisms are thought to be maintained by complex evolutionary processes some of 

which require that the colours of the alternative morphs function as chromatic signals to conspecifics. 

Unfortunately, a key aspect of this hypothesis has rarely been studied: whether the study species 

perceives its own colour variation as discrete rather than continuous. The European common wall 

lizard (Podarcis muralis) presents a striking colour polymorphism: the ventral surface of adults of both 

sexes may be coloured orange, white, yellow, or with a mosaic of scales combining two colours 

(orange-white, orange-yellow). Here we use a discrimination learning paradigm to test if P. muralis is 

capable of discriminating colour stimuli designed to match the ventral colours of conspecifics. We 

trained 20 lizards to eat from colour-coded wells bored in wooden blocks. Blocks had four colour-

coded wells (orange, white, yellow, and an achromatic control), but only one contained food 

(mealworm larvae). After six trials, the lizards performed significantly better than expected by chance, 

showing a decrease in both the number of wells explored and the latency to finding the food. Using 

visual modelling techniques we found that, based on their spectral properties and the lizards’ cone 

sensitivities, the ventral colours of P. muralis correspond to discrete rather than continuous colour 

categories, and that colour discriminability (i.e. distance in perceptual space) varies depending on the 

morphs compared, which may have implications for signal detection and discrimination. These 

results suggest that P. muralis can discriminate hue differences matching their own ventral colour 

variation. 

Keywords: colour discrimination, colour polymorphism, learning experiment, lizards, visual 

modelling
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2.2. Introduction 

Understanding the processes responsible for the evolution of population polymorphisms is one of 

the most exciting challenges facing evolutionary biology. Colour polymorphic species such as the 

peppered moth, Biston betularia, have been extensively used as models to test important evolutionary 

hypotheses about the origins and maintenance of phenotypic variation (Majerus 1998; Gray and 

McKinnon 2007; Oliveira et al. 2008; Svensson et al. 2009; Mckinnon and Pierotti 2010; 

Wellenreuther et al. 2014; Svensson 2017). However, assessing colour variants and their functional 

significance in colour polymorphic species is not straightforward. Colour variation is often described 

from the perspective of a human viewer but should instead be judged from the perspective of the 

appropriate receivers (Bennett et al. 1994; Eaton 2005), which requires the use of modern 

instrumentation and methods for objective colour characterization (e.g. reflectance 

spectrophotometry and visual modelling). Also, the widely-held assumption that the colours of the 

different morphs act as chromatic signals and that conspecifics use colour variation to identify 

alternative phenotypes (e.g. related to age, sex, individual quality, or reproductive strategies) and 

adjust their behaviour accordingly has rarely been tested. 

Recent work with pollinating insects and birds and with cichlid fish underscores the 

importance of considering perceptual mechanisms in the study of colour polymorphisms (Chittka 

and Raine 2006; Muchhala et al. 2014; Thairu and Brunet 2015). Cichlids show striking and 

hypervariable inter- and intrapopulation colour polymorphisms, and abundant evidence has 

demonstrated that colour discrimination, visual ecology, and sensory drive play a critical role in the 

evolution of this interesting polymorphic clade (e.g. Seehausen et al. 2008). However, there is no 

information on morph discrimination for most colour polymorphic species, including lizards (but see 

Teasdale et al. 2013; Merkling et al. 2016). 

The European common wall lizard Podarcis muralis (family Lacertidae) is attracting much 

interest in studies of colour polymorphisms (e.g. Calsbeek et al. 2010; Galeotti et al. 2013; Pérez i de 

Lanuza et al. 2013a, 2017). To the human eye, this species may show up to five discrete ventral colour 

morphs that are fixed at sexual maturity: white, yellow and orange pure colour morphs, as well as 

white-orange and yellow-orange mixed phenotypes that display a mosaic of scales of two different 

colours (sensu Pérez i de Lanuza et al. 2013a; Pérez i de Lanuza and Font 2015). These colours extend 

over the throat and the belly in males but, at least in some populations, are restricted to the throat in 

females (females in these populations have a white belly). Much effort has been devoted to trying to 

identify consistent behavioural, morphological, physiological or ecological correlates of the colour 

variation, but the results are so far inconclusive (Galeotti et al. 2007, 2013; Calsbeek et al. 2010; Pérez 

i de Lanuza et al. 2014). 
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While it is often assumed that the ventral colours in P. muralis function as social signals, the 

evidence in this regard is very scant. It is possible that the ventral coloration, while correlated with 

other phenotypic traits, has no effect on receiver behaviour and is therefore not a chromatic signal 

to conspecifics. Rather, a link between polymorphic coloration and alternative phenotypes could 

result from pleiotropic effects of whatever genes are responsible for the polymorphism. However, 

there are some indications that lizards assess each other's ventral colours and adjust their behaviour 

based on their own colour relative to that of others with which they interact. For example, although 

morphs are not spatially segregated, males and females pair assortatively by ventral colour (Pérez i de 

Lanuza et al. 2013a, 2016b). Also, male ventral colour seems to be important in the resolution of lab-

staged fights (Abalos et al. 2016). Further, it has been suggested that females may adjust their breeding 

strategy according to their own and their mate’s colour morph (Galeotti et al. 2013). 

A necessary condition for the colour of alternative morphs to function as social signals is 

that the animals themselves can perceive them as different stimuli, which ultimately depends on their 

visual perception, not ours (Teasdale et al. 2013; Pérez i de Lanuza and Font 2014). Research on 

colour polymorphic P. muralis rests on the reasonable assumption that lizards perceive their own 

chromatic variation as categorically distinct phenotypes (i.e. morphs), much as humans do. However, 

nobody has formally tested this assumption. Given the known differences between the visual systems 

of lizards and humans, establishing the existence of discrete colour morphs from the lizards’ 

perspective is essential for many current hypotheses about the genetic underpinnings of the 

polymorphism and the evolutionary processes generating and maintaining it (e.g. Cote et al. 2008; 

Paterson and Blouin-Demers 2017). 

Although the human visual system has little trouble identifying discrete colour morphs in P. 

muralis, lizards could perceive their own colour variation in a different way. Podarcis muralis has, in 

common with other diurnal lizards, a sophisticated colour vision system with four types of single 

cones that are sensitive to light in the wavelength range between 320 and 700 nm (Pérez i de Lanuza 

and Font 2014; Martin et al. 2015a). Their retinas also contain large numbers of long-wavelength-

sensitive double cones that are thought to be responsible for luminance (i.e. brightness) perception 

(Loew et al. 2002; Olsson et al. 2013). As the ventral colours differ both in spectral shape and in 

luminance (Pérez i de Lanuza et al. 2013a; Pérez i de Lanuza and Font 2015), discrimination of the 

alternative morphs could be based on either of these variables. 

Discrimination experiments are a useful tool to confirm animal colour vision and the 

perception of colour differences (Kelber et al. 2003; Kelber and Osorio 2010). There is no shortage 

of papers testing the ability of lizards to visually discriminate between stimuli of different size, shape, 

pattern, luminance, or colour (i.e. hue). In his comprehensive review of learning processes in reptiles, 

Burghardt (1977), listed 12 such studies, of which half involved some type of hue discrimination, and 



 

42 
 

                                                                                                             Chapter II 

more have been published in the ensuing decades. These studies have shown that lizards can 

discriminate between stimuli differing only in hue (e.g. Wagner 1933; Swiezawska 1949; Rensch and 

Adrian-Hinsberg 1963; Benes 1969; Dücker and Rensch 1973) or in luminance (e.g. Vance et al. 1965; 

Garzanit and Richardson 1974; Peterson 1976; Hodgkinson and Still 1980). Unfortunately, few 

studies have used standard colour stimuli with known reflectance properties (e.g. Ostwald, Munsell) 

and many do not include luminance controls (i.e. greys). Luminance controls may be of little relevance 

if the focus of the study is learning per se rather than colour discrimination (e.g. Leal and Powell 

2012). But if the goal is to establish that colour vision is present, luminance controls are essential to 

ensure that the animals respond differentially to hue independent stimuli (Kelber et al. 2003). Also, 

most studies using colours as discriminanda make no attempt to use colours that resemble natural 

stimuli that the animals might encounter in the field, such as colours of prey or conspecifics (but see 

Hews and Dickhaut 1989). 

Here we use a behavioural experiment adapted from previously used experimental designs 

(Leal and Powell 2012; see also Clark et al. 2014) to test if P. muralis can discriminate the ventral 

colour variation shown by this species. Additionally, we reanalyse spectral data collected in previous 

studies (Pérez i de Lanuza et al. 2013a, 2014; Pérez i de Lanuza and Font 2015) and use visual 

modelling techniques based on the receptor noise model (Vorobyev and Osorio 1998) to assess the 

colour variation and quantify the degree of discriminability among colour morphs from a lizard’s 

visual perspective. 

2.3. Methods 

We captured 20 lizards (10 males and 10 females) by noosing (i.e. using a pole with a slipknot that 

tightens around the neck of the lizard) on July 8, 2015 in Angostrina (Eastern Pyrenees, France). The 

lizards were individually held in cloth bags and transferred by car to the Ethology lab at the University 

of Valencia (470 km) on the day following their capture. In the laboratory, lizards were housed in 

individual terraria (20 x 40 and 26 cm high) provided with water, a shelter, and a brick over which an 

incandescent reflector lamp (40 W; Radium ©, Parabolica RP50) was suspended. Terraria were 

housed in an animal room with temperature and light cycle mimicking average field conditions at the 

capture site (thermal gradient of 24-40°C inside the terraria during the day; 12.5L: 11.5D). In addition, 

ultraviolet (UV)-rich fluorescent tubes (Reptistar 5.0: Sylvania, Danvers, MA, USA; colour 

temperature 6500K) suspended above the terraria were switched on for 1.5 h (12.00–13.30 h) three 

times weekly. During the colour discrimination experiments (July 11 to August 27), lizards had access 

to food only during the experimental trials, but individuals failing to eat in five consecutive trials were 

discarded from the experiment and fed 3-4 times weekly. After the experiments were completed, all 

lizards were released back at their capture location on August 31. Lizards were captured under 

research permit number 2013095-0001 from the Préfecture des Pyrénées-Orientales (France). This 
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research complied with the ASAB/ABS Guidelines for the Use of Animals in Research and all 

applicable local, national and European legislation. 

2.3.1. Colour discrimination experiment 

For the colour discrimination experiment, we trained lizards to eat mealworm larvae (Tenebrio molitor; 

ca. 2 cm long and 150 mg) dusted with vitamins (Exo Terra, Montreal, QC, Canada) from a well in a 

wooden block. The block had four evenly spaced circular wells (2 cm diameter, 1.5 cm deep) and 

each well was associated with a different colour by means of two coloured paper stickers: a ring-

shaped sticker surrounding the well’s entrance and a rectangular sticker marking its position on the 

lateral side of the block (Fig. 2.1). In total, we used 10 wooden blocks, each of which was used by 

only two lizards. Each block had three wells fitted with orange, white and yellow stickers resembling 

the ventral colours of P. muralis, and a fourth grey-coloured sticker having the same luminance as the 

training colour (see stimuli design below). To prevent the lizards from locating prey using chemical 

cues we placed two live mealworm larvae inside all wells for two weeks before the start of the 

experiment, and two nights per week during the experiment (Monday and Thursday; 19:30 - 9:30). 

Figure 2.1. Experimental terraria. A) Disposition of elements within the individual terraria: a) 

wooden block (only inside the terraria during experiments); b) basking brick; c) shelter; d) water 

dish. B) Schematic view of the experimental wooden block as seen from above (lids removed) and 

from the side facing the shelter (below, lids on wells). 
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We trained half the animals (five males and five females) to eat from the orange well, and the 

other half to eat from the yellow well (Fig. 2.S1). To begin a trial, we introduced two larvae in the 

orange or yellow well, and positioned the wooden block inside the terrarium of the animal to be 

tested (4 cm from the shelter’s entrance; see Fig. 2.1). A trial ended when the lizard located and ate 

the prey or after 25 min had elapsed. We tested each lizard on alternate days to ensure motivation 

toward the food reward (one trial/day). Prior to each trial the position of the colour stickers was 

determined using a random number generator, discarding combinations in which the larvae would 

remain in the same position as in the previous trial. During trials, both the UV-rich fluorescent tube 

and the incandescent lamp were on, providing a continuous light spectrum across the entire visual 

range of P. muralis (see irradiance spectrum in Fig. 2.S2). We conducted trials during the lizards’ 

natural daily period of activity (10.00-13.30 and 16.00-19.00 local time). 

The experiment comprised a training phase and a testing phase. Training consisted of six 

trials (12 days) during which the mealworm larvae were in the orange or yellow well and we gradually 

reduced their visibility by partially covering the well with a white plastic lid weighing 8.5 g (i.e. 

covering 50% of the opening in trials 1 and 2, 75% in trials 3 and 4, 95% in trials 5 and 6). During 

the testing phase (18 trials, 36 days), we presented the wooden block with all four wells completely 

covered and videotaped every trial using a photographic camera (Canon © EOS 60D, Tokyo, Japan) 

mounted on a tripod. We played back each filmed trial and one researcher (J.A.) recorded whether 

or not the animal found and consumed the prey, the number of incorrect lids lifted (errors), and the 

time elapsed since it left the refuge until it lifted the correct lid (latency). 

2.3.2. Experimental stimuli design 

Experimental stimuli were designed to resemble the natural colour variation found in P. muralis 

ventral coloration. We prepared a palette of whites, yellows and oranges in Adobe Illustrator and 

printed them on five types of paper differing in whiteness, brightness and shade (resulting in 790 

stimuli). These stimuli were measured with a portable spectrometer (see details below) and differences 

with natural lizard reflectance spectra (i.e. averaged over at least 164 spectra per morph; Fig. 2.2) 

were explored graphically, comparing colour variables (i.e. hue, chroma, and brightness), and 

calculating chromatic and achromatic distances between any two colours using visual modelling (see 

details below). We chose the three chromatic stimuli that best matched natural colours (orange: 

CMYK = 0%, 99%, 91%, 0%, Couché mate 130 g/m2; white: CMYK = 6%, 10%, 21%, 2%, Color 

copy 250 g/m2; yellow: CMYK = 0%, 23%, 86%, Couché mate 130 g/m2; Fig. 2.2 and S3). 

By presenting an achromatic control with the same luminance as the training colour, we 

controlled the possibility that lizards base their discrimination on luminance differences among the 
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colour stimuli. We designed two achromatic controls, isoluminant with the chromatic yellow and 

orange experimental stimuli. Unfortunately, no evidence regarding how lizards judge luminance 

differences is available. Therefore, we conservatively designed the achromatic stimuli to show an 

absolute luminance (i.e. the integral of the spectral curve) similar to the chromatic stimuli (orange-

achromatic: CMYK = 0%, 0%, 0%, 82%, Couché mate 130 g/m2; yellow-achromatic: CMYK = 0%, 

0%, 0%, 67%, Couché mate 130 g/m2, Fig. 2.2 and 2.S3). However, as it has been hypothesised that 

luminance is perceived by a sensory channel involving the long-wavelength sensitive cones (as single 

cones: Fleishman et al. 1997; Fleishman and Persons 2001; or as the main component of double 

cones: Osorio and Vorobyev 2005), we also compared luminance between the chromatic stimuli and 

their corresponding achromatic stimuli 

using visual models assuming that 

luminance is processed by the long-

wavelength sensitive cones (see 

methodological details below). 

 

Figure 2.2. Reflectance spectra. Lines 

represent spectra from natural Podarcis 

muralis throats (solid lines and 

surrounding area = mean ± 1 SEM) and 

the corresponding artificial stimuli (long-

dashed lines represent the chromatic 

stimuli; grey lines for yellow and orange 

morphs represent the corresponding 

achromatic stimuli). For clarity, the 

spectra have been normalized dividing 

the reflectance at each wavelength by the 

entire reflectance under the curve (i.e. 

luminance). See sample sizes for natural 

spectra in the text. 

 

2.3.4. Statistical analyses 

In order to account for inter- and intra-

individual variability within trials we 

grouped experimental trials in blocks of 

three, hence defining six blocks where 

number of errors and mean latency were 

calculated. We then compared the mean 
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number of errors per individual in each block with the average expected by chance (Baldwin 1979; 

Margules and Gallistel 1988; Brannon and Terrace 1998). With four options to choose, the maximum 

number of errors is three. If choosing randomly, lizards are equally as likely to make zero, one, two 

or three errors. By multiplying each number of errors by its probability (1/4) we obtain the mean 

number of errors expected by chance (�̅� errors = 0 x 1/4 + 1 x 1/4 + 2 x 1/4 + 3 x 1/4 = 6/4 = 1.5). 

We established better-than-chance performance in a block of trials as the criterion for successful 

learning. 

To check for a decrease in both the mean number of errors and the mean latency with time, 

we ran two generalized linear mixed models (GLMMs) with errors (Poisson distribution) and latency 

(Gaussian distribution) as dependent variables, block and sex as fixed factors, and animal identity, 

training colour and (only in the model with number of errors) whether or not the animal located the 

prey as random factors. We checked graphically that both the number of errors and latency followed 

non-normal distributions (qqplots in R; R Core Team 2016). We power-transformed latency to follow 

a normal distribution by calculating the fourth root of each value (Shapiro-Wilk test for normality: W 

= 0.99, p = 0.14). We did not transform the number of errors as transforming count data is not 

recommended (O’Hara and Kotze 2010), and adjusted a GLMM following a Poisson distribution 

after checking the mean and the variance of this variable had similar values (�̅� = 1.12, S2 = 0.98). 

In addition, as a more conservative test of discrimination learning, we coded the performance 

of each individual lizard in each trial as either 1 (if the lizard’s first choice was correct) or 0 (if the 

lizard made any number of errors). Then, we fitted a logistic mixed model with the lizard’s 

performance as dependent variable, trial and sex as fixed effects, and animal identity, training colour 

and whether or not the animal located the prey as random factors. We plotted the fitted model with 

confidence intervals against time (i.e. trial) to check for a significant increase in the probability of 

correct first choice from chance levels (0.25). 

Model fitting and model selection were conducted using backward single term deletions (p 

≤ 0.05) of the saturated model followed by model comparisons via likelihood ratio tests (lme4 

package in R: Bates et al., 2015; R Core Team 2016). We did not find a problem of overdispersion in 

the Poisson model (φ = 1.002). We explored graphically that residuals from both models conformed 

to normality and homoscedasticity assumptions by plotting them against the logarithm of the fitted 

values.  

2.3.5. Visual modelling 

To determine quantitatively the discriminability between pairs of ventral colours (i.e. white against 

yellow, white against orange, and yellow against orange) we used Vorobyev and Osorio’s (1998) 

receptor noise limited model. Calculations were performed in R 3.3.2 (R Core Team 2016) using the 
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package PAVO (Maia et al. 2013). We assumed a cone abundance ratio of 1:1:1:4 (corresponding to 

the UV-, short-, middle- and long-wavelength-sensitive cones; J.F. Le Galliard, personal 

communication based on results from Martin et al. 2015a), and a Weber fraction of 0.05 for the long-

wavelength sensitive cone (Siddiqi et al., 2004; previously used in other studies with lacertids: Marshall 

and Stevens, 2014; Martin et al., 2015a). Cone absorbance spectra of P. muralis were obtained from 

the literature (Martin et al., 2015a). As illuminant we used the irradiance spectrum inside the 

experimental terraria resulting from the combination of the light provided by the incandescent lamp 

and the UV-rich fluorescent tube (Fig. 2.S2). The discriminability between morphs was expressed as 

just noticeable differences (JND). A value of 1 JND is traditionally assumed as the threshold of 

discrimination between two colour patches, i.e. pairs of colours giving values <1 JND are not 

discriminable, values between 1 and 3 JND represent colours that are discriminable under good 

illumination conditions, and values above 3 JND represent easily discriminable colours (Siddiqi et al. 

2004; Marshall and Stevens, 2014). However, as behavioural data to confirm this assumption in P. 

muralis are completely lacking, these thresholds have to be interpreted with caution. Therefore, we 

conservatively adopted a threshold of 3 JND to declare that two colours were discriminable to the 

lizards. 

To determine quantitatively whether our experimental stimuli resembled the lizards’ ventral 

coloration, we also used the Vorobyev and Osorio’s receptor noise model to calculate chromatic and 

achromatic distances between natural spectra and the spectra obtained from the artificial stimuli. 

Based on these analyses, we chose for behavioural experiments those artificial chromatic stimuli that 

minimize the chromatic distances when compared with the natural spectra (see below), and those 

artificial achromatic stimuli that minimize the achromatic distances when compared with the artificial 

chromatic stimuli. 

For visual modelling we used reflectance spectra of throat coloration from the same 

Pyrenean population of P. muralis where experimental animals were obtained (Angostrina, Eastern 

Pyrenees, France). Spectra were compiled from previously published studies (Pérez i de Lanuza et al. 

2013a, 2014; Pérez i de Lanuza and Font 2015), resulting in a dataset of 643 adult lizards showing 

pure morphs (199 white males, 88 white females, 135 yellow males, 57 yellow females, 131 orange 

males, and 33 orange females). Reflectance spectra were obtained with a USB-2000 portable 

spectrometer and a PX-2 xenon strobe light source (Ocean Optics Inc.; Dunedin, FL, USA), 

calibrated with a Spectralon white diffuse reflectance standard (Labsphere) (see Font et al., 2009; 

Pérez i de Lanuza et al., 2013a, 2014; Badiane et al. 2017 for more details). Irradiance inside the 

experimental terraria was measured with a second USB-2000 spectrometer calibrated by means of a 

LS1-CAL calibration light source (Ocean Optics), using a cosine-corrected irradiance probe (Ocean 

Optics CC-3-UV). To assess differences in discriminability (i.e. chromatic distances) between the 

different pairs of ventral colours, we used a generalized linear model including the paired colour 
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combinations (i.e. white-yellow, white-orange, and yellow-orange) and sex as factors, as well as their 

interaction. 

As parameters used to run visual models (i.e. cone proportion: 1:1:1:4; Weber fraction = 

0.05) are not supported by any empirical data in P. muralis, and because small variations in visual 

parameters can affect the results of visual modelling (Lind and Kelber 2009; Bitton et al. 2017), we 

repeated the analyses to assess whether our results are robust to variations in these parameters. 

Therefore, we also run models with cone proportions of 1:1:1:1, 1:1:1:8, and 2:3:3:11 (i.e. the original 

count presented by Martin et al., 2015a), and values of Weber fraction of 0.03 and 0.07. 

2.4. Results 

2.4.1. Colour discrimination experiment 

Twelve lizards (seven males: three trained to eat from the orange well and four from the yellow one; 

and five females: three trained to orange, two to yellow) completed the experiment. The remaining 

eight individuals failed to uncover a well in five consecutive trials and were discarded from the 

experiment. 

 

 

The mean number of errors per block was significantly smaller than expected by chance (1.5) 

in all but the first two blocks of trials (Table 2.1; Fig. 2.3). Both the number of errors (Fig. 2.3) and 

latency (Fig. 2.S4, Table 2.2) showed a significant reduction with time (Errors ~ Stage, Z = -2.40, 

Std. Coeff. ± SE = -0.30 ± 0.13, P = 0.016, see Table 2.S2; Latency ~ Stage, t = -3.49, Std. Coeff. 

± SE = -0.55 ± 0.16, P ˂ 0.0001, see Table S1). Also, we found an effect of sex on the number of 

Table 2.1. Mean number of errors and confidence interval (CI) in each of six consecutive blocks 
of trials (three trials per block) comprising the training phase the experiment, and p-values for 

one-way Wilcoxon tests (μ ˂ 1.5). N = Trials per block (out of 36) in which all 12 trained lizards 
uncovered at least one well. 

Block N Mean CI p 

1 32 1.34 0.35 0.158 

2 34 1.29 0.41 0.153 

3 32 1.19 0.36 0.049 

4 36 1.08 0.36 0.013 

5 35 1.09 0.30 0.008 

6 33 0.73 0.27 1.92 e-5 
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errors (Errors ~ Sex, Z = 2.58, Std. Coeff. ± SE = 0.34 ± 0.13, P = 0.001) due to females committing 

less errors than males on average across blocks (μ ± SEM, males = 1.24 ± 0.09, females = 0.94 ± 

0.10; Fig. 2.2). After finding violations of normality in the model with the number of errors, we run 

a bootstrap analysis based on 10,000 simulations and compared the mean coefficients, their standard 

errors and p-values with those obtained before. This analysis confirmed our GLMM results showing 

similar coefficients but smaller standard errors and p-values (see details in Table S1). 

 

Figure 2.3. Mean number of errors per block of trials. Left, mean number of errors pooling males 

and females (12 lizards, three trials per block). Right, mean number of errors per block of trials, 

grouped by sex (f = females, m = males). Each well of the wrong colour uncovered by a lizard in the 

allotted time (25 min) was considered an error (maximum of three errors). Error bars represent the 

standard error of the mean. After two blocks of trials, the lizards responded to training by showing a 

significantly smaller number of errors than expected by chance (dashed line at 1.5). 

Plotting the logistic mixed model fitted with confidence intervals against time shows that the 

probability of the lizards’ first choice being correct nearly doubled during the experiment, from 

chance levels in the first trial (p ± CI = 0.23 ± 0.08) to even odds in the last trial (p ± CI = 0.41 ± 

0.04; Fig. 2.4). 

Throughout the experiment no colour was overrepresented in the total record of errors 

(trained to orange, χ2 = 3.15, df = 2, p = 0.207; trained to yellow, χ2 = 0.703, df = 2, p = 0.704; Fig. 

2.5). However, wrong first choices were biased toward yellow in lizards trained to orange more 

frequently than to white or to the achromatic grey control (χ2 = 8.41, df = 2, p = 0.015), while lizards 

trained to yellow showed a marginally non-significant bias toward orange (χ2 = 5, df = 2, p = 0.08; 

Fig. 2.5). 
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2.4.2. Visual modelling 

The natural spectra from the three morphs are relatively segregated in colour space (Fig. 2.6). 

Assuming a discrimination threshold of 3 JND and the proposed cone proportions (i.e. 1:1:1:4) and 

Weber fraction (i.e. 0.05), the three colours are chromatically discriminable considering all paired 

combinations (Fig. 2.7). Similar results were found using models with alternative values of cone 

proportions and/or Weber fraction (see Materials and Methods). The effect of considering other 

visual parameters is graphically illustrated in Fig. 2.S6. 

 

Figure 2.4. Fitted logistic mixed model of the probability of correct first choice against time 

(i.e. trial). Circles and error bars represent mean probability with 95% confidence intervals in each 

trial. Blue line and shaded area show the smoothed tendency line with its confidence interval. The 

learning curve shows that the probability of correct first choice nearly doubled during the experiment. 

Discriminability varies with morph combination (t = -5.66, Std. Coeff. ± SE = -0.13 ± 0.02, 

P < 0.00001), the white-orange combination being more discriminable than the white-yellow and the 

yellow-orange combinations (P < 0.00001), and the white-yellow combination is more discriminable 

than the orange-yellow combination (P < 0.00001). Male morphs are more discriminable than female 

morphs (t = -4.27, Std. Coeff. ± SE = -0.07 ± 0.02 P = 0.00002), and the interaction between morph 
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combination and sex is significant (t = 4.10, Std. Coeff. ± SE = 0.05 ± 0.01, P = 0.00005). Results 

remain significant using visual models with alternative visual parameters (Table 2.S3). 

 

2.5. Discussion 

Our results show that adult P. muralis learn to perform a procedural task (lifting the one lid among 

four giving access to prey in a colour-coded well), as shown by a significant reduction in both the 

number of errors and latency throughout the experiment. The fraction of lizards that successfully 

learned to perform the discrimination task (12 out of 20) is similar to that observed in experiments 

with other lizard species (e.g. Leal and Powell 2012). The number of wrong choices was smaller than 

expected by chance after six trials (a week of testing) and the probability of correct first choice after 

18 trials nearly doubled from initial chance levels. These results demonstrate that P. muralis is capable 

of discriminating experimental colour stimuli designed to match natural colours on the ventral surface 

of this species. Although the achromatic controls did not match perfectly the luminance of chromatic 

stimuli, as lizards did not choose the achromatic (grey) control incorrectly more often than the other 

available incorrect stimuli, we can reasonably assume that the discrimination was based on wavelength 

(i.e. hue) rather than luminance differences among stimuli. This evidence provides support for the 

idea that P. muralis is capable of discriminating its own ventral colour variation based on hue. Results 

of reflectance spectrophotometry and visual modelling reinforce this conclusion, showing that ventral 

colours of P. muralis correspond to discrete rather than continuous colour categories based on their 

spectral properties (independent of the human visual system) and lizard cone sensitivities. 

Interestingly, lizards were able to discriminate the two artificial stimuli showing the smallest 

perceptual distance (i.e. yellow vs orange), which is in the lower range of perceptual distances 

generated by the natural yellow and orange morphs (Fig. 2.7). 

Table 2.2. Mean latency in seconds, standard error (SEM), and confidence interval (CI) in each 
of six consecutive blocks of trials (three trials per block) comprising the training phase of the 
experiment. N = Trials per block (out of 36) in which the trained lizards found the prey. 

Block N Mean CI SEM 

1 27 284.67 119.75 58.26 

2 30 325.60 116.91 57.16 

3 29 310.07 127.80 62.39 

4 35 243.09 99.48 48.95 

5 30 217.03 125.91 61.56 

6 31 152.13 31.65 64.64 
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Figure 2.5. Pie charts representing the relative frequency of each colour among the pooled 

errors performed by the lizards. Morphs: O = orange; W = white; Y = yellow; A = achromatic 

stimulus matching the luminance of either orange or yellow. 

Our results bear out the assumption that the ventral polymorphism of P. muralis is discrete, 

encompassing several chromatically distinct morphs. On a practical note, our results also provide 

support for the use of a categorical classification of ventral colours in P. muralis, although perhaps 

not in other lacertid species. For example, in Zootoca vivipara the assumption that the polymorphism 

is represented by categorically distinct colour morphs unleashed a heated controversy (Vercken et al. 

2007, 2008; Cote et al. 2008). Unfortunately, although mate choice is involved in the maintenance of 

colour polymorphism in Z. vivipara (Sinervo et al. 2007; Fitze et al. 2014; San-Jose et al. 2014), colour 

discrimination among morphs was not tested and thus there is no conclusive evidence that lizards 

discriminate morphs visually, or that ventral colours in this species act as social signals. 

Previous studies of the visual system of P. muralis demonstrated that ventral colours differ in 

conspicuousness when viewed against other body patches or against natural backgrounds (i.e. rocks, 

vegetation), which raises interesting questions regarding their potential role as social signals (Pérez i 

de Lanuza and Font, 2015). The results presented here indicate that colour discriminability varies 

according to the morphs being compared, white and orange being more discriminable than white and 

yellow, and yellow and orange ventral colours, and white and yellow more discriminable than yellow 

and orange combinations. Although behavioural results supporting this conclusion are lacking, 
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chromatic distances obtained with visual modelling techniques may be good predictors of colour 

discriminability even when distant colours are compared (Fleishman et al. 2016). Therefore, 

discriminability differences among pairs of ventral colours of P. muralis may have implications for 

signal detection and discrimination. This may be especially relevant for intra- and intersexual 

interactions that can be modulated by ventral colour, such as mate choice or male-male contests 

(Pérez i de Lanuza et al. 2013a, 2016b; Abalos et al. 2016). 

 

Figure 2.6. Chromaticity diagram showing the location of chromatic points. Panel A shows 

the entire receptor space and panel B a detail of the volume occupied by the chromatic points. Circles 

correspond to chromatic points from the natural ventral colours (pooling males and females). 

Triangles correspond to the artificial stimuli. The colours of symbols indicate the morph. See sample 

sizes in the main text. The overlap between the white and the yellow volumes amounts to 27.8% of 

the white volume and 4.9 of the yellow volume; the overlap between the white and the orange 

volumes represents 5.1 % of the white volume and 0.7 % of the orange volume; the overlap between 

the yellow and the orange volumes is 12.2% of the yellow volume and 9.1 of the orange volume. The 

white artificial stimulus is located outside (but close to) the cloud of white natural colours. The other 

two artificial stimuli fall within their respective cloud of natural colours, but are located at the 

periphery. However, note that the perceptual distance between the artificial stimuli is smaller than 

that of many chromatic points of different morphs. 

We found that sexes differ in colour morph discriminability, a finding that could have 

biological relevance (Zhou et al. 2015). However, this result may be a consequence of sexual 

dichromatism (i.e. slight differences in spectra) resulting in small (but significant) differences in colour 

distances between males and females (see, for example, the chromaticity diagram in Fig. 2.6). We 

also found that males and females differ in the number of errors, but this difference may be caused 

by the small sample size used in the experiment, which allows for extremely good performers to bias 

our results. 
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Although colour polymorphisms provide invaluable models to study the evolution and 

maintenance of polymorphisms generally (e.g. Roulin 2004; Sinervo and Calsbeek 2006; Chunco et 

al. 2007; Pryke and Griffith 2009b; Mckinnon and Pierotti 2010; McLean and Stuart-Fox 2014; 

Wellenreuther et al. 2014; Svensson 2017), insufficient attention has been paid to colour (morph) 

discrimination and its implications for understanding the significance of polymorphic coloration. It 

is often assumed that colour polymorphic animals perceive their own colour variation as different 

morphs, and that colour variants represent qualitatively different signals. However, this assumption 

has an unstable foundation if no evidence of colour discrimination is provided. We encourage other 

researchers to obtain evidence that their study animals are capable of chromatically discriminate their 

colour variation as independent colour morphs, and show behavioural evidence of doing so. 

Figure 2.7. Box-plots showing chromatic distances generated by pairs of colour morphs. 

Morphs: W = white, Y = yellow, O = orange. White box-plots correspond to males and grey box-

plots correspond to females. In each case, horizontal lines, boxes, error bars and points indicate, 

respectively, the median, the 25-75% range, the 10th and 90th percentiles, and the 5th and 95th 

percentiles. Horizontal dotted lines indicate the discriminability thresholds of 1 JND (values above 1 

JND indicate pairs of colours that are discriminable under good illumination conditions) and 3 JND 

(values above 3 JND indicate easily discriminable pairs of colours). Results considering other cone 

proportions and other values of Weber fraction are detailed in Fig. 2.S5. The impact of these 

variations is graphically reported in Fig. 2.S6. Horizontal grey lines indicate chromatic distances of 

the experimental stimuli for each pair of colour morphs. 
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2.6. Supplementary Material 

Tables 

 

Table 2.S1. Results of mixed effects model used to explore the reduction in latency (seconds elapsed 

since the lizard left its refuge until it consumed the prey) over sequential blocks of trials (Block). 

Term b SEM SD t p 

Fixed      

Intercept 4.11 0.23  17.79 < 0.0001 

Block -0.16 0.46  -3.49 0.0006 

Random      

ID   0.49   

Train   >10-4   

Residual   1.02   

Model: Latency ~ Block + (1|ID) + (1|Train) 
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Table 2.S2. Results of mixed model exploring the decline in the number of wrong lids uncovered by 

the lizards before finding the prey (Errors) in sequential blocks of trials (Block). Coefficients, standard 

errors and p-values are compared with those resulting from a bootstrapping analysis (10.000 

simulations). Our results are strong against the violation of normality in the residuals of the model. 

 

  

 Model Bootstrapping (10,000 simulations) 

Term b SE SD Z  p Mean β SE SD Z p 

Fixed            

Intercept 0.30 0.24  1.25 0.211 0.29 0.25  1.16 0.245 

Block -0.30 0.14  -2.23 0.026 -0.30 0.13  -2.40 0.016 

Sex 0.34 0.14  2.40 0.017 0.34 0.13  2.58 0.010 

Random           

ID   <10-5     <10-5   

Train   <10-5     <10-5   

Eat   0.31     0.31   

Model: Errors ~ Block + Sex + (1|Eat) + (1|Train) + (1|ID)   
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Table 2.S3. Results from GLM analyses comparing chromatic distances for each pair of morphs (i.e. 

Morph pair), including Sex as a second factor and the interaction between Morph pair and Sex, for 

each visual model generated by the combination of the four alternative cone proportions and the 

three alternative values of the Weber fraction. 

   Weber fraction 

   0.05  0.03  0.07 

   b SE t p  b SE t p  b SE t p 

c
o

n
e
 p

ro
p

o
rt

io
n

 

1:
1:

1:
4
 

Intercept 0.98 0.03 29.79 < 0.00001  1.20 0.03 36.55 < 0.00001  0.83 0.03 25.34 < 0.00001 

Morph pair -0.13 0.02 -5.66 < 0.00001  -0.13 0.02 -5.66 < 0.00001  -0.13 0.02 -5.66 < 0.00001 

Sex -0.07 0.02 -4.27 0.00002  -0.07 0.02 -4.27 0.00002  -0.07 0.02 -4.27 0.00002 

interaction 0.05 0.01 4.10 0.00005  0.05 0.01 4.10 0.00005  0.05 0.01 4.10 0.00005 

1:
1:

1:
1 

Intercept 0.99 0.03 29.70 < 0.00001  1.21 0.03 36.36 < 0.00001  0.84 0.03 25.31 < 0.00001 

Morph pair -0.15 0.02 -6.24 < 0.00001  -0.15 0.02 -6.24 < 0.00001  -0.15 0.02 -6.24 < 0.00001 

Sex -0.08 0.02 -4.70 < 0.00001  -0.08 0.02 -4.70 < 0.00001  -0.08 0.02 -4.70 < 0.00001 

interaction 0.05 0.01 4.61 < 0.00001  0.05 0.01 4.61 < 0.00001  0.05 0.01 4.61 < 0.00001 

1:
1:

1:
8
 

Intercept 1.16 0.03 33.67 < 0.00001  1.39 0.03 40.09 < 0.00001  1.02 0.03 29.44 < 0.00001 

Morph pair -0.13 0.02 -5.23 < 0.00001  -0.13 0.02 -5.23 < 0.00001  -0.13 0.02 -5.23 < 0.00001 

Sex -0.05 0.02 -2.70 0.007  -0.05 0.02 -2.70 0.007  -0.05 0.02 -2.70 0.007 

interaction 0.04 0.01 3.28 0.001  0.04 0.01 3.28 0.001  0.04 0.01 3.28 0.001 

2
:3

:3
:1

1 

Intercept 0.87 0.03 26.20 0.00001  1.09 0.03 32.91 < 0.00001  0.72 0.03 21.77 < 0.00001 

Morph pair -0.13 0.02 -5.64 0.00001  -0.13 0.02 -5.64 < 0.00001  -0.13 0.02 -5.64 < 0.00001 

Sex -0.08 0.02 -4.63 0.00001  -0.08 0.02 -4.63 < 0.00001  -0.07 0.02 -4.63 < 0.00001 

interaction 0.05 0.01 4.22 0.00003  0.05 0.01 4.22 0.00003  0.05 0.01 4.22 0.00003 

Model: chromatic distances ~ Morph pair*Sex 
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Figures 

 

Figure 2.S1. Frame of a video recording in which two trained lizards in adjacent terraria feed on 

Tenebrio molitor larvae after uncovering the trained colour-identified well. 
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Figure 2.S2. A representative measurement of the absolute irradiance in the experimental terraria 

resulting from the combination of the ultraviolet-rich fluorescent tube and the incandescent lamp.  
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Figure 2.S3. Spectral variables (A, B, D, E) and chromatic (C) and achromatic (F) distances 

calculated with visual models from male and female throats (circles). Hue was calculated as the 

wavelength of maximum slope of the curve. Chroma was calculated as (R450 - R700)/R700. 

Brightness was calculated as the sum of the relative reflectance over the entire spectral range. 

Luminance was calculated considering the response of the long-wavelength cone type for visual 

modelling. In A, B, D, and E panels, the arrows indicate the values of the artificial stimuli used in the 

experiment (in D and E, the grey arrows indicate the values of the achromatic stimuli). In C and F 

panels, circles indicate the chromatic and achromatic distances between each natural stimulus of each 

morph against the corresponding artificial chromatic stimuli used in the experiment. Horizontal 

dotted lines in C indicate the assumed discriminability thresholds of 1 and 3 JND (see details in the 

main text). The yellow and the orange stars in F indicate the achromatic distance calculated between 

the yellow and orange artificial stimuli against the corresponding achromatic stimuli. 
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Figure 2.S4. Mean latency per block of trials (12 lizards, three trials per block). Latency was defined 

as the time (s) elapsed since the lizard left the refuge until it lifted the right lid. Error bars represent 

the standard error of the mean.  
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Figure 2.S5. Box-plots showing chromatic distances generated by pairs of colour morphs (W = 

white, Y = yellow, O = orange) generated by the alternative visual models used in the analyses 

considering four different cone proportions and three values of the Weber fraction. White box-plots 

correspond to males and grey box-plots correspond to females. In each case, horizontal lines, boxes, 

error bars and black dots indicate, respectively, the median, the 25-75% range, the 10th and 90th 

percentiles, and the 5th and 95th percentiles. Horizontal dotted lines indicate the discriminability 

thresholds of 1 JND (values above 1 JND indicate pairs of colours that are discriminable under good 

illumination conditions) and 3 JND (values above 3 JND indicate easily discriminable pairs of 

colours). Results from the corresponding analyses in Table 2.S3. Note that the scale of the Y axis 

varies depending on the panel. 
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Figure 2.S6. Effect of varying the Weber fraction (w) and cone proportions (c) on the chromatic 

distances between morphs (measured in JND). Comparison of our main model assuming a cone 

proportion of 1:1:1:4 (ultraviolet-:short-:medium-:long-wavelength sensitive cones) and a Weber 

fraction of 0.05 with models with values of the Weber fraction of 0.03 (A) and 0.07 (B), and with 

models with cone proportions of 1:1:1:1 (C) and 1:1:1:8 (D). Circles indicate males and triangles 

indicate females. The two colours of each triangle or circle (outline and fill) indicate the two morphs 

generating this chromatic distance, i.e. white and yellow circles and triangles represent chromatic 

distances between white and yellow morphs, white and red circles and triangles represent chromatic 

distances between white and orange morphs, etc. The dashed lines indicate the regression. The 

continuous lines represent the 1:1 reference line. 
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Chapter III 
 

“The Universe is a dark forest. In this forest, hell is other people. An eternal threat that 

any life that exposes its own existence will be swiftly wiped out. This is the picture of cosmic 

civilization. It’s the explanation for the Fermi Paradox”. 

·Cixin Liu, The Dark Forest· 

“I come in peace… take me to your lizard”. 

·Douglas Adams, The Hitchhiker’s Guide to the Galaxy·

This chapter reproduces entirely the published manuscript: 

Abalos, J., Pérez i de Lanuza, G., Carazo, P., and E. Font. (2018). The role of male 

coloration in the outcome of staged contests in the European common wall lizard 

(Podarcis muralis). Behaviour 153(5): 607-631. doi: 10.1163/1568539X-00003366 
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Chapter III: 

The role of male coloration in 

the outcome of staged 

contests in the European 

common wall lizard (Podarcis 

muralis) 

 

 

3.1. Abstract 

Colour signals play a key role in regulating the intensity and outcome of animal contests. Males of 

the common wall lizard (Podarcis muralis) show conspicuous ventrolateral ultraviolet (UV)-blue and 

black patches. In addition, some populations express a striking ventral colour polymorphism (i.e. 

discrete orange, white and yellow morphs). In this study, we set out to evaluate the potential signalling 

function of these colour patches by staging pairwise combats between 60 size-matched adult lizards 

(20 per morph). Combats were held in a neutral arena, with each lizard facing rivals from the three 

morphs in a tournament with a balanced design. We then calculated a fighting ability ranking using 

the Bradley Terry model, and used it to explore whether ventral colour morph, the size of UV-blue 

and black patches or the spectral characteristics of UV-blue patches (i.e. brightness, hue, chroma) are 

good predictors of fighting ability. We did not find an effect of the UV-blue patches on contest 

outcome, but the size of black patches emerged as a good predictor of fighting ability. We also found 

that winners were more aggressive when facing rivals with black patches of similar size, suggesting 

that black patches play a role in rival assessment and fighting rules. Finally, we found that orange 

males lost fights against heteromorphic males more often than yellow or white males. In light of these 

results, we discuss the potential signalling function of ventrolateral and ventral colour patches in 

mediating agonistic encounters in this species. 

Keywords: fighting ability, intra-sexual competition, colour polymorphism, UV signals, melanin, 

Podarcis muralis
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3.2. Introduction 

In a world of limited resources, males of many vertebrate systems often engage in contests with 

members of their own species, either over access to females or resources that are necessary to attract 

potential mates. Chromatic signals mediate the intensity of these confrontations by allowing animals 

to assess rivals prior to physically interacting, thereby reducing the costs of aggressive conflicts (Briffa 

2014). For example, in male widow birds (Euplectes ardens) the size and spectral properties of the red 

collar predict territorial behaviour and the intensity of aggressive responses against simulated 

intruders (Pryke et al. 2001). Similar colour ornaments acting as agonistic signals (i.e. armaments) 

have been described in numerous vertebrates and invertebrates (e.g. Pryke and Griffith 2006a; Miyai 

et al. 2011; Todd et al. 2011). In lizards, several colour signals have been shown to convey information 

about dominance and male fighting ability in intrasexual confrontations (Stapley and Whiting 2006; 

Baird 2013; Olsson et al. 2013). For instance, in the Australian frillneck lizard (Chlamydosaurus kingii), 

the carotenoid-based colour of the frill acts as a reliable signal of fighting ability, and males exhibiting 

more colourful frills are dominant in size-matched dyadic contests (Hamilton et al. 2013). Similarly, 

research on Anolis has demonstrated that the display of brightly coloured dewlaps plays an important 

communicative role in several contexts, including male-male contests (Jenssen et al. 2000; Tokarz et 

al. 2003; Simon 2011), its role in determining contest outcome being dependent on the degree of 

territoriality of the species (Lailvaux and Irschick 2007). 

Lacertid lizards comprise 42 different genera and more than 300 species inhabiting a wide 

variety of habitats across the Old World (Uetz and Hošek 2015). Although their mating systems are 

insufficiently documented, they seem to be characterized by strong male-male competition over 

resources (e.g. territoriality in the genus Podarcis; (Edsman 1990; Font et al. 2012a) or females (e.g. 

mate-guarding in Lacerta agilis; Olsson 1994a; and Lacerta schreiberi; Marco and Pérez-Mellado 1999). 

The role of colour signals in this group has been relatively neglected, possibly because lacertids have 

been traditionally considered to be mainly chemosensory (Mason and Parker 2010). Despite this 

historical bias, lacertids have a colour vision system as sophisticated as that of other lizards that rely 

heavily on vision for many aspects of their biology (Pérez i de Lanuza and Font 2014; Martin et al. 

2015a), and very often exhibit complex colour patterns that at least in some cases seem to have 

evolved under strong intrasexual competition in males (Bajer et al. 2011; Olsson et al. 2011; Pérez i 

de Lanuza et al. 2013b).  

 The common wall lizard (Podarcis muralis) is a suitable lacertid model in which to test ideas 

about the role of colour signals in animal contests. Males of P. muralis exhibit a complex ventrolateral 

pattern on their outer ventral scales (OVS) combining black melanin-based patches (Bowker et al. 

1987) and conspicuous ultraviolet (UV)-blue structurally based patches (Fig. 3.1, 3.2b; Pérez i de 

Lanuza and Font 2015). Chromatic variables of male UV-blue patches have been found to correlate 

with bite force and body condition (Pérez i de Lanuza et al. 2014), while a recent study showed that 
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the overall area covered by black patches correlates positively with male dominance status (While et 

al. 2015). In addition to ventrolateral colour patches, some populations of P. muralis express a 

pigment-based ventral colour polymorphism with discrete white (w), orange (o) or yellow (y) pure 

morphs, as well as intermediate orange-yellow and white-orange morphs (Figure 3.1; Pérez i de 

Lanuza et al. 2013a). Although recent studies suggest that different phenotypic optima and breeding 

strategies may be favoured in each morph, the evolutionary origins and functional significance 

underlying colour polymorphism in P. muralis are still far from resolved (Calsbeek et al. 2010; Galeotti 

et al. 2013; Sacchi et al. 2015). As in many Podarcis species, P. muralis shows a resource-based 

polygynous mating system in which males set out territories that overlap with the home ranges of 

several females, engaging in frequent contests with intruding males (Edsman, 1990). During these 

male-male interactions, lizards compress their body laterally (Kitzler 1941; Olsson 1992, 1994a) in a 

way that exposes the ventrolateral colour patches, but also the ventral coloration, which could hence 

also be involved in signalling during agonistic encounters (see Huyghe et al. 2012). These territorial 

contests are pivotal for the reproductive success of males, since females seem to be attracted to good 

quality territories rather than to males of certain phenotypic characteristics (Font et al. 2012a; Olsson 

et al. 2013), and frequently remain within the same territory even when the owner is removed and 

another male takes his place (Edsman 2001).  

In this study we explored the effect of ventral and ventrolateral colour patches during 

pairwise agonistic interactions between size-matched males with no previous experience that 

confronted each other in a neutral arena (i.e. no residency effect). We designed our dyadic encounters 

as a tournament in order to calculate an overall fighting ability for each individual that we could relate 

to chromatic variables of ventral and ventrolateral colour patches and to levels of winner/loser 

aggression. We calculated individual fighting ability using a Bradley-Terry model (B-T; Bradley and 

Terry 1952; Firth and Turner 2012), which allows for simultaneous analysis of the relative influence 

of multiple individual traits on fighting ability, can accommodate an incomplete matrix of 

confrontations, and takes proper account of dependency among contests involving the same 

individual (Stuart-Fox et al. 2006). 
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Figure 3.1. Left: male common wall lizard Podarcis muralis. This species has a relatively cryptic dorsum 

and conspicuous ventrolateral coloration. The ventrolateral area usually presents a complex pattern 

with black and UV-blue patches. Right: ventral view of both sexes to illustrate the colour 

polymorphism. Individuals from the three main morphs present orange, yellow or white ventral 

coloration. In our study population, the ventral colour is restricted to the throat in females, but 

extends to the belly in males. 

 

3.3. Materials and methods 

3.3.1 Study species 

Animals participating in this study came from a colour polymorphic population of P. muralis from 

the Cerdanya valley in the eastern Pyrenees (France). To minimize potential previous fighting 

experience between opponents, lizards were captured in eight different areas at least 300 m apart, or 

separated by a geographic barrier (e.g. river). Between May 17-19 2014, we captured 20 adult males 

of each pure morph (i.e. white -w-, yellow -y- and orange -o-) by noosing, and transported them to 

the laboratory at the University of Valencia (Valencia, Spain). We only captured lizards with a snout-

to-vent length (SVL) larger than 65 mm to restrict the sample to large adult males, ensuring that all 

individuals participating in the tournament had fully developed colour patches (Pérez i de Lanuza et 

al. 2013a, 2014) and were large enough to exhibit full-blown agonistic behaviour (Edsman 1990), 

while minimising the range of possible size differences between potential contestants (Sacchi et al. 
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2009). For each lizard, we used SVL (± 1 mm) and body mass (± 0.1 g) measures at the time of 

capture to calculate a body condition index (BCI) as the residual from a least-squares linear regression 

of log(body mass) against log(SVL) (Green 2001). 

3.3.2. Animal housing and maintenance 

In the laboratory, we housed lizards individually in glass terraria (20 x 40 and 25 cm high) with an 

artificial grass substrate, a water dish, a shelter, and a small brick for basking over which we suspended 

a 40 W incandescent lamp. Shelters consisted of two tiles (one serving as base and one serving as a 

removable lid) separated with felt so as to leave a 90 x 90 x 12 mm cavity for the lizard to take refuge. 

We covered all but the front wall of every terrarium with brown cardboard paper to prevent visual 

contact between animals from adjoining terraria. We set the temperature and light cycle to mimic 

average field conditions during the reproductive season at the capture site (15º C at night, 26º C 

during the day; 12.5L:11.5D), and additionally provided all lizards with full spectrum light (Reptistar 

5.0, Sylvania, Danvers, U.S.A.) for 1 h three times weekly (12.00-13.00 h) to ensure an effective 

calcium metabolism, preventing avitaminosis and metabolic bone disease (Adkins et al. 2003). We 

fed lizards Tenebrio molitor larvae dusted with vitamins (Exo Terra, Montreal, Canada) three times 

weekly and allowed lizards to acclimate to laboratory conditions for 14 days before the experiments. 

Overall, animals stayed in the laboratory less than two months (May 19-July 13) before being released 

back to their capture location in the field.  

3.3.3. Experimental design 

In order to examine the effect of colour patches on male-male contest outcome, we used a 

tournament design in which every male faced three different rivals (one of each morph) with a 

minimum of three days between consecutive contests. The order of contests was randomized for 

each morph combination to control for a potential order effect. At the conclusion of the 90 initially 

planned contests, we staged nine additional heteromorphic fights between the three more successful 

individuals of each morph in order to increase the nestedness of the final tournament network and 

give additional resolving power to the B-T model (Stuart-Fox et al., 2006); note these fights were 

pooled with the rest in our analyses. To reduce the potential noise introduced by size asymmetry and 

prior experience (Baird, 2013), we allowed a maximum size difference between contestants of 10% 

in SVL, and only confronted males from different capture areas (see above). Finally, to eliminate the 

effect of residency, we staged the encounters in a neutral experimental arena consisting of a glass 

terrarium (70 x 30 and 40 cm high) divided into two equal compartments by an opaque partition. 

Each compartment was illuminated by a 40 W lamp and a full spectrum lamp (Reptistar 5.0, Sylvania, 

Danvers, U.S.A.) equipped with a high frequency ballast (Quicktronic, OSRAM, Munich, Germany) 

(Evans et al. 2006). We performed five combats daily between the June 4 and the July 1 2014 at the 

natural peak activity hours for this population (10.00-13.30 and 16.00-19.00, local time). Immediately 

before each trial, we randomly determined the initial side of the arena for each opponent, chased the 
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lizards into their shelter, and transferred them into the experimental arena along with their own 

basking stone. We then disassembled the shelter leaving the base tile in the arena and allowed a 30 

min acclimation period before withdrawing the opaque partition and allowing the opponents to 

interact. All contests were filmed with a digital video camera (XM2, Canon®, Tokyo, Japan). The 

experimental arena was thoroughly cleaned with water, then alcohol, and again with water after every 

combat.  

In each contest, we designated a winner only if one of the males ceased agonistic behaviours 

(Table 3.1) and repeatedly fled if approached by its opponent. In addition to this categorical measure, 

we also calculated a quantitative variable based on the level of aggression shown by each lizard in 

each staged contest. In order to do this, we played back filmed contests and recorded each time a 

lizard performed any of the behaviours described in Table 3.1. We assigned a score to each of these 

behaviours based on Carazo et al. (2008), which allowed us to calculate an individual aggression score 

as the sum of every agonistic behaviour performed by each lizard in each contest (i.e. one aggression 

score per lizard and contest). We also calculated a measure of aggression ratio for each contest as the 

quotient between the winner aggression score and the sum of both winner and loser aggression scores 

(i.e. one aggression ratio per contest). We interrupted combats if they escalated to the point of risking 

injuries (bite-holds in head or limbs lasting more than 1 min), which was only necessary in one 

combat. None of the contests resulted in observable injuries. 

Table 3.1. Behaviours used to calculate the individual Aggression Score (AS) of lizards participating 

in the tournament (see text for details). 

Behaviour Description Score 

No response - 0 

Stare Looks toward rival 1 

Approach Reduces distance with rival 2 

Chase Quickly follows fleeing rival. 3 

Display Throat extension, trunk compression and back arching. 4 

Mouth gaping Opens mouth 5 

Lunge Hits rival with closed mouth 6 

Bite Holds rival for < 2 s. 7 

Bite-hold Holds rival for > 2 s. 8 
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3.3.4. Colour measurements 

We determined morph visually at the time of capture in the field (Pérez i de Lanuza et al. 2013a). We 

recorded spectrophotometric measurements in a single session at the conclusion of all contests to 

minimize the stress induced by manipulation prior to the experiments. We recorded reflectance 

spectra of the UV-blue patches with a portable USB-2000 spectrometer equipped with a PX-2 Xenon 

strobe light (Ocean Optics Inc., Dunedin, Fl. U.S.A.; for further details see Font et al. 2009). 

Measurements encompassed the 300-700 nm range to cover the entire visual spectrum of P. muralis 

(Pérez i de Lanuza and Font 2014; Martin et al. 2015a). We recorded spectra from the second, third 

and fourth UV-blue patches in both sides and averaged them to provide an individual mean spectrum 

for each lizard. We then extracted data for the standard variables describing colour: brightness 

(spectral intensity), chroma, and hue (Endler 1990; Bradbury and Vehrencamp 1998). We calculated 

brightness of the UV-blue patches (OVS-Qt) as the total area under the 300-700 nm reflectance 

curve, hue (OVS-hue) as the wavelength where peak reflectance is located , and UV-chroma (OVS-

CUV) as the area under the 300-400 nm reflectance curve divided by the area under the entire spectral 

curve (i.e. 300-700 nm) (Endler 1990; Molina-Borja et al. 2006; Pérez i de Lanuza et al. 2014). 

In addition, we measured the relative ventrolateral area covered by black and blue patches in 

each lizard. For this purpose, we obtained an image of both sides of every lizard using a portable 

digital scanner (Lide 700F, Canon®, Tokyo, Japan), and then calculated the proportion of black and 

blue coloured area out of the total ventrolateral surface (Fig. 3.2b) using ImageTool Ver. 3.0 (Wilcox 

et al. 2002). We defined total ventrolateral surface as the area covered by the first two rows of OVS, 

between the insertions of the fore and hind limbs. We determined the proportion of coloured area 

by dividing the blue or black area by total ventrolateral surface; the same researcher (J.A.) measured 

all areas following a blind protocol. We confirmed the reliability of these measurements by calculating 

repeatability (r) as defined by Lessells and Boag (1987) in a subsample of lizards (N = 15; rblue = 0.97; 

rblack = 0.97). Due to an endoparasitic infection unnoticed at the time of capture, one lizard died in 

the laboratory before its colour patches could be measured, reducing the final sample for colour 

variables to 59 individuals. 
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Fig. 3.2. a) Means of the relative blue area (ABlue) in the ventrolateral patches, for each morph. Error 

bars represent the standard error of the mean. b) Representative pictures of the ventrolateral pattern 

in males of the three pure morphs. Blue coloration sometimes extends to the second row of ventral 

scales in orange males, while this is rare in white or yellow morph males.  

 

3.3.5. Statistical analyses 

We used the Bradley-Terry model (B-T model) for planned comparisons to extract a global index of 

fighting ability for each contestant (Bradley and Terry 1952). Staged contests can be considered as a 

subset of all the possible interactions between rivals from which relative fighting ability can be 

estimated. The B-T model is a type of generalized linear model that takes proper account of 

dependencies within and between contests while accommodating an incomplete matrix of all possible 

interactions (Firth 2005). This model assumes every contestant has a positive value of fighting ability, 

such that the most likely contest outcome is given by the ratio of the abilities of both contestants 

(Whiting et al. 2006), and estimates a hierarchy based on transitivity (Stuart-Fox et al. 2006). Using 

the R package BradleyTerry2 (Firth and Turner 2012) in R 2.1.5.1 (R Core Team, 2014) we fitted B-

T models to 99 fights involving 60 lizards, obtaining a ranking based on individual fighting ability 

estimates. The model was calculated with “bias reduction”, as is recommended when players face 

each other only once, and coding ties as half a win for each rival (Firth & Turner, 2012). 

We used a generalized linear model (GLM) to explore the relationship between ventral colour 

morph (considered as a fixed factor), the three spectral variables of the UV-blue patches (i.e. OVS-

Qt, OVS-Hue, OVS-CUV), the relative area of blue (ABlue) and black (ABlack) colour patches, body size 

(SVL), and fighting ability estimates as the dependent variable. We checked that all variables 

conformed to heteroscedasticity and normality assumptions, and assumed a Gaussian distribution for 

fitting the GLM. We started with the following full model representing our main hypothesis: Fighting 

ability ~ Morph + SVL + OVS-Qt+ OVS-CUV + OVS-Hue + ABlue + ABlack. Model fitting was done 

manually in R 2.1.5.1 (R Core Team, 2014) and model selection was conducted using backward single 
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term deletions (P ≤ 0.05) of the saturated model followed by model comparisons via likelihood ratio 

tests. 

We run linear mixed effects models to explore the relationship between individual aggression 

score and colour variables. We also explored potential receptor-dependent costs of coloration (i.e. 

variation in aggression score caused by rival coloration) by running linear mixed models with SVL, 

OVS-Hue, OVS-CUV, OVS-Qt, Morph, ABlue, ABlack and rival aggressive score as fixed factors, and 

intercepts for winner and loser identity as random effects. Finally, in order to assess the relationship 

between aggression ratio, body size, morph, and the size of black colour patches, we run the following 

post hoc linear mixed effects model: Aggression ratio ~ Winner ABlack*Loser ABlack + Winner Morph*Loser 

Morph + Winner SVL * Loser SVL + (1 | Winner) + (1 | Loser). P-values were obtained via likelihood 

ratio tests of the full model after single term deletions.  

 

3.4. Results 

We could identify a winner in 76 out of 99 contests (Fig. 3.S1). Overall, the mean aggression score 

of each individual male across contests was significantly correlated with the estimate of fighting ability 

calculated with the B-T model from the global tournament network (Mean aggression score ~ Fighting 

ability, R = 0.59, t56 = 5.515, P ˂ 0.0001, Fig. 3.S2).  

3.4.1. Inter-morph differences 

Yellow males won 66% of heteromorphic combats (N = 36), while white males won 58% (N = 39) 

and orange males only 24% (N = 37). Yellow and white males defeated orange males in the majority 

of contests (W ˃ O: 76%, N = 17; Y ˃ O: 75%, N = 20), while results for contests between white 

and yellow males were more balanced (Y ˃ W: 58%, N = 19). However, males with different ventral 

coloration did not differ in their mean aggression score across contests (Mean AS, F2,58 = 1.73, P = 

0.187). We found no significant differences in body size (SVL, F2,60 = 1.84, P = 0.168) or body 

condition (BCI, F2,60 = 2.858, P = 0.0658) among morphs, despite a trend for yellow males in our 

sample to show lower BCI than males of the other two morphs (Fig. 3.S3). UV-blue spectral 

variables did not differ between morphs (OVS-Qt, F2,59 = 2.807, P = 0.0691; OVS-Hue, F2,59 = 0.088, 

P = 0.916; OVS-CUV, F2,59 = 1.349, P = 0.268). ABlack showed marginally non-significant differences 

between morphs (ABlack, F2,58 = 3.038, P = 0.0561), likely due to males of the white morph having 

slightly larger ABlack than males from the orange morph (Tukey’s post hoc, W-O ± SEM = 0.058 ± 

0.024, t2, 58 = 2.39, P = 0.052; Y-O ± SEM = 0.042 ± 0.025, T2, 58 = 1.69, P = 0.218; Y-W ± SEM = 

-0.016 ± 0.025, t2, 58 = -0.64, P = 0.801). Orange morph males had higher ABlue than white and yellow 

males (Fig. 3.2; ABlue, F2,58 = 25.49, P ˂ 0.0001; Tukey’s post hoc, W-O ± SEM = -0.083 ± 0.012, t2, 

58 = -6.75, P ˂ 0.0001; Y-O ± SEM = -0.067 ± 0.013, t2, 58 = -5.33, P ˂ 0.0001), while the white and 
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yellow morphs did not differ (Tukey’s post hoc, Y-W ± SEM = 0.016 ± 0.013, t2, 58 = 1.24, P = 

0.434).  

3.4.2. Predictors of fighting ability 

In accordance with the observed differences in contest outcome, we detected a marginally significant 

difference in the fighting ability of different morphs (one way-ANOVA: Fighting ability ~ Morph, T2,59 

= 3.337, P = 0.043; Fig. 3.3). Orange males seem to have slightly lower fighting ability than yellow 

males (Tukey’s post hoc, W-O ± SEM = 0.007 ± 0.003, t2, 58 = 2.08, P = 0.104; Y-O ± SEM = 0.008 

± 0.003, t2, 58 = 2.37, P = 0.054; Y-W ± SEM = -0.001 ± 0.003, t2, 58 = 0.35, P = 0.93).  

However, after model selection, only ABlack (Mean± SEM = 0.249 ± 0.128) remained as a significant 

predictor of individual fighting ability (Fighting ability ~ ABlack, t56 = 2.453, Std. Coef. = 0.31, P = 0.017, 

Fig. 3.4). ABlack was not related to mean aggression score (Spearman correlation: S56 = 26808, ρ = 

0.175, P = 0.188), BCI (T56 = 0.032, P = 0.974) or ABlue (t56 = -1.23, P = 0.223). We found no 

relationship between the spectral variables of UV-blue patches and fighting ability (R ˂ 0.1, P ˃ 0.2 

in all cases). 

 

Figure 3.3. Within-morph means of fighting ability estimates obtained with the Bradley-Terry model. 

Error bars represent the standard error of the mean.  
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3.4.3. Predictors of aggression score and aggression ratio 

Winner or loser aggression scores were unrelated to colour variables from any of the contestants. In 

every mixed model, the aggression score of one rival was best predicted only by the aggression score 

of its opponent (Winner aggression score ~ Loser aggression score, t5, 76 = 5.6, P ˂ 0.0001). In contrast, 

aggression ratio showed a significant relationship with the ABlack of both contestants. Specifically, 

combats between males with similar ABlack resulted in higher aggression ratios. After model selection, 

aggression ratio was found to be significantly related to the interaction between the ABlack of each 

contestant (Winner ABlack*Loser ABlack; χ2 = 4.74, df = 1, P = 0.029) (Table 3.2), but not with their 

morph (Winner Morph*Loser Morph; χ2 = 6.63, df = 1, P = 0.16), nor their SVL (Winner SVL*Loser 

SVL; χ2 = 0.0003, df = 1, P = 0.99). To examine the significance of this interaction, we used a 3D 

plot, which suggests that aggression ratio increases as the asymmetry between winner and loser ABlack 

decreases (Fig. 3.5).  

 
Table 3.2. Mixed effects linear model used to explore the relationship between body size, morph, 
black coloration, and aggression ratio in staged contests between Podarcis muralis male lizards.  

 Term Coefficient Standard error Χ2 Df P-value 

Fixed factors Winner ABlack* Loser ABlack 0.19 0.09 4.74 1 0.029 

Winner ABlack -0.09 0.12 0.53 1 0.47 

Loser ABlack -0.02 0.13 0.03 1 0.87 

  Variance Standard deviation    

Random factors Loser identity 0.41 0.64    

Winner identity 0.33 0.57    
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Figure 3.4. Scatterplot showing the relationship between fighting ability and relative black area in 

the ventrolateral scales (ABlack) for each individual participating in the tournament. 

 

3.5. Discussion 

In this study, we set out to assess the potential role of P. muralis ventral (i.e. morph; orange, yellow 

or white) and ventrolateral (i.e. UV-blue and black) colour patches in determining contest outcome 

in male-male conflicts. Neither the size nor the spectral variables of UV-blue patches affected contest 

outcome, but both ABlack and ventral colour morph did. Ablack was a particularly good predictor of 

fighting ability that also affected the difference in aggression score between winners and losers, in a 

way that suggests it may be functional as an agonistic signal (see below).  

3.5.1. Black ventrolateral patches as chromatic signals of fighting ability  

As stated, ABlack was the best predictor of fighting ability in our models, and we also found that the 

interaction between winner and loser ABlack was a significant predictor of the aggression ratio of a 

contest. Namely, winners behaved relatively more aggressively towards losers as the difference in 

winner-loser ABlack decreased, and less so as it increased. This effect was strong and persisted despite 

controlling for the interaction between both rivals’ SVL in our post hoc model. Hence black 

coloration does not appear to act as a simple surrogate of size (Gosá 1987) but rather as an agonistic 
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signal used by males to assess their rivals’ fighting ability, and adjust their investment in the fight 

accordingly. This is in agreement with a recent study reporting that the amount of ventral black 

coloration strongly correlates with dominance status in two different lineages of P. muralis (i.e. 

Tuscany and Western Europe lineages; While et al. 2015). Furthermore, results from this study 

strongly suggest that the introgression of the Italian lineage (with exaggerated black coloration) onto 

Western France is likely driven by male-male competition favouring this character (While et al., 2015).  

Several studies across different taxa have also documented the influence of black (melanic) 

coloration in the formation of hierarchies, dominance status, and in the resolution of contests 

(insects: Tibbetts et al. 2010; fish: Horth 2003; Johnson and Fuller 2014; birds: Gonzalez et al. 2002; 

Chaine et al. 2011; reptiles: Lebas and Marshall 2001; Osborne 2005; Mafli et al. 2011; Qi et al. 2011). 

Interestingly, and in agreement with predictions from the sequential assessment game model (Enquist 

and Leimar 1983), we found that the most aggressive contests were those involving opponents with 

similarly-sized melanic patches, which has also been reported in organisms as phylogenetically distant 

as paper wasps (genus Polistes; Sheehan and Tibbetts 2010; Tibbetts et al. 2010), or the bluefin killifish 

(Lucania goodie; Johnson and Fuller 2014). Thus, melanin-based signals seem to convey valuable 

information about opponents’ fighting abilities in a broad diversity of taxa.  

 

Figure 3.5. 3D plot exploring the relationship between aggression ratio and the interaction between 

the black relative area (ABlack) of both opponents.  
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Melanin-based signals are usually considered to have low production costs in vertebrates 

(Hill and Brawner 1998; Badyaev and Young 2004; Stoehr 2006; but see Roulin 2016), but there is 

evidence in different species suggesting they frequently act as badges of status with socially-enforced 

costs (Møller 1987; Senar and Camerino 1998; Tibbetts and Dale 2004; Westneat and Diep 2013; 

Roulin 2016). In addition, activity in the melanocortin system -which is responsible for the production 

of melanin-based coloration- covaries with several behavioural and physiological traits in vertebrates, 

such that darker individuals are often more aggressive, sexually more active and more resistant to 

various sources of stress than lighter animals (Ducrest et al. 2008). We suggest future studies should 

examine the mechanisms underlying honest signalling by means of melanin-based colour patches in 

P. muralis.  

3.5.2. Size and reflectance of UV-blue patches are not related to contest 

outcome 

We did not find a relationship between fighting ability or aggression score and the size or any of the 

spectral characteristics of UV-blue patches. Taken at face value, these results seem to argue against 

the possibility that conspicuous UV-blue patches convey information about male competitive skills. 

However, there is now compelling evidence suggesting that UV-blue patches may play an important 

role in intra-sexual competition in several Podarcis species (Marshall and Stevens 2014; Pérez i de 

Lanuza et al. 2014; Martin et al. 2015c), including Podarcis muralis (MacGregor et al. 2017b). It is 

possible that UV-blue patches play a significant role in more natural contexts than the short-range 

encounters artificially enforced by our experimental design (see also Martin et al. 2015c). It is also 

possible that, due to potential within-season changes in coloration, our spectrophotometric 

measurements, taken after the experiment was completed and towards the end of the reproductive 

season in this population, failed to reflect the true characteristics of UV-blue patches during combats 

(Martin et al. 2015c). Finally, our negative results may be due to UV-blue patches playing an important 

role only in the early stages of contests (when assessment takes place), but failing to predict contest 

outcome if the conflict escalates into physical aggression (Baird et al., 2013). We suggest future studies 

should aim to experimentally manipulate the area and spectral variables of the UV-blue patches, and 

set up contests in larger enclosures.  

3.5.3. Morph-specific bias in fighting ability  

Our finding that orange males have a propensity to lose heteromorphic confrontations seems to 

contradict a previous study that did not report any inter-morph differences in fighting ability in Italian 

polychromatic populations of P. muralis (Sacchi et al. 2009). Although this discrepancy might arise 

from geographical/phylogenetic differences between the Italian and French lineages, it could also 

have originated from crucial differences in the experimental design and data analysis. Sacchi et al. 

(2009) found no differences among morphs in the aggression exhibited during contests, and no effect 

of ventral coloration over contest score (calculated as the difference in aggression score between 
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contestants). In agreement with these results, in the present study we found no differences in levels 

of mean aggression score among morphs, nor of an effect of the opponents’ ventral coloration on 

aggression ratio. However, the analysis of fighting ability estimates revealed significant inter-morph 

differences in the ability to win intrasexual confrontations. Estimating fighting ability directly from 

contest outcome in a nested tournament experimental design (rather than extrapolating it from 

aggressive scores obtained from independent subsets of contests; Sacchi et al., 2009), may have 

allowed for a more powerful analysis of the role played by ventral coloration in the agonistic context. 

Additionally, as Sacchi et al. (2009) performed combats in a resident-intruder scenario, residency -a 

strong determinant of contest outcome in lizard encounters (Whiting 1999; Olsson and Shine 2000)- 

may have easily masked the relatively weaker effect of ventral coloration (Stuart-Fox and Johnston 

2005). In Lacerta agilis, for example, resident males defeated intruder males in all staged combats 

regardless of their coloration (Olsson 1993), while males with larger colour patches were more likely 

to win fights when confrontations took place in a neutral arena (Olsson 1994a). Other previous 

studies with lizards have also linked colour polymorphisms to differences in fighting ability using 

experimental designs that control for a residency effect. For example, in the agamid Ctenophorus decresii 

orange males consistently showed the highest levels of aggression when confronted to the other 

morphs (Yewers et al. 2016), while in Ctenophorus pictus red-headed males outcompeted yellow-headed 

males in dyadic contests (Healey et al. 2007). In the phrynosomatid Urosaurus ornatus blue-green 

throated males were more likely to defeat orange throated males (Carpenter 1995b). In contrast to 

our results, in populations of Podarcis melisellensis with the same type of orange-yellow-white ventral 

polymorphism as P. muralis, orange males show greater fighting ability than yellow or white males 

(Huyghe et al., 2012).  

Sexual selection often plays a role in the origin and maintenance of population polymorphisms 

as strong intra-sexual competition might promote the evolution and maintenance of alternative 

mating strategies (Taborsky et al. 2008), which frequently correlate with discrete phenotypic traits 

(e.g. colour morphs; Wellenreuther et al., 2014). For example, in Uta stansburiana periodic oscillations 

in the relative frequencies of three discrete morphs reflect a cyclical “rock-paper-scissors” game that 

is driven by frequency-dependent selection on three alternative reproductive strategies (Sinervo and 

Lively, 1996). Following these results, much attention has been paid to the possibility that other lizard 

colour polymorphisms might similarly reflect the existence of alternative reproductive tactics 

maintained by “rock-paper-scissors” dynamics of selection. For instance, San-José et al. (2014) found 

that the lacertid Zootoca vivipara experiences similar fluctuations in the relative frequencies of morphs 

that appear to be consistent with frequency-dependent cycles of cumulative selection. However, the 

reason why alternative mating strategies should be associated with different colorations remains an 

intriguing question far from being resolved (Pérez i de Lanuza et al. 2013a; but see Sinervo et al. 

2006b), and future experimental studies in polymorphic systems should test the presumed signalling 

role of the alternative ventral colours. 
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Until now, research on colour polymorphism in P. muralis has revealed several between-morph 

differences in morphological and physiological traits (Galeotti et al. 2007, 2010, 2013; Sacchi et al. 

2007; Calsbeek et al. 2010) that might suggest that different phenotypic optima are being favoured in 

each morph (i.e. increased body size and susceptibility to infection in the orange morph; Calsbeek et 

al., 2010), but it is still unclear whether these differences correlate with morph-specific behavioural 

syndromes and/or mating strategies (but see Sacchi et al., 2009, Pérez i de Lanuza et al., 2013a; Sacchi 

et al., 2015). The lower fighting ability of orange males in our experiments could be explained by a 

number of causes, such as by inter-morph behavioural differences in territory acquisition and defence 

or in inherent fighting ability. The relative impact of colour signals on contest outcome has been 

found to vary in species of Anolis with different levels of territoriality (Lailvaux and Irschick, 2007). 

It would be interesting to investigate whether the differences we observed in the fighting ability and 

black coloration of orange males might be explained by differences in territorial behaviour, and hence 

in the relative importance of black coloration, across morphs. We suggest future studies should take 

a closer look at inter-morph differences in fighting ability and other behavioural and physiological 

aspects relevant to male-male competition (e.g. territoriality and sperm competition). 
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3.6. Supplementary material 

 

 

Figure 3.S1. Tournament network including all the 76 contests (out of 99 staged) in which a winner 

could be determined. Numbers inside circles denote individuals, and the colour represents their 

morph (red = o, grey = w, yellow = y). Arrows connect opponents that were confronted, pointing 

toward the winner. The Bradley-Terry model calculates individual fighting ability estimates from 

nested tournament networks such as this one. 
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Figure 3.S2. Scatterplot showing the relationship between mean aggression score (AS) and fighting 

ability for each individual participating in the tournament. 
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Figure 3.S3. Box plots showing the values of BCI and SVL separated by colour morph. 
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Chapter IV 
 

“Everyone knows that dragons don’t exist. But while this simplistic formulation may satisfy 

the layman, it does not suffice for the scientific mind. The brilliant Cerebron, attacking the 

problem analytically, discovered three distinct kinds of dragons: the mythical, the chimerical, 

and the purely hypothetical. They were all, one might say, non-existent, but each non-existed 

in an entirely different way”. 

·Stanislaw Lem, The Cyberiad·

This chapter reproduces entirely the published manuscript: 

Abalos, J., Pérez i de Lanuza, G., Bartolomé, A., Liehrmann, O., Laakkonen, H., Aubret, 

F., Uller, T., Carazo, P., and E. Font. (2020). No evidence for differential sociosexual 

behavior and space use in the color morphs of the European common wall lizard (Podarcis 

muralis). Ecology and Evolution 10(20): 10986–11005. doi: 10.1002/ece3.6659 
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Chapter IV: 

No evidence for differential 

socio-sexual behaviour and 

space use in the colour 

morphs of the European 

common wall lizard (Podarcis 

muralis) 

 

4.1. Abstract 

Explaining the evolutionary origin and maintenance of colour polymorphisms is a major challenge in 

evolutionary biology. Such polymorphisms are commonly thought to reflect the existence of 

alternative behavioural or life-history strategies under negative frequency-dependent selection. The 

European common wall lizard Podarcis muralis exhibits a striking ventral colour polymorphism that 

has been intensely studied and is often assumed to reflect alternative reproductive strategies, similar 

to the iconic “rock-paper-scissors” system described in the North American lizard Uta stansburiana. 

However, available studies so far have ignored central aspects in the behavioural ecology of this 

species that are crucial to assess the existence of alternative reproductive strategies. Here we try to 

fill this gap by studying the social behaviour, space use, and reproductive performance of lizards 

showing different colour morphs, both in a free-ranging population from the eastern Pyrenees and 

in ten experimental mesocosm enclosures. In the natural population, we found no differences 

between morphs in site-fidelity, space use or male-female spatial overlap. Likewise, colour morph 

was irrelevant to socio-sexual behaviour, space use, and reproductive success within experimental 

enclosures. Our results contradict the commonly held hypothesis that P. muralis morphs reflect 

alternative behavioural strategies, and suggest that we should instead turn our attention to alternative 

functional explanations. 

 

Keywords: alternative strategies - colour polymorphism - mesocosm - free-ranging population - 

Podarcis muralis - social behaviour
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4.2. Introduction 

Explaining the maintenance of phenotypic variability over time remains a central question in 

evolutionary biology. Population polymorphisms are a particularly widespread form of phenotypic 

variability (Galeotti et al. 2003; Roulin 2004; Gray and McKinnon 2007; Mckinnon and Pierotti 2010; 

Svensson 2017). In polymorphic populations, individuals of the same sex and age may exhibit 

different phenotypes (e.g. colour morphs) that are heritable, fixed in adults, and not condition-

dependent (Galeotti et al. 2003; Roulin 2004; Mckinnon and Pierotti 2010). Selectively neutral 

polymorphisms are expected to be lost eventually due to stochastic processes (i.e. genetic drift; Roulin 

2004), and the long-term maintenance of polymorphisms within a population requires some form of 

balancing selection, for example via non-random mating, source-sink dynamics, overdominance, or 

rare morph advantage (Galeotti et al. 2003; Roulin 2004; Roulin and Bize 2007; Wellenreuther et al. 

2014; Svensson 2017).  

Sexual selection often plays a major role in the maintenance of colour polymorphisms 

(Roulin and Bize 2007; Wellenreuther et al. 2014). Discrete variation among conspecifics in behaviour 

or life-histories associated with reproduction (termed alternative reproductive strategies; ARS) is 

frequently coupled with alternative colour morphs (Zamudio and Sinervo 2000; Shuster and Wade 

2003; Roulin 2004; Roulin and Bize 2007; Ducrest et al. 2008; Wellenreuther et al. 2014; Willink et al. 

2019). ARS are particularly frequent in males of polygynous (or polygynandrous) species, which 

experience a high variance in mating success and, thus, stronger sexual selection. In these species, the 

uneven distribution of fertilizations among males playing the conventional strategy allows the 

evolution of behavioural ARS (e.g. monogynist, satellite, sneaker, etc.) adapted to exploit distinct 

mating niches (Waltz 1982; Shuster and Wade 2003; Greenfield and Shelly 2008; Shuster 2008; 

Taborsky et al. 2008; Shuster et al. 2013). Genetically fixed strategies are favoured whenever males 

tend to experience only one selective regime during their lifetime, so that specialising in alternative 

resources has higher fitness than being a generalist (Roulin, 2004; Brockmann, 2002; Zamudio & 

Sinervo, 2003). For instance, certain characteristic of the environment (e.g. heterogeneous 

distribution of resources, short breeding season) can interact with aspects of the species’ ecology (e.g. 

short lifespan, adaptive site-fidelity) producing resource-defence mating systems (i.e. territoriality) in 

which subordinate males are unlikely to disperse. Males of such species tend to experience a single 

social environment during their lifetime, promoting the evolution of fixed, rather than conditional, 

behavioural strategies (Shuster and Wade 2003; Zamudio and Sinervo 2003). Balancing selection can 

maintain these alternative strategies, even if genetically fixed, whenever they obtain equal average 

fitness across contexts. This can happen in a wide array of scenarios, such as marked seasonality or 

spatial environmental heterogeneity (Brockmann, 2001; Taborsky & Brockmann, 2010). In sympatry, 

ARS can obtain equal fitness through frequency-dependent selection (Gross, 1996; Shuster & Wade, 

2003; Taborsky et al., 2008). Occasionally, two or more strategies can cycle in frequency over time if 
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presenting a lower frequency confers a fitness advantage (negative frequency-dependent selection 

(NFDS; Brockmann, 2001; Roulin, 2004; Taborsky et al., 2008; Takahashi et al., 2010; Willink et al., 

2019). Colour polymorphism may participate of this evolutionary process and be maintained under 

two different conditions. Distinct colour morphs may be directly selected for because of an adaptive 

advantage they confer in the context of ARS (e.g. sexual mimicry in damselflies; Willink et al. 2019; 

Svensson et al. 2020). Alternatively, colour morphs may be an indirect by-product of selection on 

other attributes related to the ARS (i.e. when genes involved in morphology, physiology or behaviour 

have pleiotropic effects on colour production; Galeotti et al. 2003; Roulin 2004, 2016; Roulin and 

Bize 2007; Wellenreuther et al. 2014). 

One of the best studied cases of colour polymorphic ARS is the side-blotched lizard, Uta 

stansburiana. Adult males of this species present one of three alternative throat colours (blue, orange, 

yellow), each of which is associated with different socio-spatial behaviours. Orange-throated males 

establish large territories overlapping with several females by outcompeting blue-throated males in 

territorial disputes. These vast territories make orange males vulnerable to losing fertilizations in 

favour of the non-territorial yellow morph, which uses female-mimicry to sneak copulations 

opportunistically. In turn, blue-throated males compensate their competitive disadvantage by 

guarding females directly and hence securing more fertilizations against the yellow sneaker males 

(Sinervo & Lively, 1996; Zamudio & Sinervo, 2000; Sinervo & Zamudio, 2001; Alonzo & Sinervo, 

2001a; Calsbeek & Sinervo, 2002a; Sinervo et al., 2006, 2007). This dynamic gives rise to periodic 

oscillations in the relative frequencies of U. stansburiana male colour morphs, in a cyclical “rock-paper-

scissors” (RPS) game whereby each colour morph, when predominant, is vulnerable to invasion by 

another colour morph (Sinervo and Lively 1996; Sinervo and Calsbeek 2006). These results sparked 

a proliferation of studies aimed at detecting similar differences in reproductive behaviour among the 

numerous species of lizards with colour polymorphism (Huyghe et al. 2007, 2009a; Olsson et al. 

2007a, 2013; Bastiaans et al. 2013; San-Jose et al. 2014; Yewers et al. 2016, 2018; Fernández et al. 

2018). For a number of reasons, morph-specific ARS, morph fluctuations, and rock-paper-scissors 

dynamics similar to those described in Uta stansburiana have been predicted to occur in Eurasian 

lacertids, particularly in wall lizards (genus Podarcis, family Lacertidae; Sinervo et al. 2007; Calsbeek et 

al. 2010; Mangiacotti et al. 2019). First, ventral colour polymorphisms involving three alternative 

colours (i.e. orange, white, and yellow) have been documented in adult individuals of at least 11 out 

of the 24 species currently recognized within the Podarcis genus, and is thus thought to have an 

ancestral origin (Arnold et al. 2002; Huyghe et al. 2007; Sacchi et al. 2007; Runemark et al. 2010; 

Andrade et al. 2019; Pérez i de Lanuza et al. 2019; Jamie and Meier 2020). Second, many of these 

species show high site-fidelity, low inter-annual survival, and occupy habitats where resources 

relevant to reproduction (e.g. stone-walls) are unevenly distributed (Strijbosch et al. 1980; Barbault 

and Mou 1988; Edsman 1990, 2001; Carretero 2007; Sinervo et al. 2007; Calsbeek et al. 2010; Font 

et al. 2012a). Third, males of many wall lizards experience strong intra-sexual competition, mainly in 
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the contexts of territorial disputes and sperm competition. Females seem to be attracted to high 

quality and/or familiar patches of habitat rather than to males with certain phenotypic characteristics 

(Edsman 1990, 2001; Font et al. 2012a). Moreover, behavioural observations and genetic analyses 

have confirmed that receptive females often mate with more than one male before oviposition, which 

results in a high incidence of multiple paternity (Oppliger et al. 2007; Uller and Olsson 2008; 

Heathcote et al. 2016). Consequently, adult males try to secure fertilizations by investing significant 

time and energy in the defence of territories offering resources valuable to females (such as basking 

spots, shelters, optimal egg-laying sites, etc.) against other males (Edsman 1990; Font et al. 2012a; 

Baird 2013). The outcome of this territorial disputes is crucial to male reproductive success, and 

patterns of shared paternity have often been found to reflect spatial and social dominance among 

males (Oppliger et al. 2007; Uller and Olsson 2008; While et al. 2015; MacGregor et al. 2017b). For 

these reasons, alternative colour morphs in many wall lizards are often believed to represent the 

visible mark of heritable ARS involving differential socio-spatial behaviours in males (Huyghe et al. 

2007; Sinervo et al. 2007; Calsbeek et al. 2010; Pérez i de Lanuza et al. 2017; Andrade et al. 2019).  

The European common wall lizard (Podarcis muralis) shows the widest distribution within the 

genus Podarcis and many populations exhibit a striking colour polymorphism (Arnold et al. 2002). 

Adults of both sexes may show up to five alternative ventral colour morphs: three uniform (pure) 

morphs, i.e. orange (O), white (W) and yellow (Y), and two intermediate mosaics combining orange 

and white (OW) or yellow and orange (YO) ( Pérez i de Lanuza et al., 2013, 2019; Fig. 4.1). These 

colour morphs are fixed at maturity (Pérez i de Lanuza et al., 2013), and recent research suggest that 

orange and yellow colour expression is caused by recessive homozygosity at two separate loci in the 

regulatory regions of two genes associated with pterin (SPR) and carotenoid (BCO2) metabolism, 

respectively (Andrade et al. 2019). Interestingly, each of these morphs is found in geographically 

distant sub-lineages of the species thought to have diverged up to 2.5 million years ago (Salvi et al. 

2013; Andrade et al. 2018; Fig 4.S1). Local morph composition shows considerable geographic 

variation, although white ventral coloration is typically the most common (>50%), while the orange 

and especially the yellow morph rarely predominate. The yellow and yellow-orange morphs are often 

the most infrequent and in Pyrenean populations they seem to be geographically restricted to a subset 

of localities (< 50%) characterized by male-biased sex ratios and marked climatic seasonality (Pérez i 

de Lanuza et al. 2017, 2018b). 
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Figure 4.1. a) Colour variation in the ventral surface of adult Podarcis muralis lizards. b) Close-up of 

an orange morph male showing UV-blue and black spots in its outer ventral scales (OVS).  

At least the pure morphs in P. muralis are often assumed to reflect alternative behavioural or 

life-history strategies (e.g. Calsbeek et al., 2010; Galeotti et al., 2010; Zajitschek et al., 2012; Scali et 

al., 2013). The colours are indeed well-suited to function as colour signals. They are highly 

conspicuous to the species visual system, heritable, and their ventral position allows the lizards to 

control their exposure through posture (Pérez i de Lanuza and Font 2015, 2016; Pérez i de Lanuza 

et al. 2016a; Andrade et al. 2019). Moreover, the alternative colours show discrete variation and are 

chromatically discriminated as categorically distinct by conspecifics (Pérez i de Lanuza et al. 2013, 

2018a;), which makes them particularly suited to convey information about strategy (Tibbetts et al., 

2017). Research on P. muralis has revealed several differences in morphological, physiological and 

behavioural traits across colour morphs (e.g. Calsbeek et al., 2010; Zajitschek et al., 2012; Scali et al., 
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2013; Galeotti et al., 2013; Sacchi et al., 2017a; Pérez i de Lanuza et al., 2018). However, there is no 

clear evidence that these correlated traits reflect morph-specific strategies, whether in the context of 

sexual or natural selection. Furthermore, available studies have focused on morphology and 

physiology (Galeotti et al. 2007, 2010, 2013; Sacchi et al. 2007, 2017a; Calsbeek et al. 2010; Pellitteri-

Rosa 2010), while central aspects in the behavioural ecology of this species have received little 

attention (Sacchi et al. 2009, 2015; Abalos et al. 2016; Pellitteri-Rosa et al. 2017). In particular, the 

interaction between socio-spatial behaviour, reproductive success, and shared paternity is key to 

ascertain whether P. muralis colour morphs obtain their fitness using alternative behavioural strategies 

during the breeding season. If behavioural ARS underlie colour polymrphism in P. muralis, the 

alternative colour morphs may show equal reproductive success but differential investment in social 

dominance, territoriality, space use, and/or post-copulatory sexual behaviour (e.g. mate-guarding), 

which often translate into morph-biased patterns of co-siring and clutch monopolisation (Sinervo 

and Lively 1996; Sinervo et al. 2000a; Zamudio and Sinervo 2000; Formica et al. 2004). However, no 

previous study has investigated the alignment of polymorphic coloration, social behaviour, and 

reproductive performance in sufficient detail to draw firm conclusions about the existence of 

behavioural ARS in P. muralis. To fill this gap, we monitored morph differences in spatial behaviour 

in a free-ranging polymorphic population from the eastern Pyrenees across a period of five years. We 

complemented this with a a mesocosm experiment using ten experimental populations with balanced 

sex ratio and morph frequencies to study the spatial and socio-sexual behaviour of P. muralis pure 

colour morphs in a controlled environment. Our experimental design was aimed to detect 

behavioural differences in space use or social behaviour among the colour morphs, as well as morph 

differences in shared paternity, rather than frequency-dependent effects on morph fitness. For this 

reason, we introduced the morphs in equal frequencies to optimise our sample size of individual 

lizards representing each morph within the enclosures. Incidentally, as the balanced morph ratios 

employed are highly unlikely to occur in natural populations, this design also allows us to test whether 

the higher prevalence of white morph lizards observed across the species distribution range results 

from some form of frequency-dependent fitness effect. 

4.3. Materials and methods 

4.3.1. Spatial behaviour in a free-ranging population of P. muralis 

During the spring seasons of 2006-2010 we collected data on the activity and spatial behaviour of a 

population of wall lizards in Angoustrine (42°28′43″ N, 1°57′12″ E), eastern Pyrenees. The study site 

(ca 140 x 500 m = 7 ha; Fig 4.2) consists of a series of abandoned terraced fields characterized by 

granite outcrops and old dry-stone walls partially covered in vegetation (see Font et al., 2012). Lizards 

were mostly sighted perching on the stone walls, usually remaining within the boundaries of a single 

wall for the whole breeding season. In any particular year, lizards showing at least six re-sightings on 
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the same wall were considered resident, while lizards showing five or fewer re-sightings and/or 

sighted at walls located more than 100 m apart were considered non-resident transients (Edsman, 

1990). We only considered lizards measuring at least 56 mm from snout to vent (SVL), which ensures 

they had developed full-blown adult ventral coloration (Fig. S2; Pérez i de Lanuza, Font, & Carazo, 

2013).  

 

 

Figure 4.2. Space use in a free-ranging population of P. muralis. a) Photographic composition of a 

stone wall in Angoustrine. Roman numbers mark reference points for precision. b & c) Schematic 

representations of the wall vertical surface used as home- (colour shades, 95% MCP) and core-ranges 

(solid-line polygons, 50% MCP) by two females (b) and three males (c) during the breeding season 

of 2010. D) Diagram of the linear home and core-range lengths estimated for each lizard as the width 

of the corresponding MCP (solid-lines = home-range, colour shades = core-range). e) Google Earth 

satellite image of the study site in Angoustrine (Map data: Institut Cartogràfic de Catalunya), with 

arithmetic centre of each pure morph lizard core-range during the period examined (367 lizards, 125 

females, 242 males).  

 

To examine potential inter-morph differences in activity levels, for each lizard we counted 

the total number of sightings, the mean days elapsed between consecutive sightings, and the mean 

distance between consecutive sightings. As frequently done when a species’ habitat is physically 

constrained (e.g. river fauna; Kramer, 1995; Ahlers et al., 2010; Kornilev et al., 2010), we calculated a 

one-dimensional measure of home-range size for each lizard inhabiting a particular stone wall. We 

operationally defined the width of the 95% minimum-convex-polygon (MCP) encompassing the 

lizard’s cluster of re-sightings on a stone wall as the lizard’s linear home-range size, and the width of 
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the 50% MCP as the linear core-range in which the animals were most frequently observed (Fig.4.2; 

Powell, 2000; Heupel et al., 2004; Grassman et al., 2005). To determine what fraction of male core-

ranges constitutes a territory (Maher and Lott 1995), we defined the exclusive-range of each male as 

the part of its core-range that did not show overlap with the core-range of any other male (i.e. 

territory; Kerr & Bull, 2006). Then, for each male with a reliable linear home-range estimate (≥ 17 

sightings, see Appendix S1) we measured spatial overlap by counting the number of resident females 

whose core-ranges overlapped at least partially with either the home-range, or the exclusive-range of 

the focal male. To account for the vertical dimension of the lizards’ home ranges we also calculated 

the mean perching height of each resident lizard sighted.  

 

4.3.2. Mesocosm experiment 

4.3.2.1. Lizard capture and housing 

We captured 190 lizards (100 females and 90 males) by noosing from 12 polymorphic localities spread 

across the Cerdanya valley (Eastern Pyrenees). In each of these localities, we captured 2-8 lizards 

(SVL ≥ 56 mm) showing each of the pure colour morphs (O, W, Y) so as to avoid a geographical 

bias in our sample. No lizards were captured from populations lacking any of the pure colour morphs. 

To ensure captured females were not gravid, we captured females at the end of the previous breeding 

season (September 2017), and transferred them to the Statión d’Ecologie Théorique et Expérimentale 

(SETE, Moulis, France). There, we housed females in groups of 3-5 coming from the same locality 

in outdoor circular plastic tanks (170 cm diameter, 60 cm high), where they were kept under natural 

conditions for 130 days (Le Galliard et al. 2005; Bestion et al. 2014). In May 2018, after an artificial 

hibernation period (see Appendix S1), we re-installed the females in the outdoor tanks for two weeks 

while we captured the males.  

4.3.2.2. Morphometry 

Two days before the onset of the experiment, we measured SVL (0.1 mm) and mass (± 0.01 g) of 

each lizard with a ruler and a spring balance (Pesola, Schindellegi, Schwitzerland). Using a digital 

calliper (± 0.01 mm; Mitutoyo, Telford, UK) we quantified inter-limb length (ILL) in females, and 

two head measurements in males: length (HL) and width (HW) (Olsson et al. 2002). We also removed 

~5 mm from the tail tip of each individual and preserved the tissue in 90% ethanol for genetic 

analyses.  

4.3.2.3. Experimental enclosures and egg incubation 

To study social behaviour and mating patterns in ten experimental populations of P. muralis, we 

released 180 lizards of either sex into ten experimental enclosures at the Metatron research facility 

(Caumont, France; Legrand et al., 2012). Within each of these enclosures, we created two types of 

sites that varied in structural complexity. Each site consisted of a wooden pallet (~1.2 m2) with 
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differing number of bricks, cinderblocks, rocks, and logs piled above, which acted both as shelter and 

basking sites (Fig. 4.S3.). We arranged high- and low-quality sites (respectively HQ and LQ) in two 

rows of three pallets along the N-S axis, separated by a line of six rocks (which we also considered as 

LQ habitat) (MacGregor et al. 2017b). We then surrounded the area with a plastic barrier (70 cm high) 

to prevent any escapes or intrusions. In total, each experimental cell had 47 m2. 

On May 23 2018, we released nine males (3O:3W:3Y) within each of the enclosures 

(simultaneously and always from the south-east corner). We monitored male behaviour (see below) 

for seven days before releasing nine females (3O:3W:3Y) within each enclosure. Due to post-

hibernation mortality, the white female morph was underrepresented in two of the ten experimental 

enclosures (5o:1w:3y). Prior to release, we marked each lizard permanently on the ventral scales using 

a disposable medical cautery unit (Ekner et al. 2011) and drew a dorsal number with a toluene xylene-

free permanent marker to facilitate individual recognition during behavioural observations (see Video 

4.S1 in the Appendix S1; Ferner & Plummer, 2016). To minimize the noise introduced by size 

asymmetries and prior social interactions, we allowed a maximum SVL difference of 2 mm (within-

sexes) and only put lizards together in the same experimental enclosure if they had been captured at 

least 300 m apart.  

On June 22, we released the males at their capture location (previously determined using a 

GPS device), and housed females individually in the laboratory until oviposition (see Appendix S1). 

We lost 22 clutches due to females laying eggs before we retrieved them from the enclosures (12 

females) or because they failed to produce a clutch (10 females). These lost clutches were evenly 

distributed across enclosures (χ2 = 14.667, P = 0.10) and female morphs (orange = 8, white = 8, 

yellow = 6). For the remaining 68 females, we counted the number of fertile and infertile eggs within 

each clutch by noting the presence of a calcified shell and vascularization 48 h after oviposition 

(Köhler 2006). We incubated the resulting 230 fertile eggs in plastic cups filled with moist coco husk 

(1:2 coco:water by weight) and covered with a perforated lid at a constant temperature of 28ºC 

(Memmert GmbH+ Co.KG incubator, Schwabach, Germany). Upon hatching, each of the 209 born 

juveniles was measured (SVL), weighted, sampled for DNA, permanently marked, and released at the 

outdoor tanks in the SETE-Moulis. For 21 embryos that died before hatching, we obtained DNA 

samples via dissection of the eggs. Average clutch size was 5.57 ± 0.20 eggs, average fertilization 

success (fertile eggs/ clutch size) was 67%, and average hatching success (hatched/ fertilized eggs) 

was 90%.   

4.3.2.4. Behavioural observations 

From May 23 to June 22, we conducted observations of spatial and social behaviour at the natural 

peak activity hours for the lizards (9.30-14.30; 16.30-19.30), spacing consecutive visits to the same 

enclosure at least 1 h and ensuring an even distribution of observations across the different time-

periods. Two researchers (JA, AB) recorded the identity, position and behaviours of the lizards 
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participating in social interactions using a behaviour sampling rule in recording sessions lasting 40 

min. A social interaction was considered to occur whenever a marked lizard in our visual range 

directed any of the behaviours listed in Table 4.1 towards a conspecific. During interactions, we 

recorded the first occurrence of the behaviours performed by each lizard. Consecutive interactions 

involving the same lizards were recorded as different events whenever the participants remained 

further than 30 cm apart for longer than 2 min. To ensure inter-observer reliability, JA and AB 

collected behavioural data together for the first six days of the experiment (Cohen’s kappa ± CI95% = 

0.87 ± 0.05; Kaufman & Rosenthal, 2009). A third observer (OL) performed sequential rounds 

visiting all the enclosures every 2.5 h to collect data on the lizards’ spatial behaviour. Using scan 

sampling, we determined the identity and location of every lizard in sight on a scale map of the 

enclosure that included the six wooden pallets. Each enclosure was observed from a starting position 

located 1 m from the plastic barrier surrounding it for 5 min, and then walking around it (randomizing 

direction between consecutive visits) to record lizards that were not visible from the starting position. 

To balance sampling effort across enclosures, scanning of a single enclosure was restricted to a 

maximum period of 15 min after the first lizard was spotted.  

4.3.2.5. Behaviour analyses 

We classified the interactions according to their socio-sexual context into four types: intra-sexual 

competitive and non-competitive, male-female reproductive and non-reproductive. Intra-sexual 

interactions were deemed competitive whenever one lizard (i.e. the loser) used fast-paced locomotion 

to flee from another lizard (i.e. the winner) showing display behaviour and/or physical aggression 

(i.e. display, bite, or chase). In males, where competitive encounters were numerous, we used the R 

package BradleyTerry2 to fit a Bradley-Terry model to the observed matrix of contest outcomes 

within each enclosure to obtain an individual index of social dominance for every male (further details 

in Stuart-Fox et al., 2006; Firth & Turner, 2012; Abalos et al., 2016). To examine potential non-

transitive relations of dominance among male colour morphs, we also fitted three logistic mixed-

models (one for each morph) on the contest outcome of heteromorphic encounters and tested 

whether the probability of winning against other morphs differed from even odds. Male-female 

interactions were classified as reproductive when the lizards engaged in sex-specific display 

behaviours (i.e. ♂: display; ♀: foot-shakes, tail-shake), copulatory behaviour (i.e. tail-grab, mating), or 

prolonged physical vicinity (i.e. co-perching). To examine the effect of morph combination on the 

frequency of male-female reproductive interactions, we used social network analysis on the compiled 

version of SOCPROG (Whitehead 2009) (Appendix S1).  
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Table 4.1. 

Partial ethogram used during behavioural observations to collect data on social interactions 

within the experimental enclosures. 

Behaviour Description 

Approach* Movement toward a non-fleeing conspecific. 

Display 
Gular extension, back-arching, shoulders raised, head down, sagittal compression (any 

combination). 

Bite One or more bites to another individual (excluding tail grab) 

Retreat* Movement away from a non-chasing conspecific 

Chase Rapidly following another FLEEING lizard 

Flight Fast-paced movement to withdraw from a CHASING lizard 

Foot-shakes II † Sequence of front-leg waves in the air or onto the substrate 

Tail grab A male bites the tail or inguinal region of a female. Often followed by copulation. 

Tail shake Shaking entire tail (or its posterior portion) swiftly from side to side. 

Mating Two lizards engage in copulation 

Co-perching Two or more lizards lying together in close vicinity (<15 cm; >30 s) 

Cloacal drag Pulling body forward while keeping cloaca in contact with substrate 

 

* We classified the mode of locomotion used as either running (fast-paced) or any other mode of 

locomotion (slow-paced). 

† Podarcis muralis lizards perform four types of foot-shake displays (named I, IIa, IIb and III; see 

Font et al. 2012b and references therein), of which two (IIa and IIb) are given in a social context. 

We only recorded these two types of foot-shakes. Type IIa: rapid large amplitude vertical 

movements of front legs frequently performed by females in male-female interactions (belly-down, 

head-up posture). Losers of male-male agonistic interactions often perform this type of foot-

shakes, which are hence considered in this context as submissive/appeasement displays (see Font 

and Desfilis 2002; Aragón et al. 2006 for details in other Podarcis lizards). Type IIb: Performed by 

males when approaching females (limbs extended, often displaying; Pérez i de Lanuza et al. 2016b).  

 

 Positional data were used to examine the putative effect of colour morph on activity, space 

use, and overlap with conspecifics. To account for habitat use within the enclosures, we estimated 

range areas by adjusting the smoothing factor in a fixed-kernel contour analysis until it matched the 

area of the 95% MCP (smoothing multiplier = 0.75, matrix cell number = 40; Row & Blouin-Demers, 

2006; Kie, 2013; MacGregor et al., 2017). Lizards with fewer than nine sightings (N = 3) were 

excluded from the analysis (see Appendix S1). For each lizard, we calculated range size and overlap 

with conspecifics both at the 95% (home-range) and the 50% (core-range) isopleth levels. Each lizard 

was assigned to a high or low-quality site based on the position where the 50% kernel estimate 
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indicated peak density. Because of the high lizard density within the enclosures, male exclusive areas 

were peripheral and uninformative, so we did not conduct further analyses on them. When calculating 

home-range estimates, we excluded the positional data collected during the first six days of the 

experiment to allow for an acclimation period. All spatial analyses were conducted in Ranges 9 

(Anatrack Ltd., UK; Kenward et al., 2014). 

4.3.2.6. Parentage analyses 

We isolated DNA from tail-tip samples using the DNAeasy 96 Blood & Tissue Kit (Qiagen, Valencia, 

CA, USA), obtaining a final elution volume of 150 µl in AE buffer. We then combined the primers 

of six microsatellite loci described in P. muralis (Richard et al. 2012; Heathcote et al. 2014) into two 

different multiplexes (MPA: Pm16, Pm09, PmurC168; MPB: Pm19, Pm14, PmurC038) and ran 

standard PCR with 26 cycles and a final extension step of 30 min at 60ºC. Forward primers were 

labelled with different fluorescent dyes (FAM, NED, HEX). Diluted PCR products (1:5) were 

genotyped together with an internal ladder (Red ROX-500) on an ABI 3130 genetic analyser (Applied 

Byosystems Inc.). One researcher (HL) scored the alleles for every adult and juvenile lizard in 

Geneious 7.0.4 (Biomatters, available at http://www.geneious.com), which we used to conduct 

parentage analysis in Cervus 3.0 (Marshall et al. 1998; Kalinowski et al. 2007). We assigned paternity 

based on the log-likelihood statistic of each mother-father-offspring trio (LOD scores), using two 

confidence levels (strict: 95%, relaxed: 80%) and the nine males within each enclosure as candidate 

fathers. Critical LOD scores were determined by running a simulation paternity analysis based on 

100,000 offspring with known mothers and nine candidate fathers. We could reliably assign paternity 

to every offspring examined (strict: 209 juveniles, relaxed: 229 juveniles).  

To quantify individual fitness, we operationally defined two variables based on the results of 

the paternity analysis: mating success (i.e. the overall number of different mates with whom a lizard 

conceived offspring), and reproductive success (i.e. the total number of embryos/hatchlings sired). 

Since selection will depend on relative rather than absolute fitness, we then divided the fitness 

measures of each lizard by the mean for all same-sex conspecific within its enclosure. In addition, to 

evaluate inter-morph differences in sperm competition intensity, for each male we determined the 

average number of competitors with which he shared paternity of a clutch.  

4.3.3. Statistical analyses 

We ran linear mixed models using the lme4 package (Bates et al., 2014) in R (R Core Team, 2018) and 

model selection was conducted using backwards single term deletions (P < 0.05) of the saturated 

model followed by model comparisons via likelihood ratio tests (at α = 0.05). All numerical variables 

were centred and scaled before running the models (Schielzeth, 2010). We checked that all response 

variables conformed to homoscedasticity and normality assumptions before assuming a Gaussian 

http://www.geneious.com/
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distribution in model fitting. For some variables that did not conform to these assumption even after 

transformation, we fitted models using different distributions (Appendix S1). 

4.3.4. Power analysis 

Using G*Power (Erdfelder et al. 1996) and the methodology provided by Thalheimer and Cook 

(2002), we determined the effect size for an array of published morph differences detected in U. 

stansburiana and other polymorphic lizards thought to present some form of ARS (Table 4.S1). We 

then used G*power to calculate the smallest effect size that our sample size from the free-ranging 

population allowed us to detect (sensitivity analysis), and the sample size required to detect 

biologically meaningful differences among morphs in the mesocosm experiment (a priori required 

sample size). We chose the more conservative approach of conducting these a priori analyses in 

G*power instead of by simulation since this latter approach requires the researcher to directly 

determine estimates for both fixed and random effects, for which we had no previous reliable 

information (Green and Macleod 2016). However, to better accommodate for the mixed-model 

statistical design of our experiments, we additionally used the estimates obtained here to run a 

simulation-based analysis of power on the probability of detecting medium-sized (Cohen’s d > 0.5) 

and large effects (Cohen’s d > 0.8) with growing sample sizes (Hoenig and Heisey 2001; Haenlein 

and Kaplan 2004; O’Keefe 2007). We created two artificial LMMs using the simr package in R (Green 

and Macleod 2016), one corresponding to the free-ranging population, and another corresponding 

to the mesocosm experiment. In the former, we replicated the terms and parameters of the 

standardized model exploring morph differences in home-range size. In the latter, we replicated the 

terms and parameters of the standardized model exploring morph differences in social dominance 

(see Appendix S1). Following Green and Macleod (2016) we then modified the standardized estimate 

for the morph factor (i.e. effect size) to either 0.5 or 0.8, and conducted a power analysis by running 

1000 simulations at 10 different levels of sample size (range = 5-50 lizards within each morph). 

4.4. Results 

4.4.1. Spatial behaviour in a free-ranging population of P. muralis 

In total, we accumulated 5046 sightings of 472 different lizards. Eighty-seven lizards were observed 

more than one year (maximum = 3 years, 21 lizards). Out of those, 76 (87.4 %) were found on the 

same wall as the previous year, seven (8 %) moved between neighbouring walls, and only four (4.6 

%) changed to a non-adjoining wall between years. Only 181 males and 101 females were large 

enough (SVL ≥ 56 mm) to be included in the analyses about morph differences (Table 4.S2). For 

each variable considered, we provide separate measures of centrality and dispersion for males and 

females in Table 4.S3. Residents represented 59.6 % of both adult male and female lizards, and no 

colour morph was overrepresented among resident or transient lizards (GLMM (binomial): χ2 = 1.60, 

P = 0.81). Movements between walls were similarly frequent among colour morphs (GLMM 
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(Gamma), χ2 = 2.80, P = 0.59). Colour morphs did not differ in the total number of re-sightings 

accumulated, the mean days elapsed between consecutive re-sightings, or the mean distance between 

consecutive relocations (P > 0.28; see Table 4.S4 for more details and effect size).  

We could calculate reliable estimates of linear home and core-ranges for 83 lizards, but 

decided to exclude mixed-morph lizards from the analyses due to their scarcity. The final dataset 

consisted of 70 lizards; 18 females and 52 males with at least 17 resightings (Table 4.S2). Neither sex 

showed significant differences in SVL among colour morphs (LMM: χ2 = 6.61, P = 0.16). Males had 

both larger linear home-ranges and core-ranges than females, and also perched higher on the stone 

walls (P < 0.01; Table 4.S4). Morphs did not differ in the size of their home- and core-ranges, neither 

in males (LMM: home-ranges: χ2 = 4.31, P = 0.19; core-ranges: χ2 = 2.41, P = 0.30), nor in females 

(LMM: home-ranges χ2 = 0.44, P = 0.80; core-ranges: χ2 = 3.09, P = 0.21). Similarly, mean perching 

height did not differ among colour morphs (χ2 = 1.01, P = 0.60; Table 4.S4). In males, we did not 

find significant inter-morph differences in the number of females within their linear home- or core-

range (GLMM (Gamma): χ2 < 1, P > 0.3). Likewise, males of different colour morphs did not differ 

in the size of their exclusive ranges (i.e., the fraction of core-range which is not shared with any other 

male), or in the number of female core-ranges partially included within those ranges (P > 0.35; Table 

4.S4).  

4.4.2. Mesocosm experiment 

4.4.2.1. Morphology and colour traits 

None of the morphometric traits examined (reported to be under intra-sexual selection in male wall 

lizards; Baird, 2013; Pérez i de Lanuza et al., 2014; While et al., 2015) were found to differ among 

colour morphs in our sample of experimental males (Table 4.S5). In females, neither SVL nor ILL 

(both positively correlated with fecundity; Olsson et al., 2002; Kratochvíl et al., 2003) varied with 

colour morph, but white morph females (before reproduction) were found to be significantly heavier 

than orange females (Table 4.S5).  

4.4.2.2. Spatial behaviour 

Overall, we accumulated 7190 re-sightings of the marked lizards in 655 scan samplings. The total 

number of re-sightings per lizard differed significantly between sexes (males were re-sighted more 

often), but not among colour morphs (GLMM (negative binomial): Sex: χ2 = 57.11, P < 0.001; 

Morph: χ2 = 0.81, P = 0.67). Likewise, we found a strong inter-sexual difference in the ability to settle 

in high or low-quality sites, but no inter-morph difference (GLMM (binomial): Sex: χ2 = 56.38, P < 

0.001; Morph: χ2 = 1.37, P = 0.50; Fig. 4.3). In fact, even though lizards were evenly distributed 

among sites (HQ: N = 91, LQ: N = 89), females had three times higher odds of settling in HQ sites 

(OR = 3.26) whereas only highly dominant males managed to occupy HQ sites (Fig. 4.S4). 

Specifically, an increase of one SD in social dominance among males meant 4.5 times higher odds of 
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settling in HQ sites (P < 0.001; Table 4.S6). Males settled in HQ pallets did not differ in body size, 

weight, or head variables from males settled in LQ pallets (LMM: χ2 < 1, P > 0.2). 

As expected, males had larger home- and core-ranges than females, and lizards settling in 

HQ sites occupied smaller areas than lizards in LQ sites (LMM on k50: Sex χ2 = 34.95, P < 0.001; 

Pallet quality: χ2 = 7.64, P = 0.006). In males, variation in home- and core-range size were significantly 

explained by social dominance (P < 0.001; Table 4.S6), but not by colour morph (P > 0.20; Table 

4.S6). In females, we found significant differences in home- and core-range areas among female 

colour morphs, with white morph females showing the largest areas (P < 0.001; Table 4.S7). Male-

female spatial overlap was not affected by colour morph, but was significantly associated with site 

quality in both sexes (P < 0.01; Tables 4.S6 and 4.S7). Males established in HQ sites overlapped 

with 3.0 ± 1.2 more females, and females established in LQ sites overlapped with 1.7 ± 1.0 more 

males.  

Figure 4.3. Distribution of the lizards among high and low-quality sites in the experimental 

enclosures. a) Position of the peak density of re-sightings for each male and female (filled circles), 

plotted on a background schematic diagram of an experimental enclosure obtained by pooling 

together every re-sighting of a lizard collected during the experiment (gray squares). The orange, 

white or yellow fill of the circles represent colour morph. b) Barplots showing the relative frequency 

of males and females of each colour morph that settled in high or low-quality sites. 
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4.4.2.3. Intra-sexual competition 

We recorded 927 intra-sexual interactions (614 in males and 384 in females). Competitive interactions 

were more common among males (N = 543; 88% of total male-male interactions) than among 

females (N = 25; 7%), which were often observed in groups engaged in prolonged co-perching in 

the vicinity of a male (N = 338, 88%). In males, display posturing and/or foot-shakes (IIa, 

appeasement, Table 4.1) were observed in 60% of these competitive encounters, a third of them 

(36%) ended with a rapid chase/flight, and 16% involved physical aggression (i.e. bites). Display 

behaviour and bites were usually exhibited only by the winning lizard (display: N = 307, 91% only by 

winner; bite: N = 89, 70% only by winner), while foot-shakes were almost exclusively performed by 

losing males (N = 70, 93% only by loser) with no differences among morphs (χ2 = 3.07, P = 0.22). 

No morph combination was overrepresented among these contests (χ2 = 5.63, P = 0.40). We found 

no evidence of an inter-morph difference in the index of social dominance estimated from the 

Bradley-Terry model (P = 0.68; Table 4.S6 and Fig. 4.4). After dealing with pseudo-replication (200 

different pairs of rivals, Table 4.S8), we found no effect of morph combination on the outcome of 

heteromorphic contests (GLMM (Binomial): orange: χ2 = 0.33, P = 0.56; white: χ2 = 1.83, P = 0.18; 

yellow: χ2 = 0.88, P = 0.35). In fact, for either of the morphs involved in these combinations, the 

probability of winning did not differ significantly from even odds (Fig. 4.4).  

 

 

Figure 4.4. Male-male competitive interactions. a) Boxplot of social dominance by colour morph. 

Boxes indicate the interquartile range (IQR, 50% of data). Horizontal lines represent the median and 

bars extend to 1.5 times the IQR. A jittered dot cloud shows the value of the variable of interest for 

each lizard in our dataset. b) Mean plot showing the probability of winning for each morph 

combination according to the predicted values of the logistic mixed-models. Bars extend to the CI95%. 

The horizontal dotted line marks 50% probability.  
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4.4.2.4. Male-female interactions and parentage 

In total, we recorded 1230 male-female interactions, of which 1098 were deemed as reproductive 

because they involved the exchange of sex-specific behaviours (441), prolonged co-perching (551), 

and/or copulatory behaviour (153).  

Male colour morphs did not differ in the number of females with which they interacted, 

engaged in co-perching, or engaged in copulatory behaviour (P > 0.57; Table 4.S9). Unsurprisingly, 

males settled in HQ sites engaged in reproductive interactions more frequently (LMM: χ2 = 36.91, P 

< 0.001) and with a higher number of females than males settled in LQ sites (P < 0.001; Table 4.S9; 

Fig. 4.5). We found no difference in relative reproductive success, or relative mating success among 

male colour morphs (P > 0.19; Table 4.S9). Males settled in HQ sites showed significantly higher 

relative reproductive success (P < 0.001), but not relative mating success (P = 0.107; Table 4.S9). 

Sperm competition intensity faced by each individual male was also independent of colour morph (P 

= 0.56), but significantly higher in low quality sites (P = 0.001; Table 4.S9). No morph combination 

in male co-sirings was more prevalent than expected by chance (χ2 = 2.13, P = 0.83, Table 4.S10). 

Results from the analysis of male fitness are summarised in Fig. 4.6. 

 

 

Figure 4.5.  Variation in the number of different females with which males engaged in either co-

perching (a) or copulatory behaviour (b, copulation and tail-grabs). Males settled in high quality pallets 

interacted with a significantly higher number of individual females, while male colour morphs did not 

differ in socio-sexual behaviour. Bars extend to the CI95%.  

  Female colour morphs did not vary in the number of males encountered in reproductive 

interactions, eggs produced, or fertilization success (P > 0.11; Table 4.S11). Body mass and ILL (but 

not colour morph; P = 0.71), were significantly related with laying date, with heavier and longer 

females laying their clutches sooner than the rest (P = 0.014; Table 4.S11). Although we found high 

levels of multiple paternity within the experimental enclosures (81% of clutches), female colour 

morphs did not differ in the number of sires fathering offspring in their clutches (LMM: χ2 = 2.84, P 

= 0.24), nor in the number of viable juveniles conceived (LMM: χ2 = 4.31, P = 0.12). Relative 
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measures of fitness yielded similar results (P > 0.16; Table 4.S11). We found a significant effect of 

habitat quality on some aspects of female social behaviour and reproductive parameters: females 

established in LQ sites interacted with a higher number of males, showed higher levels of multiple 

paternity, and their clutches contained a smaller fraction of unfertilized eggs (P < 0.05; Table 4.S11).  

 

Figure 4.6. Variation in male individual fitness among alternative colour morphs (up) and between 

sites of different quality (below). Bars extend to the CI95%. Significant differences are marked with an 

asterisk (P < 0.001). 

 Parentage was significantly predicted across enclosures by both of the association networks 

based on social behaviour during male-female interactions (co-perchings: χ2 = 51.91, P < 0.001; 

copulation attempts: χ2 = 45.40, P < 0.001). However, neither of the behavioural association 

networks, nor the resulting parentage network were found to be affected by morph combination (co-

perchings: χ2 = 0.69, P = 0.69; copulation attempts: χ2 = 0.83, P = 0.83; parentage: χ2 = 0.32, P = 

0.32, Fig. 4.7). We found a significant interaction of the parental morph combination over juvenile 

body mass (LMM: χ2 = 12.91, P = 0.012). Splitting the dataset by female morph, we found that this 

result was exclusively driven by a non-significant tendency of yellow males to sire heavier offspring 

than orange males when coupled with white females (LMM: χ2 = 6.28, P = 0.09). We found no effect 

of male or female morph alone on juvenile mass (LMM: χ2 < 1, P > 0.5). 

4.4.3. Power analysis 

The sensitivity analysis in G*Power estimated a minimum detectable effect size of Cohen’s d = 0.46 

(N = 181) and Cohen’s d = 0.88 (N = 52) for activity and space use differences (respectively) between 

male colour morphs in the free-ranging population. For the mesocosm experiment, we estimated that 
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a sample size of 90 males and females would allow us to detect medium-sized (Cohen’s d = 0.66) 

intra-sexual differences in behaviour and fitness among colour morphs with a standard statistical 

power of 0.80. These effect sizes are at the lower end of the range of effect sizes (Cohen’s d = 0.49 - 

2.32) which we calculated from the literature (Table 4.S1), suggesting that we had enough statistical 

power to detect even subtle but biologically meaningful differences among morphs. Accordingly, 

results from the two simulation-based analyses of power showed that our sample sizes were high 

enough to detect biologically relevant differences among colour morphs (power > 0.80 to detect 

medium-sized and large effect sizes). In fact, introducing the observed coefficients for the fixed and 

random factors in the simulations and plotting the expected increment in power at different sample 

sizes revealed a higher statistical power for the data presented here than the more conservative 

estimates obtained in G*Power (Fig 4.S5).  

 

Figure 4.7. Example network diagrams from one of our experimental enclosures based on a) co-

perching pairs, b) copulatory behaviour (i.e. interactions involving tail-grabs and/or matings), and c) 

the resulting parentage network. Each node represents an individual lizard, with shape and colour 

denoting sex and colour morph, respectively. Alphanumeric codes within the nodes correspond to 

the unique ID of each lizard within the enclosure. The thickness of the lines connecting nodes 

characterizes the number of social interactions (a, b) or offspring (c) between each dyad of lizards. 

Unconnected nodes represent lizards that we did not observe to engage in co-perching or copulatory 

behaviours (a, b), or did not reproduce (c). 

 

4.5. Discussion 

Overall, our results from both a longitudinal field study and an enclosure experiment argue against 

the hypothesis that P. muralis colour morphs reflect alternative reproductive strategies (ARS) 

involving differential socio-sexual behaviour and space use. In territorial species such as Podarcis 
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lizards, resource holding potential, spatial behaviour, and activity are expected to vary across males 

employing alternative strategies (Sinervo et al. 2000a; Zamudio and Sinervo 2000; Sinervo and 

Zamudio 2001; Calsbeek and Sinervo 2002c, 2002b; Sinervo and Svensson 2002; Noble et al. 2013; 

Molnár et al. 2016). In this study, we did not find any evidence that colour morphs differ in resource 

holding potential (i.e. social dominance, agonistic behaviour, territoriality), space use (i.e. site-fidelity, 

home-range size, overlap with conspecifics), or activity (i.e. frequency of re-sightings, distance 

between consecutive re-sightings).  

No colour morph was over-represented among resident or transient lizards in the field, and 

we did not observe differences in either inter-morph re-sighting propensity, distance between 

consecutive re-sightings, or inter-annual site fidelity. Furthermore, colour morphs showed similar 

home-range size and male-female overlap both in natural conditions and in experimental enclosures. 

In both sexes, alternative colour morphs obtained similar relative fitness within the enclosures (which 

would be necessary for their maintenance over time), but crucially this was not associated with 

different behavioural strategies. In line with previous evidence on the behavioural ecology of 

territorial lizards (Baird et al. 2003; Baird 2013), males competed fiercely to settle in high-quality sites 

irrespective of their colour morph, and the subset of successful dominant males (23%) engaged in 

co-perching with a higher number of females, experienced significantly lower levels of sperm 

competition, and ultimately achieved higher reproductive success. In sum, while lizards were strongly 

attracted to high-quality sites (both in the field and in the mesocosm experiment), we did not find 

any evidence that colour morph played a role in securing access to them or in the ability to exclude 

other conspecifics from its use. In fact, we did not find an effect of colour morph on the outcome 

of male-male competitive interactions. These results contrast previous evidence suggesting lower 

fighting ability in orange morph males during lab-staged encounters (Abalos et al. 2016), likely 

because any differences between size-matched morphs meeting at a neutral arena are overridden by 

the effect of size asymmetries and residency status when confrontations occur under more natural 

conditions (Stuart-Fox and Johnston 2005). Similarly, Sacchi et al. (2009) reported no effect of colour 

morph on aggressive behaviour during lab-staged contests when the experimental design allowed for 

size and residency asymmetries. Previous studies have reported larger body sizes in orange morph 

lizards with respect to white (Sacchi et al. 2007; Calsbeek et al. 2010), with some authors suggesting 

an advantage of orange morph lizards in male-male competition for preferred territories and hence, 

reproductive success (Calsbeek et al. 2010). The size difference, however, may result from mis-

categorizing subadult lizards as pertaining to the white morph (i.e. the lizards’ ventral surface appears 

white to the human eye before achieving sexual maturity), leading to the conflation of any possible 

morph difference with the expected size asymmetry between younger and older lizards. For instance, 

orange morph lizards from our study population in Angosutrine are only 1.7 ± 0.3 mm larger than 

white morph lizards in the free-ranging population of Angoustrine (1942 adult SVL > 56 mm lizards), 

which represents a 2.6% of the average SVL in adult lizards. There is, in fact, no evidence for 
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biologically relevant differences among male P. muralis morphs neither in morphology or sex-specific 

coloration (i.e. UV-blue ventrolateral spots; Pérez i de Lanuza et al. 2014), and in this study we did 

not observe differential use of agonistic behaviours during intra-sexual competitive interactions.  

The existence of ARS in a polymorphic territorial species does not necessarily imply that 

colour morphs must differ in territoriality or aggressive behaviour (Shuster and Wade 2003). ARS in 

males of polygynandrous species are often expressed as differential sexual behaviours (e.g. mate-

guarding) or physiological adaptations (e.g. increased testis size) representing alternative solutions to 

the trade-off between securing fertilizations and acquiring new mates (Taborsky 2001; Formica et al. 

2004; Shuster 2008; Taborsky and Brockmann 2010). For example, in the Australian painted dragon 

(Ctenophorus pictus), yellow morph males have larger testis and strongly outperform orange males in 

lab-staged sperm competition trials, despite the absence of differential territory-acquisition abilities 

between both morphs (Healey and Olsson 2008; Olsson et al. 2009). In contrast, P. muralis male 

morphs within experimental enclosures showed similar time allocation between guarding females and 

acquiring new mates, no difference in the number of mates sired, and experienced similar levels of 

sperm competition. In U. stansburiana, the interplay between the usurper, guarding, and sneaker 

strategies leads to morph-biased patterns of shared paternity, with yellow sneaker males obtaining 

almost all of their reproductive success from co-siring clutches with orange males, while blue guarding 

males show low overall levels of co-siring (especially with yellow males; Zamudio & Sinervo, 2000; 

Sinervo & Zamudio, 2001). Here we found no evidence of a similar bias, with no morph combination 

in co-sired clutches being more prevalent than expected by random association. In fact, given the 

absence of differences in pre-copulatory behaviour, the similar reproductive success achieved by 

males of the three colour morphs indirectly argues against the existence of physiological adaptations 

in the context of post-copulatory sexual selection (e.g. larger testis and ejaculates, which would have 

biased paternity in the absence of differential social behaviour). Further research could directly 

address this question by studying reproductive physiology in P. muralis colour morphs and staging 

realistic sperm competition trials across morphs.  

While most research on colour polymorphism and ARS concerns males, females are also 

often polymorphic. Differential female breeding strategies, such as the different solutions to the 

trade-off between egg size and number described in the female colour morphs of U. stansburiana 

(Alonzo and Sinervo 2001), have also been suggested to occur in P. muralis. One study of an Italian 

population found that, in captivity, yellow females laid relatively larger clutches of smaller eggs than 

white morph females (Galeotti et al. 2013). Our results also contradict this hypothesis, as we found 

no difference among female morphs in clutch size or juvenile mass. Unexpectedly, white morph 

females roamed across larger areas than females from the other morphs. Rather than alternative 

strategies in space use, we think this difference may result from white morph females being heavier 

(and likely more advanced in their ovarian cycle) when released into the enclosures. This could have 

prompted exploratory behaviour in the search for suitable egg-laying sites earlier in this morph. 
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Whether this unexpected result is artefactual or derives from differences in the timing of reproduction 

among female morphs should be examined in future studies. Overall, our results constitute strong 

evidence against the existence of ARS concerning male-male aggression, spatial dominance, sexual 

behaviour, or breeding strategy in P. muralis colour morphs. 

Even if colour morphs do not reflect ARS, non-random mating with respect to colour can 

contribute to the stability of polymorphic systems over time (Galeotti et al. 2003; Roulin 2004; 

Wellenreuther et al. 2014). Mate preferences may vary among individuals if the expected benefits 

derived from mating with differently coloured individuals is a function of the chooser’s morph (e.g. 

genetic compatibility) or vary relative to other factors (e.g. time, space, population density; Roulin, 

2004; Mckinnon & Pierotti, 2010; Wellenreuther et al., 2014). In polymorphic Pyrenean populations 

of P. muralis, homomorphic pairs of males and females occur more frequently than heteromorphic 

pairs, irrespective of local morph diversity (Pérez i de Lanuza et al. 2013a, 2016b). This assortative 

pairing suggests a role of colour morph in mate choice, but is not sufficient to demonstrate its 

existence (Roulin 2004; Roulin and Bize 2007; Wellenreuther et al. 2014). In fact, colour assortative 

pairing can also occur in the absence of mate choice, for example if phenotypically similar lizards 

tend to cluster together within populations as a consequence of similar environmental constraints or 

population viscosity (Roulin 2004; Wellenreuther et al. 2014). Here, we did not find evidence of 

morph-assortativity in the male-female social interactions observed within the enclosures. Previous 

research using lab-staged mate choice trials has already reported the absence of colour-assortative 

preferences towards differently coloured males in P. muralis females (Sacchi et al. 2015). However, we 

think that our results constitute a more realistic perspective of male-female dynamics in nature, since 

mounting evidence suggests that the initiation and outcome of pre-copulatory male-female 

interactions in lizards are almost completely under male control (Noble and Bradley 1933; Andrews 

1985; Olsson and Madsen 1995; Tokarz 1995; Olsson 2001; Olsson et al. 2013; Heathcote et al. 2016). 

Following our results, we deem unlikely that the colour-assortative pattern observed in the wild 

(>60% of pairings at our study site, see Pérez i de Lanuza et al., 2013) results from the lizards actively 

choosing to pair with similarly coloured partners. Rather, assortative pairing could result indirectly 

from some form of clustering in the spatial distribution of colour morphs in natural populations, due 

to population viscosity or eco-physiological constraints (Svensson et al., 2009; Wellenreuther et al., 

2014; Svensson, 2017; Pérez i de Lanuza, Sillero, & Carretero, 2018b; Lindsay et al., 2019).  

Our results also offer evidence against the existence of strong frequency-dependent effects 

on morph fitness. As stated before, by introducing the colour morphs in equal frequencies within the 

enclosures we simulated a situation which is rarely observed in any of the different P. muralis lineages 

showing colour polymorphism. Such balanced morph frequencies were never observed in natural 

populations from eastern Pyrenees (examined in Pérez i de Lanuza et al. 2017, 2018b, N = 116 

localities), where white morph lizards usually predomínate (e.g. morph frequency ranges: orange = 0-

60%; white = 27-92%; yellow = 0-25%; orange-white = 0-27%; yellow-orange = 0-13%), and only 



 

108 

 

                                                                                                             Chapter IV 

3.45% of the localities show a morph other than white as the most common. Additionally, morph 

frequencies do not seem to experience substantial inter-annual variation, with the same rank order 

being maintained in the study population of Angoustrine for the last six years (Fig. 4.S1). If colour 

morphs are, in fact, under some form of frequency-dependent selection, the frequencies observed in 

natural populations may reflect a selective equilibrium where each morph obtains equal average 

fitness. By using a 1:1:1 morph ratio in our experimental setup we simulated a displacement from 

such equilibrium frequencies which should have resulted in a selective pullback, and hence higher 

fitness in white morph lizards (Roulin 2004; Sinervo et al. 2007; San-Jose et al. 2014; Svensson 2017). 

In contrast, we did not find significant differences in fitness among colour morphs, suggesting that 

strong frequency-dependent effects on morph fitness are unlikely to be the prime determinant of 

morph relative frequencies in P. muralis natural populations. This study is primarily aimed at detecting 

differences in socio-sexual behaviour among male morphs, and we acknowledge that our 

experimental design is not tailored to test for frequency-dependent effects on fitness. In fact, testing 

for a rare (NFDS) or a common morph advantage with a mesocosm design would require to 

introduce each morph consistently in lower or higher frequency across the enclosures (Roulin 2004; 

Wellenreuther et al. 2014; Svensson 2017). Additionally, selection on colour morphs is often 

dependent on both biotic (demography, sex-ratio) and abiotic factors (environmental conditions), as 

well as on the population morph composition and relative morph frequencies (Forsman et al. 2008; 

Gosden and Svensson 2008, 2009; McLean and Stuart-Fox 2014; McLean et al. 2015; Svensson 2017; 

Willink et al. 2019; Svensson et al. 2020). Future studies should examine the environmental 

dependence of morph fitness in populations characterized by extreme morph compositions and 

socio-ecological contexts (i.e. varying sex-ratio, density, and environmental conditions), for example 

by combining field observations with the experimental alteration of these same parameters in 

enclosure experiments.  

 The maintenance of colour polymorphism may be possible through genetic mechanisms 

entirely independent of socio-sexual behaviour. For instance, if heterozygosity at genes coding for 

colour polymorphism provides fitness benefits (i.e. overdominance), and the advantages of 

heterozygosity only concern viability selection (e.g. survival to adulthood), colour morphs would be 

maintained in the population even if morphs mated at random (Krüger et al., 2001; Roulin, 2004; 

Roulin & Bize, 2007; Wellenreuther et al., 2014). In a breeding experiment conducted on captive P. 

muralis lizards from Italian polymorphic populations, morph pair combination was found to affect 

fertilization success, hatching success and newborn quality (i.e. juvenile mass; Galeotti et al. 2013). 

Here, we found a weak effect of colour morph combination on juvenile mass, but the low sample 

size (N = 44) is insufficient to draw firm conclusions. To examine the role of genetic compatibility 

and overdominance on stabilising colour polymorphism in future research, we would need to estimate 

juvenile fitness and inter-annual survival at the genotypic (rather than the phenotypic) level, as the 
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fitter heterozygotes could be phenotypically indistinguishable from other genotypes (Tregenza and 

Wedell 2000; Gratten et al. 2008; Johnston et al. 2013). 

Despite drawing substantial interest from evolutionary biologists, the evolutionary causes 

and consequences of lacertid colour polymorphisms are still poorly understood. Alternative 

reproductive strategies have been suggested to occur in the Dalmatian wall lizard (Podarcis melisellensis), 

where orange males have been found to present larger body size, disproportionately large heads, and 

higher fighting ability in size-matched contests staged in the lab (Huyghe et al., 2007; Huyghe et al., 

2009; 2012). In contrast, in the European common lizard (Zootoca vivipara), inter-population 

differences in morph composition and rapid morph cycles have been explained by the cumulative 

effect of two frequency-dependent mechanisms starkly different from ARS (morph biased female 

mate choice and offspring survival; Sinervo et al., 2007; San-Jose et al., 2014). Meanwhile, differences 

in morph composition among island populations of the Skyros wall lizard (Podarcis gaigeae) have been 

found to be fall within that expected under neutral genetic divergence, and genetic drift could thus 

not be rejected as an explanation of the pattern (Runemark et al. 2010). Lastly, most of the evidence 

suggesting the existence of physiological or behavioural morph differences in P. muralis comes from 

studies conducted on the southern Alps sub-lineage (Galeotti et al. 2007, 2013; Scali et al. 2016; Sacchi 

et al. 2017b, 2017a), which is only distantly related to the western European lineage found in Pyrenees 

(Giovannotti et al. 2010; Schulte et al. 2012; Gassert et al. 2013). These observations, together with 

the high prevalence and ancient origin of colour polymorphisms in wall lizards (Arnold et al. 2007; 

Andrade et al. 2019; Jamie and Meier 2020), suggest the intriguing possibility that genes coding for 

the expression of the alternative colour morphs might become linked to genes that influence other 

functionally relevant traits (i.e. physiology, behaviour, life-history, development) only at times, and 

hence be under selection only in some environments or in some lineages (i.e. Podarcis species). Linkage 

disequilibria are expected to decay rapidly if not counteracted by strong and chronic correlational 

selection, and genetic drift is very effective in leading to the loss of polymorphism (especially in small 

populations; Sinervo and Svensson 2002; Gray and McKinnon 2007; Mckinnon and Pierotti 2010; 

Svensson 2017). Hence, this evolutionary scenario would cause correlations between colour and other 

phenotypic traits to vary either in space or time, and even lead to morph loss in some populations or 

lineages. Polymorphism loss has likely occurred in wall lizards. Despite their putative ancestral origin 

(Andrade et al. 2019), colour morphs are apparently absent in some Podarcis species (Arnold et al. 

2002), and the polymorphic species which have been examined often show marked geographical 

variation in morph diversity (Runemark et al. 2010; MacGregor et al. 2017a; Pérez i de Lanuza et al. 

2018b; Jamie and Meier 2020). However, due to its high genetic diversity, effective population sizes 

in P. muralis (and likely in other wall lizards) have been estimated to be sufficiently large (Ne > 4x106;  

Yang et al. 2020) to allow for the long-term persistence of a largely neutral trait under intermittent 

selection contigent on the environment. Local morph extinctions could thus be counteracted by 

immigration from larger populations where selectively-neutral colour expression could resist the 

eroding effect of genetic drift for longer periods, and inter-population differences in morph 



 

110 

 

                                                                                                             Chapter IV 

composition would be mainly driven by the environmental and genetic constraints of colour 

expression (Roulin et al. 2004; Gray and McKinnon 2007; Mckinnon and Pierotti 2010). Recent 

results showing the recessive genetic basis of orange and yellow ventral coloration in P. muralis with 

respect to white (Andrade et al. 2019) could provide a simple explanation for the marked bias towards 

the white morph observed in natural populations (Pérez i de Lanuza et al. 2017, 2018b, 2019b; Fig. 

4.S1). Future research should investigate the possibility of spatially or temporally varying correlations 

between polymorphic colour expression and other phenotypic differences in Podarcis lizards, as well 

as evaluate the relative importance of selection and genetic drift in shaping inter-population 

differences in morph composition and relative frequencies (Runemark et al. 2010).  

In conclusion, our results do not warrant the frequent assumption that behavioural ARS 

underlie the maintenance of ventral colour morphs in the European common wall lizard. In the wake 

of the U. stansburiana model, much effort has been devoted to detect inter-morph differences 

suggestive of behavioural ARS in polymorphic lizards (Healey et al. 2007; Calsbeek et al. 2010; Yewers 

et al. 2016; Fernández et al. 2018). However, these studies have often painted a much more complex 

picture involving several evolutionary processes, of which ARS may represent but one in many 

mechanisms explaining the vast diversity of lizard colour polymorphisms (Carpenter, 1995; Huyghe 

et al., 2012; San-Jose et al., 2014; McLean et al., 2015). We should therefore reassess the allegedly 

central role of ARS in explaining the maintenance of phenotypic variability in nature, and broaden 

the perspective to incorporate other hitherto overlooked processes. 
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4.6. Appendix S1: Expanded materials and 

methods 

4.6.1. Additional information on the study of spatial behaviour in a 

free-ranging population of P. muralis 

Lizards were identified by a combination of unique toe-clip markings, xylene-free permanent paint marks 

(Edding © 751, Edding Ltd, St Albans, UK), and/or by natural individual traits (see Pérez i de Lanuza et al., 

2014 for additional details). During the natural peak activity hours (10.00-13.30 and 15.30-19.00 local time) we 

carried out surveys (45 - 90 min, 650-1300 m) where we collected data on the spatial position of marked lizards 

(at least 2 h between consecutive rounds). We used short focus binoculars (Papilio 8.6 x 21, Pentax, Tokyo, 

Japan) and a laser rangefinder (Disto A6 and A8, Leica Geosystems, St. Gallen, Switzerland; m.e. = ± 1 mm) 

to record lizards’ position with respect to mapped landmarks. Then, using Autocad 2013 (Autodesk Inc., San 

Rafael, Ca, USA) we created a scaled map of the study site and a simplified diagram of the lateral face of each 

of the stone-walls (Fig. 4.1). This sampling methodology provided two types of data: frequency of re-sightings, 

used as a proxy of activity levels (DeNardo & Sinervo, 1994; Sinervo et al., 2000; Noble et al., 2013), and 

positional data, used to estimate space use (home- and core-range size) and overlap with conspecifics (Boag 

1973; Heathcote et al. 2016). 

4.6.2. Additional information on female housing and hibernation before 

the experiment 

We installed an anti-bird net covering each of the 33 tanks used, which prevented avian predators while allowing 

local invertebrates to get inside the tanks and serve as primary food source. To increase habitat complexity, we 

complemented the naturally occurring vegetation inside the tanks by providing a perforated brick to serve as 

shelter, two wood logs, and a water dish to collect rain-water. We visited the tanks monthly to trim the weeds 

and provide an additional supply of food (Tenebrio molitor larvae and Acheta domesticus adults). On February 15 

2018, we re-captured the females within the outdoor tanks, installed them in individual hibernation pods 

consisting of a plastic tub (12 cm diameter, 8 cm high) covered with a perforated lid and filled with moist coco 

husk, and stored them for 10 weeks in a dark climatic chamber to mimic the conditions at their capture sites 

(1st week: 10ºC/ 2nd-9th weeks: 5ºC/ 10th week: 10ºC). 

4.6.3. Additional information on the housing of gravid females after the 

experiment 

We housed females individually in 55x38x28 cm high plastic terraria with a substrate of coco husk, a water dish, 

a shelter, and a small brick for basking over which we suspended a 40 W incandescent light (35ºC-18ºC 

temperature gradient). We also introduced a plastic tub filled with moist coco husk (11 cm of diameter, 8 cm 

deep) which the females used to lay the eggs. We set the light cycle to mimic field conditions during the 

reproductive season at the capture site (15L:9D), and additionally provided all lizards with full spectrum light 

(Reptistar 5.0: Sylvania, Danvers, MA, USA) for 2 h daily (12.00–14.00 h). We fed lizards two Tenebrio molitor 

larvae dusted with vitamins (JBL Terravit, Neuhofen, Germany) every other day. Overall, females stayed at the 

laboratory for less than 15 d before being released at their capture sites (i.e. after oviposition). 
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4.6.4. Additional information on social network analysis 

To determine whether morph combination played a role in male-female social interactions, we ran Mantel 

permutation analyses on the compiled version of SOCPROG (Whitehead 2009) on three different association 

networks based on i) male-female co-perching interactions, ii) copulatory behaviour (tail-grabs and mating, 

Table 4.1), and iii) parentage. We used social networks weighted by the total number of observed interactions 

(or the number of offspring, for parentage) between each dyad of lizards. We also tested for significant 

correlation between these two behavioural networks and the resulting parentage network in all of the ten 

experimental enclosures using Dietz R-tests (the non-parametric analogous of Mantel tests), recommended to 

correct for potential outlying values. All permutation analyses were based on 10000 permutations, which 

achieved stability in P-values. For each set of analyses (co-perching, tail-grab, and paternity networks), we 

combined the P-values from each different enclosure into a single test statistic using Fisher’s method (Fisher 

1932). 

4.6.5. Additional information on statistical analyses 

4.6.5.1 Morphometry (mesocosm experiment) 

We tested for differences between the colour morphs in morphometry by fitting two linear mixed models 

(LMMs) with body size (SVL) and weight (mass) as response variables, colour morph as fixed factors, and 

capture locality as random factor. In males, we used similar models to explore the existence of inter-morph 

differences in head length (HL) and head width (HW). In females, we tested for differential inter-limb length 

(IIL) among colour morphs. 

4.6.5.2. Male-male competition (mesocosm experiment) 

We examined potential morph-differences in social dominance using a linear mixed models with colour morph, 

mass, head variables (HL, HW), and pallet quality (i.e. peak density of re-sightings at a high- or low-quality site) 

as fixed factors. Enclosure and capture locality were included as random factors. To explore nontransitive 

relationships of dominance, we created three separate logistic mixed-models (one for each colour morph) on 

the binary outcome of heteromorphic contests (1 = win, 0 = loss). In each of these models we included the 

opponent’s morph and identity as fixed and random factors, respectively. We also included the enclosure in 

which the interaction was observed as random factor. For the linear mixed-model we checked that all residuals 

conformed to homoscedasticity and normality assumptions. We used the glmer_dispersion function in the 

blmeco package of R to preclude potential problems of overdispersion in the residuals of the logistic GLMMs 

(ϕ ≈ 1 for every model).  

4.6.5.3. Spatial behaviour and activity (free-ranging population and mesocosm experiment) 

To determine the minimum sample size required to calculate a reliable estimate of home-range size, we 

subsampled the lizards with at least 25 sightings and graphed incremental range-observation plots showing the 

increase in linear home-range size as re-sightings are accumulated (Stone & Baird, 2002). For each lizard, we 

averaged the number of sightings when the curve reached 80% of final home-range size in four different 

incremental plots obtained by randomizing the order in which sightings were included (Rose, 1982; Stone & 

Baird, 2002). We then averaged the mean number of sightings for all the subsampled lizards, which resulted in 
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M) for reliable linear home-range estimation in the free-

ranging population of Angosutrine, and 9 ± 1 sightings for the lizards in the enclosure experiment. Lizards 

with fewer sightings were deemed unsuitable to reliably estimate home-range size but were included in the 

analysis of spatial overlap. 

a) Free-ranging population 

We examined potential sex- and morph-differences in activity and spatial behaviour using mixed models with 

the number of re-sightings and the mean days elapsed between consecutive re-sightings, as well as the linear 

home-range, core-range, exclusive-range size, and mean perching height of each lizard as response variables. In 

each of these models we included SVL, colour morph, sex, and the interaction between the last two as fixed 

effects, and year as random factor. To test for the differences in spatial overlap, we fitted GLMMs with the 

number of either 1) males, or 2) females included within the home-, core-, or exclusive-range of each lizard as 

response variables, and the same predictors and random factors described for space use models. Whenever a 

significant sex difference was found, we run two additional models examining potential inter-morph variability 

separately. Home- and core-range size were logged to correct a weak positive skew, and analysed assuming a 

Gaussian distribution. Activity and spatial overlap variables showed a strong positive skew, which we corrected 

by fitting a gamma distribution with log-link function to the generalized linear mixed models. For each model, 

we checked that all residuals conformed to homoscedasticity and normality assumptions. For lizards observed 

for more than one year, we averaged the value of response variables. 

b) Mesocosm experiment 

For the analysis of activity and spatial behaviour, we first examined inter-sexual differences using mixed models 

with sex, morph, and the interaction between the latter as fixed factors. We then examined inter-morph 

differences by creating separate models for males and females. For males, we included colour morph, mass, 

head variables (HL, HW), and pallet quality (i.e. peak density of re-sightings at a high- or low-quality site) as 

fixed factors. In models on females, we included colour morph, mass, ILL, and pallet quality as fixed factors. 

Capture locality and enclosure were included as random factors in every model. We analysed activity using 

negative binomial GLMMs with the total number of re-sightings as response variable. Home- and core-range 

size were normally distributed and were analysed with LMMs. Competition for habitat quality was analysed by 

fitting a logistic GLMM on whether the lizard’s peak density of re-sightings was located at a high- (1) or low-

quality (0) site. Male-female spatial overlap was analysed using GLMMs adjusted to a Poisson distribution, and 

the number of opposite-sex lizards showing core-core overlap as response variable. For each model, we checked 

that all residuals conformed to homoscedasticity and normality assumptions. We did not find over-dispersion 

problems in the Poisson or the negative binomial mixed-models (ϕ ≈ 1).  

4.6.5.4. Male-female interactions and individual fitness 

We used GLMMs fitted with a negative binomial distribution (or a Poisson distribution if the mean was equal 

to the variance) to explore potential inter-morph differences in the number of opposite-sex conspecifics with 

which the lizards were observed engaged in social interactions (i.e. co-perchings and copulations attempts). We 

tested both sexes separately by creating four different mixed-models. In males, we included colour morph, 

mass, head variables (HL, HW), and pallet quality (i.e. peak density of re-sightings at a high- or low-quality site) 
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as fixed factors. In females we included colour morph, mass, ILL, and pallet quality as fixed factors. Regarding 

individual fitness, in both sexes we tested for differential reproductive and mating success using mixed-models 

(negative binomial distribution in males, Gaussian distribution in females) with the same predictors. We also 

used mixed-models to explore additional sex-specific aspects of sexual selection. In males, we estimated the 

average number of males with which he shared paternity of a clutch as a proxy of sperm competition intensity. 

We then analysed this variable with a LMM including the same predictors of the models described above. In 

females, we calculated fertilization success as the percentage of viable eggs from the total number of eggs laid. 

We tested for inter-morph differences in fertilization success using a LMM with colour morph, mass, ILL, and 

pallet quality as fixed factors. Capture locality and enclosure were included as random factors in every model 

described above. We checked that all the residuals conformed to homoscedasticity and normality assumptions, 

and also that they did not show over-dispersion problems in Poisson and negative binomial GLMMs (ϕ ≈ 1). 
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Tables 

Table 4.S1. Standardized effect size (Cohen’s d) calculated from published morph differences reported on different 

polymorphic species of lizards.  

 

Species Morph difference Cohen’s d Reference 

Uta stansburiana Contest outcome 1.98 Calsbeek and Sinervo 2002 

 Endurance 2.32 Sinervo et al. 2000 

 Number of re-sightings 1.66 Sinervo et al. 2000 

 Testosterone 0.94 Sinervo et al. 2000 

 Home range size 1.44 Sinervo et al. 2000 

 Number of co-sires 0.48 Zamudio and Sinervo 2000 

 Brain cortical volume 1.22 LaDage et al. 2016 

Urosaurus ornatus Mean distance between captures 0.59 
Paterson and Blouin-Demers 

2018 

Liolaemus sarmientoi Head height 1.14 Fernández et al. 2018 

 PC2 Aggression score 0.51 Fernández et al. 2018 

 Field body temperature 1.54 Fernández et al. 2018 

Ctenophorus pictus 
Fertilization success in sperm 

competition trials 
0.85 Olsson et al. 2009 

 Copula duration 0.94 Olsson et al. 2009 

 Endurance 1.01 Tobler et al. 2012 

 Reaction time against a model predator 1.72 Tobler et al. 2012 

Ctenophorus decresii Aggression against a model 0.56 Yewers et al. 2016 

 Flight initiation distance 0.56 Yewers et al. 2016 

Podarcis melisellensis Bite force 0.79 Huyghe et al. 2009 

 Corticosterone 0.65 Huyghe et al. 2009 

Mean ± CI95  1.10 ± 0.24  
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Table 4.S2. Adult lizards studied in the free-ranging P. muralis population of Angoustrine (2006-2010). For 

reliable home-range estimation, we excluded lizards showing fewer than 17 re-sightings. 

 

Sample Sex Colour morph 

  o w y ow yo 

All lizards 
 

♀ 13 30 20 22 16 

♂ 36 61 51 13 20 

Residents 
♀ 9 14 14 13 11 

♂ 21 35 32 9 10 

>17 re-sightings 
♀ 6 4 8 3 3 

♂ 13 19 20 2 5 
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Table 4.S3. Measures of centrality and dispersion for spatial behaviour variables in P. muralis males and 
females from Angoustrine. 
 

Variable  Sample size 

 ♀ ♂  

Resident lizards (%) 60.4 ± 4.9 % 59.1 ± 3.7 % 

282 lizards 
(101 ♀, 181 ♂) 

Walls visited (n) 1.34 ± 0.07 1.72 ± 0.06 

Re-sightings (n) 8 [2, 16] 8 [3, 22] 

Time elapsed (days) 1.53 [2.48, 4.02] 2 [1.22, 3.80] 

Distance between sightings (m) 5.89 [2.99, 14.37] 9.60 [5.26, 14.78] 

Linear home-range (m) 13.01 [9.46, 19.52] 21.71 [14.61, 29.64] 

83 lizards 
(24 ♀, 59 ♂) 

Linear core-range (m) 2.11 [1.39, 3.32] 5.12 [3.31, 7.08] 

Linear exclusive range (m) 0.75 [0, 2.38] 4.70 [3.11, 6.67] 

Mean perch height (m) 1.10 [0.90, 1.39] 1.39 [1.11, 1.81] 

Spatial 
overlap 

 with ♀ with ♂ with ♀ with ♂ 

Home-core (n) 1.0 ± 0.2 2.0 ± 0.2 1.7 ± 0.2 1.5 ± 0.2 

Core-core (n) 0.2 ± 0.1 1.2 ± 0.2 0.9 ± 0.1 0.3 ± 0.1 

Exclusive-core (n) - 0.2 ± 0.1 0.8 ± 0.1 - 

 = mean ± standard error. MED [Q1, Q3] = median [first and third quartiles]. Bold letters mark 

significant sex differences (α = 0.95). 
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Table 4.S4. Results from GLMMs examining potential differences in activity and spatial behaviour and 
male among colour morphs in the free-ranging population. Significant factors are highlighted in bold (α = 
0.95, P < 0.05). Statistics for non-significant factors are included at the point of their deletion from the 
model. 

Model Variable df χ2 P-value ηp
2 Effect size 

Residency (Binomial) 

SVL 1 χ2 = 11.60 P < 0.001 0.04 
pseudo-r2 = 
0.05 

Morph 4 χ2 = 1.60 P = 0.808 0.01  

Sex 1 χ2 = 0.29 P = 0.592 0.00  

Morph*Sex 4 χ2 = 2.99 P = 0.560 0.01  

Re-sightings (Gamma) 

SVL 1 χ2 = 29.46 P < 0.001 0.06 
pseudo-r2 = 
0.16 

Morph 4 χ2 = 5.02 P = 0.285 0.02  

Sex 1 χ2 = 0.01 P = 0.914 0.00  

Morph*Sex 4 χ2 = 2.01 P = 0.733 0.01  

Days elapsed (Gamma) 

SVL 1 χ2 = 11.44 P < 0.001 0.01 
pseudo-r2 = 
0.03 

Morph 4 χ2 = 3.19 P = 0.527 0.01  

Sex 1 χ2 = 4.24 P = 0.039 0.01  

Morph*Sex 4 χ2 = 1.03 P = 0.901 0.00  

Distance between sightings 
(Gamma) 

SVL 1 χ2 = 6.94 P = 0.008 0.02 pseudo-r2 = 0.11 

Morph 4 χ2 = 1.32 P = 0.857 0.00  

Sex 1 χ2 = 8.65 P = 0.003 0.00  

Morph*Sex 4 χ2 = 0.46 P = 0.978 0.00  

Linear home-range 
(Gaussian) 

SVL 1 χ2 = 1.30 P = 0.255 0.02  

Morph 2 χ2 = 2.20 P = 0.332 0.02  

Sex 1 χ2 = 7.27 P = 0.007 0.13 pseudo-r2 = 0.11 

Morph*Sex 2 χ2 = 1.25 P = 0.534 0.02  

Linear core-range 
(Gaussian) 

SVL 1 χ2 = 0.64 P = 0.423 0.01  

Morph 2 χ2 = 1.80 P = 0.406 0.04  

Sex 1 χ2 = 15.12 P < 0.001 0.18 
pseudo-r2 = 
0.20 

Morph*Sex 2 χ2 = 4.10 P = 0.128 0.06  

Mean perch height 
(Gaussian) 

SVL 1 χ2 = 3.10 P = 0.080 0.02  

Morph 2 χ2 = 1.01 P = 0.603 0.00  

Sex 1 χ2 = 10.09 P = 0.001 0.05 
pseudo-r2 = 
0.08 

Morph*Sex 2 χ2 = 1.87 P = 0.391 0.01  

Overlap with females 
(home-range) (Gamma) 

SVL 1 χ2 = 0.43 P = 0.513 0.00  

Morph 2 χ2 = 1.72 P = 0.424 0.02  

Overlap with females (core-
range) (Gamma) 

SVL 1 χ2 = 3.10 P = 0.080 0.01  

Morph 2 χ2 = 1.01 P = 0.603 0.03  

Overlap with females 
(exclusive-range) (Gamma) 

SVL 1 χ2 = 0.71 P = 0.400 0.02  

Morph 2 χ2 = 2.09 P = 0.351 0.05  
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Table 4.S5. Results from linear models examining potential inter-morph differences in morphometric 
traits in our sample of experimental lizards. Bold letters mark significant differences (α = 0.95, P < 0.05). 
 

Sex Trait F P-value 

Males 

SVL F 2, 87 = 0.10 P = 0.903 

Mass F 2, 87 = 0.07 P = 0.937 

HL F 2, 87 = 0.71 P = 0.493 

HW F 2, 87 = 1.25 P = 0.293 

Females 

SVL F 2, 87 = 0.39 P = 0.680 

ILL F 2, 87 = 0.48 P = 0.619 

Mass F 2, 87 = 6.78 P = 0.002 
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Table 4.S6. Results from GLMMs examining potential differences in dominance and spatial behaviour 
among male colour morphs from the mesocosm experiment. Significant factors are highlighted in bold (α = 
0.95, P < 0.05). Statistics for non-significant factors are included at the point of their deletion from the 
model. 

 

Model Variable df Statistic P-value ηp
2 Effect size ± 95%CI 

Social 
dominance 
(Gaussian) 

Morph 2 χ2 = 0.78 P = 0.677 0.01  

Mass 1 χ2 = 0.00 P = 0.951 0.00  

HW 1 χ2 = 0.12 P = 0.734 0.00  

HL 1 χ2 = 1.08 P = 0.299 0.01  

PQ 1 χ2 = 25.56 P < 0.001 0.24 
Hedge’s g = 1.4 [0.7, 1.7] 
pseudo-r2 = 0.25 

Pallet quality 
(Binomial) 

Morph 2 χ2 = 2.13 P = 0.345 0.03  

Mass 1 χ2 = 0.84 P = 0.360 0.02  

HW 1 χ2 = 1.68 P = 0.196 0.03  

HL 1 χ2 = 0.25 P = 0.619 0.00  

Dominance 1 χ2 = 23.97 P < 0.001 0.25 
OR = 4.5 [2.3, 11.7] 
pseudo-r2 = 0.30 

Home-range 
size (Gaussian) 

Morph 2 χ2 = 2.14 P = 0.344 0.03  

Mass 1 χ2 = 2.01 P = 0.157 0.03  

HW 1 χ2 = 0.96 P = 0.327 0.01  

HL 1 χ2 = 0.31 P = 0.580 0.00  

Dominance 1 χ2 = 23.97 P < 0.001 0.36 pseudo-r2 = 0.30 

Core-range size 
(Gaussian) 

Morph 2 χ2 = 3.18 P = 0.204 0.04  

Mass 1 χ2 = 0.03 P = 0.863 0.00  

HW 1 χ2 = 0.35 P = 0.552 0.00  

HL 1 χ2 = 0.43 P = 0.512 0.01  

Dominance 1 χ2 = 31.90 P < 0.001 0.35 pseudo-r2 = 0.31 

Overlap with 
females (k50) 
(Poisson) 

Morph 2 χ2 = 1.46 P = 0.481 0.01  

Mass 1 χ2 = 0.02 P = 0.898 0.00  

HW 1 χ2 = 0.00 P = 0.972 0.00  

HL 1 χ2 = 0.13 P = 0.715 0.00  

PQ 1 χ2 = 31.90 P < 0.001 0.28 
HQ-LQ = 3.0 ± 1.2 females 
pseudo-r2 = 0.24 
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Table 4.S7. Results from GLMMs examining potential differences in spatial behaviour among female 
colour morphs from the mesocosm experiment. Significant factors are highlighted in bold (α = 0.95, P < 
0.05). Statistics for non-significant factors are included at the point of their deletion from the model. 

 

Model Variable df Statistic P-value ηp
2 Effect size ± 95%CI 

Pallet quality 
(Binomial) 

Morph 2 χ2 = 2.95 P = 0.229 0.05  

Mass 1 χ2 = 3.75 P = 0.206 0.02  

ILL 1 χ2 = 0.19 P = 0.662 0.00  

Home-range 
size (Gaussian) 

Morph 2 χ2 = 15.68 P < 0.001 0.18 
W-O = 6.4 ± 3.5 m2 

pseudo-r2 = 0.18 

Mass 1 χ2 = 0.06 P = 0.802 0.03  

ILL 1 χ2 = 3.90 P = 0.048 0.05  

Core-range size 
(Gaussian) 

Morph 2 χ2 = 15.54 P < 0.001 0.19 
W-O = 1.7 ± 0.9 m2 

pseudo-r2 = 0.16 

Mass 1 χ2 = 0.03 P = 0.866 0.00  

ILL 1 χ2 = 1.82 P = 0.178 0.01  

Overlap with 
males (k50) 
(Poisson) 

Morph 2 χ2 = 1.31 P = 0.520 0.03  

Mass 1 χ2 = 0.02 P = 0.879 0.00  

ILL 1 χ2 = 1.20 P = 0.273 0.02  

PQ 1 χ2 = 8.42 P = 0.004 0.13 
LQ-HQ = 1.7 ± 1.0 males 
pseudo-r2 = 0.08 
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Table 4.S8. Male-male competitive interactions recorded within the experimental enclosures, sorted by 
morph combination and contest outcome.   
 

  Loser morph  

  Orange White Yellow 
Total 

(heteromorphic) 

Winner 
morph 

Orange 34 (14) 57 (26) 85 (32) 142 (58) 

White 97 (25) 44 (14) 74 (28) 171 (53) 

Yellow 52 (22) 58 (22) 42 (17) 110 (44) 

 
Total 

(heteromorphic) 
149 (47) 115 (48) 159 (60) 423 (155) 

Plain numbers = absolute frequency. In brackets = absolute frequency after dealing with pseudo-
replication. 
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Table 4.S9. Results from GLMMs examining potential differences in sexual behaviour and fitness among 
male colour morphs from the mesocosm experiment. Significant factors are highlighted in bold (α = 0.95, 
P < 0.05). Statistics for non-significant factors are included at the point of their deletion from the model. 

 

Model Variable df Statistic P-value ηp
2 Effect size ± 95%CI 

Females 
encountered in 
reproductive 
interactions (n) 
(NegBin) 

Morph 2 χ2 = 0.09 P = 0.958 0.00  

Mass 1 χ2 = 0.00 P = 0.970 0.00  

HW 1 χ2 = 0.12 P = 0.967 0.00  

HL 1 χ2 = 0.03 P = 0.858 0.00  

PQ 1 χ2 = 27.24 P < 0.001 0.30 
HQ-LQ = 2.7 ± 0.9 females 
pseudo-r2 = 0.36 

Females in co-
perching (n) 
(NegBin) 

Morph 2 χ2 = 0.49 P = 0.784 0.00  

Mass 1 χ2 = 2.26 P = 0.133 0.02  

HW 1 χ2 = 0.02 P = 0.891 0.00  

HL 1 χ2 = 1.76 P = 0.185 0.01  

PQ 1 χ2 = 29.73 P < 0.001 0.32 
HQ-LQ = 3.0 ± 1.5 females 
pseudo-r2 = 0.32 

Females in 
copulatory 
behaviour (n) 
(NegBin) 

Morph 2 χ2 = 1.14 P = 0.566 0.01  

Mass 1 χ2 = 0.00 P = 0.968 0.00  

HW 1 χ2 = 2.01 P = 0.156 0.01  

HL 1 χ2 = 0.02 P = 0.900 0.00  

PQ 1 χ2 = 13.36 P < 0.001 0.13 
HQ-LQ = 1.1 ± 0.7 females 
pseudo-r2 = 0.13 

Relative mating 
success 
(NegBin) 

Morph 2 χ2 = 3.32 P = 0.190 0.04  

Mass 1 χ2 = 0.10 P = 0.751 0.00  

HW 1 χ2 = 0.14 P = 0.707 0.00  

HL 1 χ2 = 1.20 P = 0.274 0.01  

PQ 1 χ2 = 2.60 P = 0.107 0.03  

Relative 
reproductive 
success 
(NegBin) 

Morph 2 χ2 = 2.63 P = 0.268 0.02  

Mass 1 χ2 = 0.00 P = 0.971 0.00  

HW 1 χ2 = 0.00 P = 0.960 0.00  

HL 1 χ2 = 1.91 P = 0.167 0.01  

PQ 1 χ2 = 11.28 P < 0.001 0.12 
HQ-LQ = 0.8 ± 0.4 
pseudo-r2 = 0.13 

Sperm 
competition 
intensity 
(Gaussian) 

Morph 2 χ2 = 1.15 P = 0.562 0.02  

Mass 1 χ2 = 2.11 P = 0.147 0.02  

HW 1 χ2 = 1.14 P = 0.285 0.03  

HL 1 χ2 = 0.02 P = 0.875 0.02  

PQ 1 χ2 = 10.60 P = 0.001 0.19 
HQ-LQ = 0.8 ± 0.5 males 
pseudo-r2 = 0.15 
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Table 4.S10. Shared paternity associations among males of different colour morphs during the enclosure 
experiment. 
 

 O-O W-W Y-Y O-W Y-O W-Y Total 

Observed 4 4 7 13 16 20 64 

Expected 5.33 5.33 5.33 16 16 16 64 

Probability 0.083 0.083 0.083 0.25 0.25 0.25  
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Table 4.S11. Results from GLMMs examining potential differences in sexual behaviour and fitness among 
female colour morphs from the mesocosm experiment. Significant factors are highlighted in bold (α = 
0.95, P < 0.05). Statistics for non-significant factors are included at the point of their deletion from the 
model. 

 

Model Variable df Statistic P-value ηp
2 Effect size ± 95%CI 

Males 
encountered in 
reproductive 
interactions (n) 
(Gaussian) 

Morph 2 χ2 = 0.31 P = 0.856 0.00  

Mass 1 χ2 = 3.69 P = 0.055 0.07  

ILL 1 χ2 = 1.99 P = 0.158 0.03  

PQ 1 χ2 = 5.59 P = 0.018 0.08 
LQ-HQ = 1.1. ± 0.8 males 
pseudo-r2 = 0.06 

Eggs produced 
(n) (Gaussian) 

Morph 2 χ2 = 4.61 P = 0.110 0.07  

Mass 1 χ2 = 14.35 P < 0.001 0.19 pseudo-r2 = 0.18 

ILL 1 χ2 = 0.59 P = 0.444 0.01  

PQ 1 χ2 = 0.06 P = 0.800 0.00  

Fertilization 
success (%) 
(Gaussian) 

Morph 2 χ2 = 2.18 P = 0.335 0.04  

Mass 1 χ2 = 0.58 P = 0.447 0.01  

ILL 1 χ2 = 0.08 P = 0.784 0.00  

PQ 1 χ2 = 4.13 P = 0.042 0.07 
LQ-HQ = 0.29 ± 0.27 % 
pseudo-r2 = 0.07 

Laying date (n) 
(Gaussian) 

Morph 2 χ2 = 0.69 P = 0.709 0.01  

Mass 1 χ2 = 6.03 P = 0.014 0.06 pseudo-r2 = 0.11 

ILL 1 χ2 = 6.03 P = 0.014 0.00  

PQ 1 χ2 = 0.02 P = 0.878 0.07  

Relative mating 
success 
(NegBin) 

Morph 2 χ2 = 3.24 P = 0.197 0.05  

Mass 1 χ2 = 0.90 P = 0.898 0.01  

ILL 1 χ2 = 1.57 P = 0.210 0.04  

PQ 1 χ2 = 4.50 P = 0.034 0.04 
LQ-HQ = 0.7 ± 0.6 
pseudo-r2 = 0.07 

Relative 
reproductive 
success 
(NegBin) 

Morph 2 χ2 = 3.62 P = 0.164 0.04  

Mass 1 χ2 = 0.00 P = 0.964 0.00  

ILL 1 χ2 = 0.97 P = 0.326 0.01  

PQ 1 χ2 = 0.90 P = 0.343 0.01  
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Figures 

 

Figure 4.S1. a) Native distribution of Podarcis muralis (green shading) with pie charts representing the natural 

morph frequencies pooled by geographically distant sub-lineages. White morph lizards are usually the most 

common. The number of lizards sampled is indicated inside the pie charts. Figure extracted from Andrade et 

al. (2018) and reproduced here with permission from the authors. b) Variation in morph relative frequencies 

(pooling males and females) for a six-year period (2015-2020) in the study population of Angoustrine. Sample 

size for each year is provided in brackets.
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Figure 4.S2. Colour morph relative frequencies in males from Angoustrine showing different body sizes 

(snout-to-vent-length, SVL). Sample size for each SVL are provided in brackets. White morph frequency falls 

steeply toward larger body sizes with the largest change in slope occurring between 55 and 56 mm, after which 

colour morph frequencies tend to stabilize (as suggested by results in Pérez i de Lanuza et al., 2013). Given this 

result, we consider 56 mm a suitable cut-off value of SVL for reliable morph determination in the localities 

sampled. This cut-off, however, could vary among different populations. 
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Figure 4.S3. a) Photography of one of the experimental enclosures at the Metatron research facility (CNRS; 

Caumont, France) associated to the Station d’Ecologie Theóretique et Experimentale (SETE, Moulis, 

France). b) Diagram of the spatial arrangement inside the experimental enclosures (HQ = high-quality sites, 

LQ = low-quality sites).



 

130 

 

                                                                                                             Chapter IV 

 

Figure 4.S4. Barplot showing the difference in social dominance between males occupying high- and low-

quality sites. Red bars represent 95% CI.  
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Figure 4.S5. Power (± CI95) to detect a medium-sized (Cohen’s d = 0.5, blue line) or large effect size (Cohen’s 

d = 0.8, green line) for morph differences in the free-ranging population (left) or the mesocosm experiment 

(right), calculated over a range of sample sizes (5-50) using the powerCurve function in the simr package (1000 

simulations).  Estimates for fixed and random effects (besides morph) replicate those obtained in the LMMs 

exploring male morph differences in home-range size (left) or social dominance (right). The curves confirm 

that our mixed-model statistical designs (with 13-30 lizards per morph) were sufficiently powered to detect 

biologically relevant morph differences in socio-sexual behaviour.
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Video recordings 

 

Video 4.S1. Screenshot of a social interaction observed during the period of behavioural observations within 

the experimental enclosures. The full recording can be downloaded as a separate MP4 file. 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fece3.6659&file=e

ce36659-sup-0006-VideoS1.mp4 
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Chapter V 
 

“Isn't it enough to see that a garden is beautiful without having to believe that there are 

fairies at the bottom of it too?” 

· Douglas Adams, The Hitchhiker’s Guide to the Galaxy·

This chapter reproduces entirely the manuscript: 

Abalos, J., Pérez i de Lanuza, G., Bartolomé, A., F., Uller, T., and E. Font. Viability, 

behaviour, and colour expression in the offspring of matings between common wall lizard 

(Podarcis muralis) colour morphs. Under review. 
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Chapter V: 

Viability, behaviour, and 

colour expression in the 

offspring of matings between 

common wall lizard 

(Podarcis muralis) colour 

morphs 

 

5.1. Abstract 

Colour polymorphisms are widely studied to identify the mechanisms responsible for the origin and 

maintenance of phenotypic variability in nature. The two main mechanisms currently thought to 

explain the long-term persistence of polymorphisms are correlational selection favouring alternative 

phenotypic optima and heterosis. These mechanisms predict differences in offspring viability and 

fitness arising from different morph combinations. Here, we examined the effect of parental morph 

combination on fertilisation success, embryonic viability, newborn quality, antipredator and foraging 

behaviour, as well as inter-annual survival by conducting controlled matings in a polymorphic lacertid, 

Podarcis muralis, where colour morphs are frequently assumed to reflect alternative phenotypic optima. 

Lizards were kept in outdoor tubs for a year in order to study inter-annual growth, survival, and the 

inheritance and ontogeny of colour expression. In agreement with previous literature, morph 

frequencies in the offspring of the experimental crosses matched the frequencies expected if orange 

and yellow expression depended on recessive homozygosity at two separate loci. The whitish 

coloration exhibited by newborn lizards reflects the near ultraviolet (UV) waveband and is likely 

perceived by conspecifics as a chromatically distinct colour different from any of the colour morphs 

expressed by adult lizards. In contrast with the predictions of correlational selection and heterosis, 

we found no compelling evidence of morph-combination effects on offspring viability or behaviour. 

We conclude that genetic incompatibilities or heterozygote advantage is of little significance for the 

population dynamics of colour polymorphism in P. muralis from the Pyrenees. 

 

Keywords: alternative breeding strategies - colour polymorphism - controlled matings - lizard 

behaviour - morph ontogeny - newborn viability  
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5.2. Introduction 

Population polymorphism refers to a situation where two or more discrete phenotypic forms coexist 

in sympatry among individuals of the same sex and age (i.e. morphs), with the rarer morph being too 

frequent to be solely the result of recurrent mutation (Ford 1945; Huxley 1955). Often, this 

phenotypic variation takes the form of distinct colour morphs that are genetically inherited, fixed in 

adults, and not condition-dependent (i.e. colour polymorphism; Galeotti et al. 2003; Roulin 2004; 

Mckinnon and Pierotti 2010). Explaining the maintenance of colour polymorphism in natural 

populations remains one of the major challenges in evolutionary biology, as it requires some form of 

selective balance to counteract the eroding effects of differential morph fitness and drift (Galeotti et 

al. 2003; Roulin 2004; Gray and McKinnon 2007).  

 Colour morphs often differ in features other than colour (Forsman et al. 2008; Mckinnon 

and Pierotti 2010). Such co-variations are thought to have originated via disruptive, correlational 

selection favouring optimal trait combinations in the different morphs, each representing alternative 

adaptive peaks (i.e. alternative strategies; Sinervo and Svensson 2002; Shuster and Wade 2003; Gray 

and McKinnon 2007). Consider the classical example of the Peppered moth (Biston betularia), with 

two morphs conferring a cryptic advantage in different habitats. Genetic correlations between colour 

morph and behaviour (i.e. habitat choice preferences) would be expected to arise, as moths that 

choose backgrounds matching their own colour survive, while those with the wrong preference perish 

(Kettlewell 1955; Sinervo and Svensson 2002; Cook et al. 2012). Colour polymorphic strategies can 

persist over long timescales only if they show the same average fitness over time, which may occur 

under balancing or spatio-temporally varying selection (Zamudio and Sinervo 2003; Roulin 2004; 

Gray and McKinnon 2007; Mckinnon and Pierotti 2010; Wellenreuther et al. 2014). However, the 

observation of alternative colour-coded strategies within a population does not mean that the 

polymorphism is balanced and stable in time. In fact, the evolution of alternative multi-trait strategies 

may have consequences for reproductive isolation, and ultimately serve as a pre-requisite for 

speciation by favouring the evolution of both pre- and post-zygotic reproductive barriers between 

the morphs (Denoël et al. 2001; Sinervo and Svensson 2002; Gray and McKinnon 2007; Pryke and 

Griffith 2009a; Svensson et al. 2009; Mckinnon and Pierotti 2010; Bastiaans et al. 2014; Svensson 

2017). Correlational selection is expected to favour the evolution of morph-specific genetic 

mechanisms (i.e. linkage disequilibria) preventing recombination from breaking apart co-adapted 

gene complexes. Morph-assortative mate choice preferences are also likely to evolve under 

correlational selection, as disassortative mating generates sub-optimal trait combinations in the 

offspring. Moreover, the cumulative effect of disruptive, correlational selection, and assortative 

mating can further decrease inter-morph offspring fitness by adding genetic divergence (and hence 

post-zygotic incompatibility) between the morphs (Sinervo and Svensson 2002; Gray and McKinnon 

2007; Pryke and Griffith 2009a; Mckinnon and Pierotti 2010; Lancaster et al. 2014). For instance, in 
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the polymorphic Gouldian finch (Erythrura gouldiae), where red- and black-headed males show 

differential dominance (Pryke and Griffith 2006), offspring produced by genotypically-mixed mating 

pairs showed consistent inviability effects from egg to adulthood, which led the authors to conclude 

that the current morphs may represent “a snapshot in the process of speciation” (Pryke and Griffith 

2009a).  

Heterosis, in which genetically intermediate (i.e. heterozygotes) morphs show a fitness 

advantage, represents the opposite evolutionary scenario to correlational selection, and offers another 

mechanism by which colour polymorphism may be maintained over time (Roulin 2004; Roulin and 

Bize 2007; Johnston et al. 2013; Wellenreuther et al. 2014). Heterosis can result from heterozygote 

individuals being less inbred than homozygous ones and thus expressing less deleterious recessive 

traits, which allows them to cope with a wider range of stress-inducing factors during life (Roulin 

2004). If heterozygosity at the genes coding for the colour polymorphism (or at genes linked to them) 

provides a fitness advantage, selection is likely to favour the evolution of disassortative mating 

preferences. However, it is worth noting that if the heterozygous advantage concerns only viability 

selection (i.e. survival to adulthood), the colour polymorphism may be maintained even if the morphs 

show random or even maladaptative mating preferences (Krüger et al. 2001; Roulin and Bize 2007). 

Hence, the relative balance between the maintenance of genetic polymorphisms and the evolution of 

reproductive isolation depends largely on the interplay between, on one hand, assortative mating and 

correlational selection building reproductive barriers between the morphs, and, on the other hand, 

disassortative mating preferences, gene flow and balancing selective regimes (i.e. heterosis, NFDS, 

RPS, and fluctuating selection) preventing any of the alternative morphs from going extinct (Sinervo 

and Svensson 2002; Roulin 2004; Roulin et al. 2004; Chunco et al. 2007; Gray and McKinnon 2007; 

Roulin and Bize 2007; Mckinnon and Pierotti 2010; Wellenreuther et al. 2014; Svensson 2017; Iversen 

et al. 2019).  

Lizards are an excellent model group in which to study the evolutionary dynamics associated 

with colour polymorphism. Many phylogenetically distant taxa have convergently evolved discrete 

colour morphs which are heritable (often with a relatively simple genetic architecture – few autosomal 

genes with major effects; Olsson et al. 2007; Sinervo et al. 2010; Rankin et al. 2016), functionally 

relevant to crypsis or thermoregulation, and/or correlated to other physiological or behavioural traits 

under selection (Zamudio and Sinervo 2003; Olsson et al. 2009; Baird 2013; Lattanzio and Miles 

2014; Ortega et al. 2015; Yewers et al. 2016; Yewers 2017; Fernández et al. 2018; Stuart-Fox et al. 

2020). Furthermore, polymorphic lizards sometimes represent different points in the balance between 

colour polymorphism maintenance and incipient speciation. While there is compelling evidence for 

the long-term maintenance of colour polymorphism via frequency-dependent selection in some cases 

(i.e. Uta stansburiana; Sinervo and Lively 1996; Sinervo et al. 2000), colour-assortative pairing, limited 

gene flow and weak post-zygotic barriers to inter-morph breeding have also been described in other 
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cases (Rosenblum 2006; Gray and McKinnon 2007; McLean and Stuart-Fox 2014; Mclean et al. 

2014a,b; Dong et al. 2019; McLean et al. 2020). For instance, differential selection for crypsis in light 

and dark habitats of the White Sands Ecotone has convergently favoured the evolution of a genetic 

melanin-based colour polymorphism in three lizard species, with inter-morph genetic and phenotypic 

divergence within each species being directly related to the level of gene flow between the patches of 

habitat where they are found (Rosenblum et al. 2004; Rosenblum 2006). In the side-blotched lizard 

(Uta stansburiana), where three morph-specific sexual behaviours (in males) and two alternative 

breeding strategies (in females) persist cycling in frequency over time (Sinervo and Lively 1996; 

Sinervo et al. 2000b), females have been found to show morph-assortative mate choice preferences 

and decreased egg viability in disassortative pairings (Bleay and Sinervo 2007; Lancaster et al. 2014).  

In wall lizards (genus Podarcis), a widely distributed group present in most of Europe, 

northwestern Africa, and the Mediterranean islands, several species exhibit a striking ventral colour 

polymorphism (Arnold et al. 2007; Huyghe et al. 2007; Sacchi et al. 2007; Runemark et al. 2010; 

Marshall and Stevens 2014; Brock et al. 2020a, 2020b). One such species (which is also the most 

widely distributed) is the European common wall lizard (Podarcis muralis). In this species, adults of 

both sexes may show up to five alternative ventral colour morphs (Fig. 5.1): three uniform (pure) 

morphs, i.e. orange (o), white (w) and yellow (y), and two mixed-morph mosaics combining orange 

and white (ow) or yellow and orange (yo) (Sacchi et al. 2007, 2013; Pérez i de Lanuza et al. 2013, 

2019). Adult ventral colours are fixed at maturity, with published spectra showing that chromatic 

differences between pure colour morphs are due mainly to variation in reflectance between 400 and 

600 nm (i.e. discriminable by humans), and further empirical evidence confirming that the morphs 

are perceived as chromatically distinct by conspecifics (Pérez i de Lanuza et al. 2014, 2018a). No 

study has established morph inheritance, but recent research suggests that orange and yellow colour 

expression are caused by recessive homozygosity at two separate loci in the regulatory regions of two 

genes associated with pterin (SPR) and carotenoid (BCO2) metabolism, respectively (Andrade et al. 

2019). Notably, newborn ventral coloration (which is perceived as identical to the white morph by 

human observers; Pérez i de Lanuza et al. 2013) has never been objectively characterized. Because of 

their ventral position and conspicuousness to the species’ visual system (Pérez i de Lanuza and Font 

2015; Pérez i de Lanuza et al. 2018a), at least the pure colour morphs of P. muralis have often been 

thought to represent the visible mark of an underlying set of alternative phenotypic optima (e.g. 

reproductive or life-history strategies; Sinervo et al. 2007; Calsbeek et al. 2010; Scali et al. 2013, 2016; 

Sacchi et al. 2017a; Mangiacotti et al. 2019). Although recent evidence from a mesocosm experiment 

does not support the existence of alternative strategies concerning socio-sexual and spatial behaviour 

(Abalos et al., 2020), research on P. muralis colour morphs has detected inter-morph differences in 

several (mostly physiological) traits relevant to fitness such as immune response, hormonal profile, 

and prevalence of infection by parasites, hence suggesting the existence of alternative trade-offs in 

resource allocation and life-history strategies in the different morphs (Galeotti et al. 2007, 2010; 
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Calsbeek et al. 2010; Zajitschek et al. 2012; Sacchi et al. 2017b, 2017a). Female colour morphs from 

Italian polymorphic populations have also been found to show differential breeding investment, and 

clutch viability and newborn mass were also found to vary depending on parental morph combination 

(Galeotti et al. 2013). Lastly, field observations suggest an assortative morph bias in pair formation 

(68% of couples observed in the wild are homomorphic; Pérez i de Lanuza et al. 2013, 2016).  

Taken together, these findings suggest that disruptive, correlational selection coupled with 

assortative mating may have favoured different co-adapted trait complexes in each morph while 

introducing some degree of genetic divergence between the colour morphs. If this is the case, we 

would expect to find decreased embryonic viability, newborn quality, and survival to adulthood in 

the offspring of disassortative matings. By contrast, higher viability and overall performance in the 

offspring of disassortative pairings would suggest the existence of a heterozygote advantage in the 

genes coding for the expression of P.muralis polymorphic coloration. Morph combination effects on 

behaviours directly related to juvenile survival to adulthood are key to evaluate the existence of 

heterosis, as a strong heterozygote advantage in viability selection could counteract the effects of 

assortative pairing and help to explain the maintenance of P. muralis colour polymorphism over time 

(Roulin 2004; Gray and McKinnon 2007; Mckinnon and Pierotti 2010). 

Here, we tested for such effects using controlled matings among all-pair combinations of P. 

muralis pure colour morphs. Our objective was four-fold: a) first, to compare primary reproductive 

parameters (i.e. clutch size and juvenile mass) among female morphs in order to evaluate the existence 

of alternative breeding strategies, b) second, to evaluate the existence of genetic incompatibilities or 

heterozygote advantage between colour morphs at both the pre- and post-zygotic levels by comparing 

fertilisation success, embryonic viability, and newborn quality in matings between different parental 

morph combinations, c) third, to test for morph combination effects on viability selection (i.e. 

survival to adulthood) by raising the juveniles in a common garden and keeping track of their inter-

annual growth and survival, and d) fourth, to describe the inheritance and ontogeny of colour 

expression in the year-old juveniles.  
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Figure 5.1. Colour variation in the ventral surface of adult Podarcis muralis lizards. Both sexes may 

show up to three pure colour morphs (white, orange, yellow), or two intermediate mosaics combining 

orange and white or yellow and orange scales (i.e. mixed-morphs). In males, the colour covers the 

entire ventral surface while in females it is sometimes restricted to the thoat.
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5.3. Materials and methods 

5.3.1. Lizard capture and female hibernation 

In total, we captured 135 female and 44 male adult lizards by noosing from 14 polymorphic localities 

in the eastern Pyrenees. In each of these localities we captured lizards showing each of the three pure 

colour morphs. We only captured lizards with a snout-to-vent length (SVL) larger than 56 mm, a 

reliable cut-off point for adult morph expression in P. muralis polymorphic populations from eastern 

Pyrenees (Pérez i de Lanuza et al. 2013a). We captured 60 females at the end of the 2018 breeding 

season (September 5-8) and transferred them to the Station d’Ecologie Théorique et Expérimentale 

(SETE, Moulis, France), where they were kept under natural conditions in 45 outdoor plastic tubs 

(170 cm diameter, 60 cm high; Fig. 5.S1). Each tub housed a group of 3-5 females coming from the 

same locality. Tubs were covered with anti-bird netting to prevent predation while allowing local 

invertebrates to get inside the tubs and serve as a primary food source for the lizards. To increase 

habitat complexity, in addition to the naturally occurring vegetation inside the tubs, we provided a 

perforated construction brick to serve as shelter, two wood logs, and a water dish to collect rain-

water. We visited the tubs monthly to trim the weeds and provide additional food (Tenebrio molitor 

larvae and Acheta domesticus adults). As long-term sperm storage does not occur in P. muralis (Pellitteri-

Rosa et al. 2012; While and Uller 2017), on March 2019 we captured 75 additional females from the 

same localities, re-captured the females within the outdoor tubs, and installed all of them in individual 

hibernation pods consisting of a plastic bowl (12 cm diameter, 8 cm high) covered with a perforated 

lid and filled with moist coco husk. Hibernation pods were stored for 9 weeks in a dark climatic 

chamber to mimic the conditions at their capture sites (1st week: 10ºC/ 2nd-8th weeks: 5ºC/ 9th 

week: 10ºC). In May 8 2019, we took the females out of hibernation and re-installed them into the 

outdoor tubs for acclimation while we captured the males at the same localities as the females. Two 

days before the onset of the experiment, we measured SVL (0.1 mm) and mass (± 0.01 g) of each 

lizard with a ruler and a spring balance (Pesola, Schindellegi, Switzerland). We also removed ~5 mm 

from the tail tip of each individual and preserved the tissue in 90% ethanol for genetic analyses.  

5.3.2. Staged mating trials and juvenile husbandry 

To study the effect of parental morph combination on reproductive output and juvenile viability, we 

carried out staged mating trials by releasing 131 females (45o, 44w, 42y) and 44 males (14o, 15w, 15y) 

into 44 outdoor plastic tubs (Fig. 5.S1). In each tub, we released three females (1o: 1w: 1y) followed 

five days later (May 14 2019) by one male showing either orange, white, or yellow ventral coloration 

(N = 14 tubs for each male ventral color). Due to female post-hibernation mortality, the yellow 

female morph was absent in two of the 44 experimental tubs (a: 2o♀, 1w, 1w♂; b: 1o♀, 1w♀, 1y♂). 

To reduce any possible effects of female size asymmetry, time of capture, and prior social interactions, 

we allowed a maximum SVL difference of 2 mm among females housed in the same tub, minimized 
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co-habitation of females captured at different times, and only put lizards together in the same 

experimental tub if they had been captured at least 300 m apart. Prior to release, we marked females 

with a non-toxic permanent marker to facilitate individual recognition (Fig. 5.S2; Ferner and 

Plummer 2016; Ngo et al. 2016). In total, the males and females spent 30 and 35 days, respectively, 

inside the experimental tubs. During this period, we monitored male-female interactions by visiting 

the outdoor tubs twice per day and recording the identity of the male-female pairs we sighted either 

i) co-perching (i.e.lying in physical contact ), or ii) engaged in copulatory behaviour (i.e. intertwined 

in the donut-shaped mating posture typical of lacertid lizards; Weber 1957; Carpenter and Ferguson 

1977; in Den Bosch and Zandee 2001). 

On June 15 2019, we released the males at their capture location (previously determined 

using a GPS device), and housed females in the laboratory until oviposition (see Appendix S1). Nine 

females did not produce a clutch and we lost 10 clutches due to failure to retrieve the female from 

the enclosures before oviposition. For the remaining 112 females, we counted the number of fertile 

(452) and infertile (105) eggs within each clutch by noting the presence of a calcified shell and 

vascularization 48 h after oviposition (Köhler 2006). We incubated the 452 fertile eggs in plastic cups 

filled with moist coco husk (1:2 coco:water by weight) and covered with a perforated lid at a constant 

temperature of 28ºC in an incubator (Memmert GmbH + Co.KG, Schwabach, Germany). Upon 

hatching, each of the 424 born juveniles was measured (SVL), weighted, sampled for DNA, 

temporarily marked, and housed in 55 x 38 x 28 cm high glass terraria according to their mother’s 

tub assignment. For 28 embryos that died before hatching, we obtained DNA samples via dissection 

of the eggs. Juvenile lizards were fed small live prey (pinhead Acheta domesticus and flightless Drosophila 

hydei) dusted with vitamins. To confirm exclusive paternity from the experimental male and determine 

parentage in some clutches found within the experimental tubs, we conducted genetic analyses of 

paternity based on six known microsatellite loci described in P. muralis (Richard et al. 2012; Heathcote 

et al. 2014). We could reliably assign paternity to every offspring examined (strict: 271 juveniles, 

relaxed: 41 juveniles; see Appendix S1). On August 18 2019, after conducting lab-staged behavioural 

tests on a subset of the juveniles (see below), we released 372 juveniles (52 juveniles died shortly after 

hatching) in groups of 10-12 unrelated individuals into 33 outdoor plastic tubs for their long-term 

maintenance. Prior to release, we permanently marked the juveniles on the ventral scales using a 

disposable medical cautery unit (Ekner et al. 2011), and obtained spectrophotometric measurements 

of throat reflectance (see Appendix S1).   

5.3.3. Juvenile behavioural tests 

To evaluate prospective fitness, 3-6 days after hatching we conducted lab-staged behavioural tests on 

two juveniles from each clutch. Offspring mass being often considered a proxy of newborn quality 

(Stamps 1988; Civantos and Forsman 2000; Galeotti et al. 2013), we chose the heaviest and lightest 

from each clutch to encompass the offspring mass range of each female. These tests were repeated 
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one year later for the 50 surviving juveniles found in the outdoor tubs in July 2020. Each test 

comprised three stages each lasting 5 min: acclimation period, antipredator trial, and foraging trial 

(see Video 5.S1 in the Appendix S1). We conducted tests during the lizards’ natural daily period of 

activity (10:00–13:30 and 16:00–19:00 h local time). In total, we conducted 247 behavioural tests. We 

started each test by transferring a juvenile lizard inside a plastic cup into an experimental arena 

consisting of a 50 x 25 x 40 cm high glass terrarium with all except the front wall covered with 

cardboard, and a piece of filter paper provided with a 4 cm grid as substrate. After the 5 min 

acclimation period, in which the lizard could move freely across the arena, we simultaneously 

introduced a shelter in the arena and simulated the presence of an avian predator using an artificial 

plastic model with the size, shape and coloration of an Eurasian magpie (Pica pica), a generalist native 

predator that feeds on wall lizards (Martin and López 1990). The model magpie was placed in front 

of the arena, at a distance of 5 cm from the arena’s front wall and at the end of a 75 cm pole. The 

shelter (consisting of two superimposed tiles separated along the edges by thin pieces of felt on three 

sides so as to leave a single entrance to a 90 x 90 x 12 mm cavity) was positioned in the middle and 

in contact with the back wall, with its entrance facing the front wall (Fig. 5.S3). After 5 min, we 

removed the magpie model and introduced a novel prey item (one < 8 mm T. molitor larvae) into the 

arena. In every trial, we positioned the larvae in the juvenile’s field of vision and at a distance of 4-8 

cm from its head (or the shelter’s entrance, whenever the juvenile was sheltered). We stopped the 

trial 5 min after the prey item was introduced. To minimize the impact of human presence on the 

lizard’s behaviour, all trials were filmed remotely with a photographic camera (Canon®, EOS 7D, 

Tokyo, Japan). During trials, the arena was illuminated by two 40 W lamps (providing a uniform 25ºC 

temperature in the arena), and a full spectrum lamp (Reptistar 5.0) equipped with a high frequency 

ballast (Quicktronic, Osram, Munich, Germany). The experimental arena and shelter were thoroughly 

cleaned with alcohol and rinsed with water after every test. We played back each filmed test and a 

single researcher recorded: a) the latency to enter the shelter once presented with the magpie model, 

b) the latency to bite the novel prey item, and c) the time elapsed between prey capture and 

consumption (prey handling time). 

5.3.4. Inter-annual survival, morph inheritance and colour expression 

Because of the global COVID-19 crisis, we had to postpone the monitoring of juvenile 

growth, survival, and colour expression (initially planned for March 2020) to early July 2020, when 

borders between Spain and France were reopened. We re-captured the juvenile lizards installed in 

our outdoor tubs. We also searched for marked lizards in adjacent patches of lizard habitat 

(approximately 1 km from the study site) to account for any potential escape, but none were found. 

For each recaptured juvenile, we measured SVL, mass, and obtained spectrophotometric 

measurements of throat reflectance (see Appendix S1). We assigned each of the 50 surviving lizards 

to a colour morph according to their throat reflectance spectra. We then used the spreadsheet 

available in Rankin et al. (2016) to calculate the morph frequencies expected in the offspring of each 
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morph combination and compare them to the observed frequencies. Following Andrade et al. (2019), 

we considered two different loci each with two alleles (O/o, Y/y), and a recessive homozygous base 

for orange and yellow colour expression. We assumed that phenotypically white parents had equal 

odds of being homozygous or heterozygous. To increase sample size, we added data from 17 juvenile 

lizards of known parental morph combination which were conceived during a previous experiment 

(see Abalos et al. 2020) and also maintained in the same outdoor tubs for a similar period (September 

2018- July 2019). We compared observed and expected offspring morph frequencies for each parental 

morph combination using G likelihood-ratio tests and combined the P-values into a single test 

statistic using Fisher’s method (Fisher 1932). We also used visual modelling tools in the R package 

PAVO (Maia et al. 2013) to determine quantitatively the chromatic distance between the ventral 

colour exhibited by each recaptured individual 3-4 weeks after hatching, and one year later 

(September 2019 vs. July 2020; see Appendix S1). The chromatic distances between paired spectra 

from the same individual were expressed as just noticeable differences (JND). Chromatic distances 

of < 1 JND are generally considered not discriminable, values between 1 and 3 JND represent colours 

that are discriminable under good lighting, and values above 3 JND represent easily discriminable 

colours (Siddiqi et al. 2004; Marshall and Stevens 2014; Pérez i de Lanuza et al. 2018a).  

5.3.5. Statistical analyses 

To account for the random factors in our experimental design, we ran generalised linear mixed 

models (GLMMs) using the lme4 package (Bates et al., 2014) in R (R Core Team, 2019) and model 

selection was conducted using backwards single term deletions (P < 0.05) of the saturated model 

followed by model comparisons via likelihood ratio tests (at α = 0.05). All numerical variables were 

centred and scaled before running the models (Schielzeth, 2010). For each fitted model, we calculated 

r2 (following Nakagawa et al. 2017), checked the existence of multicollinearity among predictors, 

influential data points, and graphically explored that residuals conformed to homoscedasticity and 

normality assumptions using the performance package in R (Lüdecke et al. 2020). For some variables 

that did not conform to these assumptions even after transformation, we fitted models using different 

distributions. For details on the statistical analyses, see Appendix S1. 

 

5.4. Results 

5.4.1. Effect of parental morph combination on reproductive output 

There was no morph bias in body size or mass in the adult lizards (Table 5.S1). In the experimental 

tubs, males and females were frequently observed lying in close proximity (n = 1002) or engaged in 

copulatory behaviour (n = 102), but colour morph played no role on the patterns of male-female 

association (co-perching: χ2 = 8.33, P = 0.40; copulatory behaviour: χ2 = 1.64, P = 1.0; Fig. 5.S4). 
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The levels of fertilization success (i.e. fertilized eggs/ clutch size) was 81.4% and embryonic viability 

(i.e. viable juveniles/ fertilised eggs) was 93.7 %. Egg incubation lasted 95 

henceforth) days with a mean clutch size of 4.6 ± 0.2. Clutch size correlated significantly with female 

weight and juvenile mass (LMM: female weight: χ2 = 15.88, P < 0.001; juvenile mass: χ2 = 20.23, P < 

0.001; pseudo-r2 = 0.32), but not with female morph, male morph, or the interaction between the two 

(P > 0.2; Table 5.S2). Similarly, we found no difference in clutch size between homomorphic and 

heteromorphic pairings (P > 0.2; Fig. 5.S5, Table 5.S3). The absolute number of viable juveniles 

produced was also independent of parental morph and morph combination (Table 5.S2 and 5.S3). 

However, we found a significant morph bias in fertilisation success, (GLMM binomial: female morph 

x male morph: χ2 = 19.50, P < 0.001; Table 5.S2) which was mainly driven by the large number of 

infertile clutches laid by yellow females paired with orange males (Fig. 5.2). Eggs produced by white 

homomorphic pairs (which showed the highest fertilisation success) were 1.61 (odd ratio CI95 = 0.99, 

2.79) times more likely to be fertile than eggs produced by YO (♀♂) pairs. We also found significantly 

lower fertilisation success in yellow morph females with respect to the other morphs (GLMM 

binomial: χ2 = 17.36, P < 0.001; Table 5.S2) and in heteromorphic pairs with respect to 

homomorphic matings (GLMM binomial: χ2 = 9.46, P = 0.002; Table 5.S3), although the odds ratios 

for these differences were small (OR (CI95): W♀/Y♀ = 1.21 (0.89, 1.65); 

homomorphic/heteromorphic = 1.11 (0.86, 1.44)). Embryonic viability was unaffected by parental 

morph combination (Fig. 5.2), and showed only a weak negative relationship with female mass 

(GLMM binomial: female morph x male morph: P > 0.5; female mass: P = 0.012, Tables 5.S2 and 

5.S3). Juvenile mass was negatively correlated with clutch size (GLMM: χ2 = 21.75, P < 0.001, pseudo-

r2 = 0.21; Table 5.S3) but unrelated to parental morph or morph combination (P > 0.4; Tables 5.S2 

and 5.S3; Fig. 5.3). According to our model, each additional egg layed by a female entailed a decrease 

of 0.02 ± 0.01 g in the average juvenile mass of its clutch, approximately a 5% of the average mass 

of juveniles in our sample (0.38 ± 0.01 g).  
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Figure 5.2. Above, predicted probability that an egg is fertilised (i.e. fertilisation success) according 

to morph combination. Below, predicted probability that a fertilised egg turns into a viable juvenile 

(i.e. embryonic viability). Circles mark the position of the mean and bars extend to the CI95. Numbers 

and numbers within brackets correspond to the number of females and eggs within each category, 

respectively. 

 

 



 

146 

 

                                                                                                             Chapter V 

 

Figure 5.3. Left, boxplots showing average juvenile mass by female (g) according to morph 

combination. Boxes indicate the interquartile range (IQR, 50% of data). Horizontal lines represent 

the median and bars extend to 1.5 times the IQR. A jittered dot cloud represents each value in our 

dataset. Right, scatter plot showing the negative relationship between average juvenile mass and 

clutch size. Coloured lines and shaded areas correspond to the linear regression slope and CI95 for 

each female morph. 

 

5.4.2. Effect of parental morph combination on juvenile behaviour 

In 2019, we run 197 behavioural tests on the offspring of 99 different females representing 42 of the 

outdoor experimental tubs (see Fig. 5.4 for information on sample size per morph combination). 

Nearly half of the juveniles entered the shelter upon presenting them with the magpie model (98 

juveniles, 49.7%, mean latency = 133 ± 19 s), while two thirds of the juveniles captured and 

consumed the novel prey item (133 juveniles, 67.5%, mean latency = 57 ± 11 s). We observed a 

positive relationship between juvenile mass and performance in the viability tests: the probability that 

a juvenile entered the shelter doubled with each 0.2 g increase in juvenile mass (GLMM binomial: χ2 

= 4.12, P = 0.042, pseudo-r2 = 0.03; Table 5.S4, Fig. 5.4), while latency until the novel prey item was 

captured (GLMM: χ2 = 22.67, P < 0.001, pseudo-r2 = 0.16; Table 5.S4, Fig. 5.4) and consumed 

(GLMM: χ2 = 22.10, P < 0.001, pseudo-r2 = 0.16; Table 5.S5) decreased exponentially with growing 

juvenile mass. However, we did not find any significant effect of parental colour morph (or morph 

combination) on the juveniles’ antipredator response or foraging ability (P > 0.2, Tables 5.S4 and 

5.S5). In July 2020, we run 50 behavioural tests on the offspring of 34 different females representing 

23 of the outdoor experimental tubs. Yearling lizards entered the shelter and ate the prey more 

frequently than the animals tested few days after hatching (GLMM binomial: enter: 73.9%, χ2 =9.43, 

P = 0.004; eats: 87.8%, χ2 = 7.23, P < 0.007; Fig. 5.S6). They also showed longer latencies to enter 

the shelter (GLMM: χ2 =16.16, P < 0.0001), but no difference in the latency to consume the prey 
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(Fig. 5.S6). Again, we did not find any significant effect of parental morph combination on the 

juvenile’s antipredator response or foraging ability (P > 0.05, Table 5.S6). 

 

Figure 5.4. a) Barplot showing the proportion of juveniles that entered the shelter during 

antipredator trials grouped by parental morph combination. Numbers inside the bars correspond to 

sample size (e.g. 10 out the 22 juveniles fathered by orange homomorphic pairs entered inside the 

shelter). b) Positive relationship between the probability that a juvenile entered the shelter and 

juvenile mass. Black line represents individual probabilities predicted by the logistic mixed model. 

Blue line and shaded area correspond to the smoothed tendency line and its CI95. c) Barplot showing 

the proportion of juveniles that captured and ate the novel prey item (i.e. a small Tenebrio molitor larva), 

grouped by parental morph combination. Numbers inside the bars correspond to sample size. d) 

Scatterplot showing the negative relationship between juvenile mass (g) and the time elapsed from 

the introduction of the novel prey item until the juvenile bit the larva (i.e. latency in seconds). 
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5.4.2. Survival, inter-annual growth, and colour expression 

Short-term survival (3-4 weeks after hatching) averaged 87.7% (372 lizards out of 424) and was 

positively related with juvenile mass (GLMM binomial: χ2 = 9.39, P = 0.002, pseudo-r2 = 0.09), but 

not with parental morph (P > 0.1; Table 5.S7; Fig. 5.5). Inter-annual survival (one year after 

hatching) averaged 13.4% (50 lizards out of 372) and was signficantly related with juvenile mass and 

male colour morph (GLMM binomial: juvenile mass: χ2 = 10.43, P = 0.001; male morph: χ2 = 8.57, 

P = 0.014; Table 5.S7; Fig. 5.5). Namely, offspring sired by yellow males had 1.44 (odd ratio CI95 

= 0.49, 3.17) higher odds of staying alive until July 2020 than juveniles fathered by orange morph 

males (Fig. 5.5). Lastly, juvenile lizards gained an average of 2.19 ± 0.24 g in one year, but growth 

was unrelated to any of the examined predictors (Table 5.S7). 

 Observed morph frequencies in subadult lizards were largely congruent with the 

frequencies expected for each morph combination (assuming two loci each with two alleles and a 

recessive, homozygous base for orange and yellow expression; P = 0.110, Table 5.S8, Fig. 5.6). 

Spectra from the white throat coloration exhibited by 99% of the hatchlings in September 2019 

showed higher UV reflectance than any of the incipient colour morphs expressed by subadult 

lizards (Fig. 5.7), and was hence termed ultraviolet-white (UV-white). While ontogenetic changes in 

throat reflectance for orange and yellow morph subadults encompassed almost the entire visual 

range of P. muralis (300-600 nm), spectral changes in white morph subadults were mainly located in 

the UV waveband (300-400 nm; Fig. 5.7). Chromatic distances between paired spectra from the 

same individual averaged 4.62 ± 0.66 JND (N = 46 pure morph juveniles), and were significantly 

greater than 3 JND (hence, easily discriminable colours for the lizard visual system) for each of the 

95 = 6.52 ± 3.50, t(6) = 2.36, P = 0.024, yellow: 4.72 ± 0.75, 

t(20) = 4.80, P < 0.0001, white: 3.76 ± 0.78, t(17) = 2.05, P = 0.028; Fig. 5.7).  

 

5.5. Discussion 

In this study, we examined the effect of parental morph combination on fertilisation success, 

embryonic viability, newborn mass, and behaviour (i.e. antipredator response and foraging ability) in 

common wall lizards (P. muralis), a species where ventral colour morphs are often thought to reflect 

alternative life-history trade-offs (Calsbeek et al. 2010; Sacchi et al. 2017b, 2017a; Mangiacotti et al. 

2019). By keeping the juveniles in outdoor tubs for approximately one year, we could also evaluate 

the effect of parental morph on inter-annual growth and survival, as well as describe ontogenetic 

changes in colour expression. Overall, we found no evidence of parental morph biases that would 

suggest the existence of strong advantages to either morph-assortative or disassortative mating (i.e. 

genetic incompatibilities). In fact, although we did find a higher fertilisation success of females when 
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paired assortatively, parental morph combination was mostly irrelevant to the different stages of 

development we examined (i.e. pre-hatching, post-hatching, survival to adulthood).  

Figure 5.5. Predicted probability that a juvenile survived according to parental morph combination 

(left) and mass at eclosion (right), measured at two different points in time: 3-4 weeks after hatching 

(September 2019), and one year later (July 2020). Circles mark the position of the mean and bars 

extend to the CI95. Numbers on top of the error bars correspond to the surviving number of juveniles 

in each morph combination category. Black line represent individual probabilities predicted by the 

logistic mixed model. Blue line and shaded area correspond to the smoothed tendency line and its 

CI95. There is a positive relationship between survival and growing juvenile mass. In addition, 

juveniles sired by orange male lizards showed significantly lower levels of inter-annual survival than 

juveniles sired by yellow morph lizards (although mortality and dispersion could have been conflated 

in our experimental tubs).  

 

Both pre-copulatory (e.g. inability to copulate) and post-copulatory (e.g. sperm rejection) 

barriers to reproduction may result in biased fertilisation. However, no sex/morph combination was 

underrepresented in our recording of inter-sexual interactions, which argues against the former 

mechanism as an explanation for our results. Adaptive sperm-sorting strategies whereby females 
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handicap the sperm of less-preferred male morphs have been invoked to explain morph-biased 

patterns of fertilisation in U. stansburiana (Calsbeek and Sinervo 2002a; Lancaster et al. 2014). 

However, this explanation seems unlikely in the case of P. muralis for three reasons. First, the 

difference we found in fertilisation success was mainly driven by the high prevalence of infertile 

clutches in yellow females mated to orange males (five out of a total of nine infertile clutches), in 

contrast with the almost perfect fertilisation success of white homomorphic pairs. The converse 

crossing (i.e. orange female with yellow male) showed no abnormal levels of fertilisation success, as 

expected if limited gene flow between these two morphs hampered hybridization (Gray and 

McKinnon 2007; Pryke and Griffith 2009a; Lancaster et al. 2014). Second, due to the recessive genetic 

basis of orange and yellow coloration (Andrade et al. 2019), the offspring of white homomorphic 

pairings ought to be the most genotypically diverse and thus finding the highest levels of fertilisation 

success in this crossing (instead of in orange or yellow homomorphic crossings) argues against the 

existence of an homozygote advantage. Third, when sympatric colour morphs undergo correlational 

selection, the genetic architecture protecting co-adapted gene complexes from recombination is 

predicted to raise mainly post-zygotic barriers and hence significantly decrease embryonic viability 

(which was not observed in our experiment) rather than fertilisation success (Sinervo and Svensson 

2002; Gray and McKinnon 2007; Mckinnon and Pierotti 2010). For instance, conducting controlled 

crosses in U. stansburiana (in which colour morphs reflect multi-trait reproductive strategies in both 

males and females), Lancaster et al. (2014) reported that disassortative pairing entails lower 

probabilities of hatching in fertilised eggs, which they interpret as a form of outbreeding depression 

causing increased embryonic mortality. Likewise, significantly lower hatchability (34% reduction) was 

documented in the fertilised eggs of disassortative pairings between two of the colour morphs 

exhibited by the Gouldian finch (Erythrura gouldiae) (Pryke and Griffith 2009a). In both of these 

species, the combined effect of assortative mating preferences and linkage disequilibria between co-

adapted gene complexes within each morph (i.e. correlational selection) seems to have introduced 

significant genetic divergence and reproductive isolation between morphs (Bleay and Sinervo 2007; 

Pryke and Griffith 2007). In contrast, our results suggest that despite the high prevalence of morph-

assortative pairings observed in wild populations of P. muralis (Pérez i de Lanuza et al. 2013a, 2016b), 

inter-morph breeding remains entirely viable. This aligns well with the recent finding of only minor 

genetic divergence between colour morphs in polymorphic P. muralis populations from eastern 

Pyrennees, which suggests inter-morph gene flow must be sufficiently high to prevent the build-up 

of strong genetic differentiation between the morphs (Andrade et al. 2019). In short, although we 

found a weak disadvantage of heteromorphic mating in fertilisation success, the bias (which remains 

to be confirmed using a larger sample) involves only one of six heteromorphic crossings examined 

(Y♀-O♂), is not mirrored in the converse crossing (O♀-Y♂), and does not fit well with predictions 

of how correlational selection may lead to incipient reproductive isolation between morphs. Hence, 

our results suggest that colour polymorphism is not promoting speciation in P. muralis lizards from 
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eastern Pyrennees, while arguing against a fitness advantage of homomorphic matings as an 

explanation for the high prevalence of morph-assortative pairings in natural populations. 

These results are in stark contrast with those of a previous mating experiment in P. muralis 

from northern Italy where parental morph combination was found to significantly impact 

reproductive output, and female colour morphs were found to show alternative breeding investment 

strategies (Galeotti et al. 2013). In that study, orange and yellow females showed an overall higher 

fertilisation success and embryonic viability when paired assortatively, while white morph females 

performed better when paired with orange males. In addition, yellow morph females tended to 

produce many light offspring and white females produced few heavy juveniles. Similar morph-specific 

strategies have also been found in females of the common lizard (Zootoca vivipara), a close relative of 

the genus Podarcis (Vercken et al. 2007; Vercken and Clobert 2008; but see Cote et al. 2008). While 

our results agree with these studies on the negative relationship between juvenile mass and clutch 

size, we failed to replicate any of their results concerning colour polymorphism. It is possible that 

these contrasting results are biologically meaningful. Most of the evidence suggesting physiological 

or behavioural morph differences in P. muralis comes from studies on the Southern Alps lineage, 

which is only distantly related to the Western European lineage of the Pyrenees (Giovannotti et al. 

2010; Schulte et al. 2012; Gassert et al. 2013; Salvi et al. 2013; Yang et al. 2018). Recent studies in 

polymorphic organisms have reported correlations between local environmental factors and morph 

population frequencies (McLean and Stuart-Fox 2014; McLean et al. 2014a,b, 2015), incorporating 

climate and other abiotic components of natural selection into the study of the adaptive value of 

colour polymorphism (Roulin 2004; Svensson 2017; Svensson et al. 2020). In P. muralis, both climatic 

and demographic factors (i.e. sex ratio) may affect morph composition, suggesting the worth to 

investigate the environmental dependence of morph fitness in future research (Pérez i de Lanuza et 

al. 2017, 2018b; Pérez i de Lanuza and Carretero 2018). In fact, we deem the finding that P. muralis 

colour morphs do not show strong genetic incompatibilities an important motivation for new studies 

tackling the environmental dependence of morph fitness in natural populations (see also Abalos et 

al. 2020). 

Although we did not find evidence of a strong morph combination effect on reproductive 

output, we found lower inter-annual survival in the offspring of orange morph males. Calsbeek et al. 

2010 reported lower levels of inter-annual survival for free-roaming orange morph lizards inhabiting 

a stone church and a cemetery at < 1 km from where our experimental tubs were positioned. Having 

also found larger body sizes and higher levels of parasite infection in orange morph lizards, Calsbeek 

et al. (2010) argued that selection may have favoured a higher investment on dominance and 

reproduction in the orange morph, at the cost of a weaker immune function and shorter lifespan than 

the other morphs. Alternative life-history strategies subject to environmentally-dependent fitness 

have been described in other polymorphic systems such as the tawny owl (Strix aluco), where grey-

coloured individuals live longer and produce more offspring than the brown morph under cold 
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environmental conditions, but the situation is reversed under warmer conditions (Brommer et al. 

2005). Unfortunately, both ours and Calsbeek et al. (2010) results may conflate mortality with 

dispersal, as no experimental constrain to dispersal was established when monitoring the free-

roaming population, and restrictions to fieldwork during the COVID-19 lockdown may have allowed 

some of our juveniles to escape the outdoor tubs through the overgrown vegetation. Although in 

both cases the study site was surrounded by unsuitable lizard habitat and researchers failed to find 

marked lizards in the adjacent area, these results do not allow us to disentangle the relative effects of 

escape and mortality on the observed pattern of inter-annual re-sighting. Still, the fact that two 

independent studies found a similar bias in inter-annual re-sighting concerning the orange morph 

suggests the potential value of investigating differences in life-history traits such as life expectancy, 

longevity, or dispersal among P. muralis colour morphs in future research. 

Our monitoring of colour expression in the surviving lizards yielded important information 

regarding morph inheritance and ontogeny. Although based on a limited sample size, the observed 

morph frequencies among the subadult lizards allow us to reject certain mechanisms of inheritance 

that control morph expression in other polymorphic lizards. For instance, a mechanism based on a 

single locus with three co-dominant alleles (e.g. U. stanburiana; Sinervo et al. 2010; Ctenophorus pictus; 

Olsson et al. 2007) entails that yellow-orange offspring can only result from YO matings and that 

WW crossings should always produce white morph lizards, two conditions that are not met in our 

sample (Fig. 5.6). Likewise, a mechanism based on two separate loci (each with two alleles) where 

presence of the dominant O and Y allele results in colour expression (Ctenophorus decresii; Rankin et 

al. 2016) would restrict the outcome of certain inter-morph matings in a way incompatible with our 

observations (e.g. WY crossings could never result in orange offspring). By contrast, observed morph 

frequencies were congruent with those expected under the assumption that yellow and orange 

coloration are controlled by two separate loci (each with two alleles) where recessive homozygosity 

of the y and o alleles results in colour expression (Andrade et al. 2019). In fact, orange and yellow 

subadults were primarily produced in OO and YY homomorphic crossings (respectively), while 

heteromophic and WW homomorphic crossings resulted in a wider range of differently-coloured 

offspring (Fig. 5.6). Several corollaries follow these results. First, white coloration showing genetic 

dominance over orange and yellow offers a simple explanation for the overall higher prevalence of 

this morph in natural P. muralis populations (Pérez i de Lanuza et al. 2017, 2018b; Andrade et al. 

2019). Second, recessive expression of orange and yellow coloration may have important implications 

on colour polymorphism maintenance, as recessivity lowers exposure to selection hence allowing for 

the expression of alternative (e.g. specialist) phenotypes only under particular conditions. In turn, this 

highlights the need to genotypically characterize P. muralis lizards when studying morph frequencies 

and selection in natural populations. Lastly, these results evidence taxonomic diversity in the genetic 

architecture of lizard colour polymorphism. Assesing the evolutionary causes and consequences of 
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such diversity may be a fruitful avenue of research for future comparative studies (Stuart-Fox et al. 

2020). 

 

 

Figure 5.6. Left) Morph assignment for 67 subadult P. muralis lizards one year after hatching. 

Numbers correspond to sample size per morph combination. Right) Barplot comparing the observed 

morph frequencies (O) per parental morph combination with the frequencies expected (E) if the 

expression of orange and yellow (instead of white) ventral coloration required recessive homozygosity 

at two separate loci, each with two alleles. 

 

Concerning morph ontogeny, the spectrophotometric analysis of throat coloration revealed 

that the white coloration expressed by 99% of newborn lizards presents increased reflectance in the 

UV waveband relative to subadult lizards showing incipient morph expression (Fig. 5.7). Further, 

within-individual chromatic distances suggest that all colour morphs are likely perceived by 

conspecifics as chromatically distinct from the UV-white coloration expressed by newborn lizards. 

This observation carries interesting implications for our understanding of the ontogeny of ventral 

colour polymorphism in P. muralis and other lacertid lizards, as white morph lizards have been often 

assumed to retain the juvenile ventral coloration during growth (in contrast with orange, yellow, and 

mixed-morph lizards) (e.g. Pérez i de Lanuza et al. 2013). Our results suggest instead that hatchlings 

express a newborn-specific colour that is chromatically distinct from either of the colour morphs 

expressed in the throat by adult lizards. Interestingly, similar UV-reflecting white coloration has been 

documented in the belly (but not the throat) of many female P. muralis lizards from eastern Pyrenees 

suggesting that, in these populations, females may retain the newborn coloration in their bellies 

through adulthood (see Fig. 2 in Pérez i de Lanuza and Font 2015). This unexpected result expands 

the scope for a role of P. muralis ventral coloration in a communication context (Pérez i de Lanuza et 

al. 2013a, 2016b; Pérez i de Lanuza and Font 2015). For instance, UV-white throat coloration 

(typically exhibited by newborn lizards) may act as a chromatic signal conveying information about 

its owner’s young age and sexual immaturity during social interactions. Juvenile coloration has been 
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found to reduce aggression from adult conspecifics in some vertebrate species (Hill 1989; Ochi and 

Awata 2009), including lizards (Clark and Hall 1970; Hawlena et al. 2006; Fresnillo et al. 2015).  

 

 

Figure 5.7. Ontogenetic change in throat coloration. a) Pie charts represent the fraction of juveniles 

showing different throat colours (UVw = UV-white, w = white, o = orange y = yellow, ow = orange-

white, yo = yellow-orange) in September 2019 (3-4 weeks after hatching), and July 2020 (one year 

after hatching). b) Reflectance spectra from the 46 surviving juveniles showing pure colour morphs 

in July 2020 (solid lines and shaded area represent means±1 SEM). The dashed blue line represents 

the mean UVw spectra shown by these same lizards when first measured in September 2019. For 

clarity, the spectra have been normalized by making the reflectance at all wavelengths proportional 

to the maximum reflectance. c) Boxplots showing chromatic distances between paired measurements 

of throat reflectance in the surviving lizards of each colour morph. Horizontal dotted lines indicate 

the discriminability thresholds of 1 just noticeable difference (JND; values above 1 JND indicate 

pairs of colours that are discriminable under good illumination conditions) and 3 JND (values above 

3 JND indicate easily discriminable pairs of colours).  
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Altogether, our results suggest that, at least in the examined populations (i.e. eastern 

Pyrenees), P. muralis colour morphs do not reflect alternative breeding investment strategies in 

females and parental morph combination does not influence offspring viability, behaviour, and 

survival. Although we found lower fertilisation success in YO crossings, we list several reasons why 

this result should be confirmed in new studies before inferring its possible consequences for the long-

term maintenance of colour polymorphism. In contrast with the widely held assumption that P. 

muralis morphs reflect complex suites of co-adapted gene complexes (i.e. alternative phenotypic 

optima) evolved by correlational selection, overall our results suggest that inter-morph breeding 

remains entirely viable in P. muralis while maintaining the uncertainty about which mechanism is 

preventing any of the colour morphs from going extinct. 
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5.6. Appendix S1: Expanded materials and 

methods 

5.6.1. Additional information on the housing of gravid females in the 

lab 

We housed females individually in 55 x 38 x 28 cm high plastic terraria with a substrate of coco husk, a water 

dish, a shelter, and a small brick for basking over which we suspended a 40 W incandescent light (18-35ºC 

temperature gradient). We also introduced a plastic bowl filled with moist coco husk (11 cm of diameter, 8 cm 

deep) which the females used to lay the eggs. We set the light cycle to mimic field conditions during the 

reproductive season at the capture site (15L:9D), and additionally provided all lizards with full spectrum light 

(Reptistar 5.0: Sylvania, Danvers, MA, USA) for 2 h daily (12.00–14.00 h). We fed lizards two Tenebrio molitor 

larvae dusted with vitamins (JBL Terravit, Neuhofen, Germany) every other day. Overall, females stayed in the 

laboratory for less than 15 days before being released at their capture sites (i.e. after oviposition). 

5.6.2. Additional information on spectrophotometry and visual 

modelling 

To characterize the spectral properties of juvenile P. muralis throats, we obtained reflectance spectra using a 

USB 2000 portable diode-array spectrometer equipped with a QP200-2-UV/VIS-BX reading-illumination 

probe and a PX-2 Xenon strobe light for full spectrum illumination (Ocean Optics Inc., Dunedin, FL, USA; 

Font et al. 2009). Measurements encompassed the 300–700 nm range to cover the entire visual spectrum of P. 

muralis (Pérez i de Lanuza and Font 2014; Martin et al. 2015a.b).  

We used Vorobyev and Osorio's (1998) receptor noise model and the R package PAVO (Maia et al. 

2013) to determine quantitatively the chromatic distance (i.e. discriminability) between the throat colour 

exhibited by each recaptured individual 3-4 weeks after hatching, and one year later (September 2019 vs. July 

2020). We assumed a cone abundance ratio of 1:1:1:4 (corresponding to the UV-, short-, middle- and long-

wavelength sensitive cones, previously used in lacertids; Marshall and Stevens 2014; Martin et al. 2015a,b; Pérez 

i de Lanuza et al. 2018), and a Weber fraction of 0.05 for the long-wavelength sensitive cone (see Pérez i de 

Lanuza et al. 2018 for further details). Cone absorbance spectra of P. muralis were obtained from the literature 

(Martin et al. 2015a,b). 

5.6.3. Additional information on parentage analysis 

We isolated DNA from tail-tip samples using the DNAeasy 96 Blood & Tissue Kit (Qiagen, Valencia, CA, 

USA), obtaining a final elution volume of 150 µl in AE buffer. We then combined the microsatellite primers 

into two different multiplexes (MPA: Pm16, Pm09, PmurC168; MPB: Pm19, Pm14, PmurC038) and ran 

standard PCR reactions with 26 cycles and a final extension step of 30 min at 60ºC. Forward primers were 

labelled with different fluorescent dyes (FAM, NED, HEX). Diluted PCR products (1:5) were genotyped 

together with an internal ladder (Red ROX-500) on an ABI 3130 genetic analyser (Applied Byosystems Inc.). 

One researcher (JA) scored the alleles for every adult and juvenile lizard in Geneious 7.0.4 (Biomatters, available 

at http://www.geneious.com), which we used to conduct paternity analyses in Cervus 3.0 (Marshall et al. 1998; 
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Kalinowski et al. 2007). We assigned paternity based on the log-likelihood statistic of each mother-father-

offspring trio (LOD scores), using two confidence levels (strict: 95%, relaxed: 80%) and the male within each 

tank as candidate father. Critical LOD scores were determined by running a simulation paternity analysis based 

on 100,000 offspring with known mothers and nine candidate fathers. 

5.6.4. Additional information on statistical analysis 

We examined the effect of parental morph and morph combination on reproductive output by fitting linear 

mixed models (LMMs) with the total number of eggs laid (clutch size) and the number of viable juveniles as 

response variables, and juvenile mass, female mass, as well as male and female colour morph (and the interaction 

between the two) as fixed factors. We also included female capture locality, experimental tank, and whether the 

female was captured at the end of the previous season or not as random factors (capture year). To evaluate the 

possible effect of parental morph combination on fertilisation success (1) and embryonic viability (2), we fitted 

two logistic mixed models (GLMM binomial) with the number of fertilised and unfertilised eggs (1), or the 

number of viable and unviable embryos (2) conceived by each female as dependent variables, female mass, 

clutch size, and the interaction between male and female colour morph as fixed factors, and female capture 

locality, year, and experimental tank as random factors. Likewise, to investigate the effect of parental morph on 

survival we fitted two logistic mixed models with the number of deceased and surviving lizards 3-4 weeks after 

hatching (when the juveniles were introduced in the outdoor tanks, September 2019), and approximately one 

year after hatching (in July 2020) as dependent variables, and the same factors, covariates and interactions 

described above. We also tested for morph differences in juveniles mass at birth (i.e. a proxy of newborn quality) 

and inter-annual growth by fitting a linear mixed model including the same explanatory variables. 

To analyse juvenile behavioural tests we first coded the performance of each lizard in the antipredator trial as 

1 if the lizard entered the shelter in the given time (5 min) or 0 if the lizard failed to do so. Likewise, we coded 

the performance of each lizard in the foraging ability trial as 1 if the juvenile captured and consumed the prey 

during the 5 min period, or 0 if it did not. We then fitted two generalized mixed models with a binomial 

distribution on juvenile performance, including female mass, juvenile mass, clutch size, and the interaction 

between male and female colour morph as fixed factors, as well as female identity, capture year, locality, and 

experimental tank as random factors. Restricting the analysis to the juveniles which either entered into the 

shelter or bit the novel prey item, we further assessed the existence of morph combination biases in antipredator 

response and foraging ability by fitting two separate linear mixed models with latency as the dependent 

variables, and the same factors, covariates and random factors as above. 

Additionally, to specifically address the hypothesis that genetic incompatibilities between colour morphs 

(leading to an heterozygote or homozygote advantage) may contribute to the maintenance of P. muralis colour 

polymorphism over time, for each of the models described above we run another model in which we included 

the factors, covariates and interactions, but substituted the interaction between male and female colour morph 

with a dichotomous factor differentiating homomorphic from heteromorphic pairings. 
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Tables 

 

Table 5.S1. Results from linear models examining potential inter-morph differences in morphometric and 
male colour traits in our sample of experimental lizards.  

Sex Trait Orange White Yellow F P-value 

Males 
SVL 67.6 ± 1.6 66.5 ± 1.8 67.8 ± 2.3 F 2, 42 = 0.65 P = 0.526 

Mass 6.7 ± 0.3 6.4 ± 0.4 6.9 ± 0.5 F 2, 42 = 2.05 P = 0.143 

Females 
SVL 63.4 ± 1.2 63.2 ± 1.0 63.6 ± 0.9 F 2, 129 = 0.75 P = 0.476 

Mass 5.3 ± 0.4 5.3 ± 0.3 5.6 ± 0.3 F 2, 129 = 0.67 P = 0.517 
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Table 5.S2. Results from GLMMs examining potential differences in reproductive performance 

among different parental morph combinations. Significant predictors are highlighted in bold (α = 

0.95, P < 0.05). Statistics for non-significant factors are included at the point of their deletion from 

the model. 

Response variable Predictors df χ2 P-value pseudo-r2 

Clutch size 

Male morph 2 χ2 = 0.32 P = 0.851 

0.32 

Female morph 2 χ2 = 1.03 P = 0.598 

Female mass 1 χ2 = 15.88 P < 0.001 

Juvenile mass 1 χ2 = 20.23 P < 0.001 

Male morph*Female morph 4 χ2 = 3.07 P = 0.547 

Viable clutch size 

Male morph 2 χ2 = 0.17 P = 0.921 

0.05 

Female morph 2 χ2 = 5.02 P = 0.081 

Female mass 1 χ2 = 2.17 P = 0.141 

Juvenile mass 1 χ2 = 5.66 P = 0.017 

Male morph*Female morph 4 χ2 = 2.23 P = 0.694 

Fertilisation success 

Male morph 2 χ2 = 2.18 P = 0.337 

0.19 

Female morph 2 χ2 = 17.36 P = 0.001 

Female mass 1 χ2 = 0.83 P = 0.361 

Clutch size 1 χ2 = 0.01 P = 0.942 

Male morph*Female morph 4 χ2 = 19.50 P < 0.001 

Embryonic viability 

Male morph 2 χ2 = 1.95 P = 0.376 

0.07 

Female morph 2 χ2 = 2.70 P = 0.259 

Female mass 1 χ2 = 6.36 P = 0.012 

Clutch size 1 χ2 = 0.44 P = 0.507 

Male morph*Female morph 4 χ2 = 2.80 P = 0.591 

Juvenile mass 

Male morph 2 χ2 = 0.98 P = 0.707 

0.21 

Female morph 2 χ2 = 0.79 P = 0.674 

Female mass 1 χ2 = 0.14 P = 0.711 

Clutch size 1 χ2 = 21.75 P < 0.001 

Male morph*Female morph 4 χ2 = 3.63 P = 0.459 
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Table 5.S3. Results from GLMMs examining potential differences in reproductive performance 

among assortative and disassortative pairings. Significant factors are highlighted in bold (α = 0.95, P 

< 0.05). Statistics for non-significant factors are included at the point of their deletion from the 

model. 

Response variable Predictors df χ2 P-value pseudo-r2 

Clutch size 

Homo/hetero-morphic 1 χ2 = 0.357 P = 0.550 

0.32 Female mass 1 χ2 = 15.88 P < 0.001 

Juvenile mass 1 χ2 = 20.23 P < 0.001 

Viable clutch size 

Homo/hetero-morphic 1 χ2 = 2.39 P = 0.243 

0.05 Female mass 1 χ2 = 2.38 P = 0.123 

Juvenile mass 1 χ2 = 5.66 P = 0.017 

Fertilisation success 

Homo/hetero-morphic 1 χ2 = 9.46 P = 0.002 

0.03 Female mass 1 χ2 = 0.11 P = 0.737 

Clutch size 1 χ2 = 0.14 P = 0.704 

 Homo/hetero-morphic 1 χ2 = -0.07 P = 1.000  

Embryonic viability Female mass 1 χ2 = 6.36 P = 0.012 0.07 

 Clutch size 1 χ2 = 0.46 P = 0.497  

Juvenile mass 

Homo/hetero-morphic 1 χ2 = 0.08 P = 0.772 

0.21 Female mass 1 χ2 = 0.04 P = 0.848 

Clutch size 1 χ2 = 21.75 P < 0.001 
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Table 5.S4. Results from GLMMs examining the effect of parental morph combination on juvenile 

antipredator response and foraging ability. Significant factors are highlighted in bold (α = 0.95, P < 

0.05). Statistics for non-significant factors are included at the point of their deletion from the 

model. 

Response variable Predictors df χ2 P-value pseudo-r2 

Juvenile enters the 
shelter (yes, no) 

Male morph 2 χ2 = 0.36 P = 0.837 

0.03 

Female morph 2 χ2 = 1.41 P = 0.495 

Female mass 1 χ2 = 0.08 P = 0.776 

Juvenile mass 1 χ2 = 4.12 P = 0.042 

Clutch size 1 χ2 = 0.06 P = 0.811 

Male morph*Female morph 4 χ2 = 3.89 P = 0.421 

Latency to enter inside 
the shelter 

Male morph 2 χ2 = 2.34 P = 0.310 

 

Female morph 2 χ2 = 3.31 P = 0.191 

Female mass 1 χ2 = 0.05 P = 0.825 

Juvenile mass 1 χ2 = 0.793 P = 0.208 

Clutch size 1 χ2 = 0.03 P = 0.859 

Male morph*Female morph 4 χ2 = 5.91 P = 0.206 

Juvenile eats the novel 
prey item (yes, no) 

Male morph 2 χ2 = 0.38 P = 0.828 

 

Female morph 2 χ2 = 2.57 P = 0.278 

Female mass 1 χ2 = 0.32 P = 0.572 

Juvenile mass 1 χ2 = 0.507 P = 0.477 

Clutch size 1 χ2 = 0.64 P = 0.423 

Male morph*Female morph 4 χ2 = 8.32 P = 0.081 

Latency to capture 
prey 

Male morph 2 χ2 = 1.53 P = 0.465 

0.16 

Female morph 2 χ2 = 0.06 P = 0.971 

Female mass 1 χ2 = 0.18 P = 0.672 

Juvenile mass 1 χ2 = 22.67 P < 0.001 

Clutch size 1 χ2 = 0.00 P = 0.992 

Male morph*Female morph 4 χ2 = 3.57 P = 0.467 

Latency to consume 
prey 

Male morph 2 χ2 = 0.47 P = 0.789 

0.16 

Female morph 2 χ2 = 1.51 P = 0.470 

Female mass 1 χ2 = 0.66 P = 0.415 

Juvenile mass 1 χ2 = 22.10 P < 0.001 

Clutch size 1 χ2 = 0.35 P = 0.553 

Male morph*Female morph 4 χ2 = 6.27 P = 0.180 
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Table 5.S5. Results from GLMMs examining the effect of assortative and disassortative pairing on 

juvenile antipredator response and foraging ability three-four weeks after hatching. Significant 

factors are highlighted in bold (α = 0.95, P < 0.05). Statistics for non-significant factors are included 

at the point of their deletion from the model. 

Response variable Predictors df χ2 P-value pseudo-r2 

Juvenile enters the 
shelter (yes, no) 

Homo/hetero-morphic 1 χ2 = 0.59 P = 0.443 

0.03 
Female mass 1 χ2 = 0.02 P = 0.900 

Juvenile mass 1 χ2 = 4.11 P = 0.042 

Clutch size 1 χ2 = 0.09 P = 0.760 

Latency to enter inside 
the shelter 

Homo/hetero-morphic 1 χ2 = 3.22 P = 0.073 

 
Female mass 1 χ2 = 0.34 P = 0.559 

Juvenile mass 1 χ2 = 0.35 P = 0.552 

Clutch size 1 χ2 = 0.09 P = 0.760 

Juvenile eats the novel 
prey item (yes, no) 

Homo/hetero-morphic 1 χ2 = 1.08 P = 0.299 

 
Female mass 1 χ2 = 0.82 P = 0.366 

Juvenile mass 1 χ2 = 0.35 P = 0.556 

Clutch size 1 χ2 = 1.07 P = 0.301 

Latency to capture 
prey 

Homo/hetero-morphic 1 χ2 = 1.15 P = 0.283 

0.16 
Female mass 1 χ2 = 0.04 P = 0.842 

Juvenile mass 1 χ2 = 22.67 P < 0.001 

Clutch size 1 χ2 = 0.00 P = 0.984 

Latency to consume 
prey 

Homo/hetero-morphic 1 χ2 = 2.75 P = 0.097 

0.16 
Female mass 1 χ2 = 0.56 P = 0.453 

Juvenile mass 1 χ2 = 22.67 P < 0.001 

Clutch size 1 χ2 = 0.40 P = 0.526 
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Table 5.S6. Results from GLMMs examining the effect of assortative and disassortative pairing on 

juvenile antipredator response and foraging ability one year after hatching. Significant factors are 

highlighted in bold (α = 0.95, P < 0.05). Statistics for non-significant factors are included at the 

point of their deletion from the model. 

Response variable Predictors df χ2 P-value pseudo-r2 

Juvenile enters the 
shelter (yes, no) 

Male morph 2 χ2 = 1.07 P = 0.587 

0.18 

Female morph 2 χ2 = 1.00 P = 0.607 

Homo/hetero-morphic 1 χ2 = 0.27 P = 0.606 

Female mass 1 χ2 = 5.37 P = 0.020 

Juvenile mass 1 χ2 = 1.23 P = 0.268 

Latency to enter inside 
the shelter 

Male morph 2 χ2 = 4.88 P = 0.087 

- 

Female morph 2 χ2 = 1.91 P = 0.385 

Homo/hetero-morphic 1 χ2 = 0.62 P = 0.432 

Female mass 1 χ2 = 0.16 P = 0.689 

Juvenile mass 1 χ2 = 0.69 P = 0.406 

Juvenile eats the novel 
prey item (yes, no) 

Male morph 2 χ2 = -0.79 P = 1.00 

- 

Female morph 2 χ2 = 4.61 P = 0.100 

Homo/hetero-morphic 1 χ2 = 0.02 P = 0.898 

Female mass 1 χ2 = 1.81 P = 0.178 

Juvenile mass 1 χ2 = 0.24 P = 0.623 

Latency to capture 
prey 

Male morph 2 χ2 = 2.03 P = 0.362 

- 

Female morph 2 χ2 = 0.42 P = 0.809 

Homo/hetero-morphic 1 χ2 = 0.01 P = 0.911 

Female mass 1 χ2 = 0.00 P = 0.959 

Juvenile mass 1 χ2 = 1.38 P = 0.240 

Latency to consume 
prey 

Male morph 2 χ2 = 1.80 P = 0.406 

0.14 

Female morph 2 χ2 = 1.20 P = 0.549 

Homo/hetero-morphic 1 χ2 = 0.04 P = 0.848 

Female mass 1 χ2 = 1.76 P = 0.184 

Juvenile mass 1 χ2 = 5.47 P = 0.019 
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Table 5.S7. Results from GLMMs examining potential differences in survival and inter-annual 

growth among different parental morph combinations. Significant factors are highlighted in bold (α 

= 0.95, P < 0.05). Statistics for non-significant factors are included at the point of their deletion 

from the model. 

Response variable Predictors df χ2 P-value pseudo-r2 

Survival (3-4 weeks) 

Male morph 2 χ2 = 0.12 P = 0.942 

0.09 

Female morph 2 χ2 = 3.94 P = 0.139 

Female mass 1 χ2 = 0.03 P = 0.854 

Juvenile mass 1 χ2 = 9.39 P = 0.002 

Male morph*Female morph 4 χ2 = 1.74 P = 0.782 

Survival (1 year) 

Male morph 2 χ2 = 8.57 P = 0.014 

0.21 

Female morph 2 χ2 = 0.33 P = 0.327 

Homo/hetero-morphic 1 χ2 = 0.65 P = 0.421 

Female mass 1 χ2 = 2.29 P = 0.131 

Juvenile mass 1 χ2 = 10.43 P = 0.001 

Inter-annual growth 

Male morph 2 χ2 = 1.28 P = 0.527 

- 

Female morph 2 χ2 = 0.56 P = 0.758 

Homo/hetero-morphic 1 χ2 = 0.55 P = 0.456 

Female mass 1 χ2 = 0.97 P = 0.325 

Juvenile mass 1 χ2 = 0.02 P = 0.887 

 



 

166 

 

                                                                                                             Chapter V 

Table 5.S8. Likelihood ratio tests for observed and expected morph frequencies in subadult lizards 

of know parental morph combination. To calculate the expected frequencies we considered two 

separate loci (each with two alleles) where recessive homozygosity of the y and o alleles results in the 

expression of yellow and orange coloration, respectively. Bold letters mark significant deviations from 

the expected frequencies. Deviations may derive from adult colour morphs not being yet expressed 

at the moment of measurement. 

   Offspring expressed colour 
G df =3 P 

   W O Y YO 

Morph 

combination 

WW 
Observed 7 2 3 0 

1.58 0.663 
Expected 6.75 2.25 2.25 0.75 

WO 
Observed 4 1 6 1 

10.46 0.015* 
Expected 4.50 4.50 1.50 1.50 

WY 
Observed 7 2 4 0 

0.70 0.874 
Expected 5.25 1.75 5.25 1.75 

OO 
Observed 1 4 0 0 

- - 
Expected 0 3.75 0 1.25 

OY 
Observed 6 3 4 0 

8.02 0.046* 
Expected 3.25 3.25 3.25 3.25 

YY 
Observed 0 0 9 2 

0.27 0.965 
Expected 0 0 8.25 2.75 
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Figures 

 

 

Figure 5.S1. Outdoor plastic tubs at the Statión d’Ecologie Théorique et Expérimentale (SETE, Moulis, 

France).
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Figure 5.S2. Male-female pair of P. muralis lying in physical contact (i.e. co-perching) inside one of the 

experimental tanks during the staged mating trials. A white paint mark for individual identification can be seen 

on the female’s dorsal surface. 

 



 

169 

 

                                                                                                             Chapter V 

 

 

Figure 5.S3. Experimental setup for the lab-staged viability tests in which we examined the antipredator 

response and foraging ability of newborn lizards with differing parental morph combination. 
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Figure 5.S4. Barplots showing the absolute frequencies of male-female pairs observed either lying in physical 

contact (i.e. co-perchings) or engaged in copulatory behaviour, grouped by morph combination. 
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Figure 5.S5. Boxplots showing the total number of eggs (i.e. clutch size) according to morph combination. 

Boxes indicate the interquartile range (IQR, 50% of data). Horizontal lines represent the median and bars 

extend to 1.5 times the IQR. A jittered dot cloud represents each value in our dataset. 
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Figure 5.S6. Above, predicted probability that juveniles enter the shelter (left), or eat the prey item (right), 

calculated at two different points in time: 3-4 weeks after hatching (September 2019), and one year later (July 

2020). Below, latency to enter into the shelter (left), or eat the prey (right) measured in the tested juveniles at 

the same two different points in time. Circles mark the position of the mean and bars extend to the CI95. 

Numbers on top of the error bars indicate sample size. Asterisks represent significant (p < 0.05) mean 

differences. 
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Video recordings 

 

Video 5.S1. Screenshot of a newborn lizard approaching a novel prey item during the lab-staged behavioural 

assays. The full recording (30x accelerated) will be available for download as a separate MP4 file. 



 

174 

 

Chapter VI 
 

“The enemy of science is not religion. The true enemy is the substitution of thought, reflection, 

and curiosity with dogma.”  

·Frans de Waal, Are we smart enough to know how smart animals are? 

(2016)· 

“All right then, keep your secrets…” 

· Frodo Baggins, The Fellowship of the Ring (2001)·
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Chapter VI: 

 General discussion 

 

6.1. No evidence for alternative strategies in P. 

muralis colour morphs 

This thesis explores the functional significance of colour polymorphism in the European common 

wall lizard (Podarcis muralis). We have addressed frequently overlooked (or inadequately studied) 

aspects regarding the link between behaviour, fitness, and colour polymorphism to ascertain whether 

P. muralis ventral colours may function as social signals reflecting a set of alternative behavioural or 

life-history strategies evolved by correlational selection, as is frequently assumed in the literature 

(Sinervo et al. 2007; Calsbeek et al. 2010; Sacchi et al. 2017b; Coladonato et al. 2020). In addition, we 

have tested predictions of another evolutionary mechanism (i.e heterosis) which could generate 

balancing selection and explain the maintenance of colour polymorphism over time. Lastly, the results 

we present here contribute to our (still limited) knowledge of the ontogeny and heritability of colour 

morphs in this species. In this general discussion we will provide overall conclusions and suggest 

directions for future work. 

 A necessary condition for the putative function of P. muralis colour morphs as chromatic 

signals mediating social interactions is that the lizards themselves can perceive them as categorically 

distinct (Endler 1990; Maynard-Smith and Harper 2003; Tibbetts et al. 2017). However, for many 

polymorphic species, chromatic variation between morphs has not been quantified objectively, and 

morph classification is solely based on human perception (Stuart-Fox et al. 2020). In Chapter II we 

used reflectance spectrophotometry, visual modelling, and a discrimination experiment to establish 

that P. muralis lizards perceive chromatic variation among colour morphs as discrete, and can be 

trained to discriminate these colours even if at the lower range of perceptual distances generated by 

natural colour variation (see Fig. 2.6 in Chapter II). Adding an achromatic control to each chromatic 

discrimination test and comparing the number of errors involving these controls against other 

incorrect chromatic stimuli, we could reasonably conclude that the discrimination exhibited by the 

trained lizards was based on the chromatic properties of colour (i.e. hue, chroma) rather than 

luminance differences (Kelber et al. 2003). In addition, we found evidence that chromatic distances 

between morphs vary depending on the morphs compared (orange and yellow morphs being the 

most similar combination, white and orange the most different), which may have implications for 

detectability and discrimination. Our results concerning newborn throat coloration in Chapter V 

further highlight the importance of spectrophotometry and visual modelling in the study of colour 
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patches exhibited by species with more sophisticated visual systems than our own. Based on human 

colour perception, white morph lizards have been commonly assumed to retain the juvenile ventral 

coloration (newborn lizards appear white to our eyes) during growth (e.g. Pérez i de Lanuza et al. 

2013). In contrast, we show here that newborn throat coloration reflects light in the near ultraviolet 

(UV-A) waveband and is likely perceived by conspecifics as a chromatically distinct colour different 

from any of the colour morphs expressed by adult lizards. This observation adds to our understanding 

of colour morph ontogeny while suggesting a possible role for juvenile UV-white coloration as a 

chromatic signal conveying information about its owner’s young age and sexual immaturity during 

social interactions (i.e. reducing aggression from conspecifics). Although these results suggest that 

there is scope for a potential function of ventral coloration in intraspecific communication, it is 

possible that the alternative ventral colours have no effect on receiver behaviour during social 

interactions. Despite the popularity of this hypothesis, few studies have tackled the putative signalling 

role of ventral coloration experimentally (e.g. Healey et al. 2007). Future studies should investigate 

the relative importance of throat coloration as a social signal in P. muralis and other lizards where 

colour morphs are presumed to mediate social encounters (e.g. social dominance in Uta stansburiana 

and Podarcis melisellensis, Sinervo and Lively 1996; Calsbeek and Sinervo 2002a, 2002b; Huyghe et al. 

2007; mate choice in Zootoca vivipara, Vercken and Clobert 2008; San-Jose et al. 2014) by recording 

the behaviour elicited by lizards prior to and after being painted to mimic a colour morph different 

than their own.  

Our findings suggest novel avenues for studies of the interaction between visual ecology, 

behaviour, and colour polymorphism in lacertid lizards. For instance, the ability of lizards to 

accurately discriminate between stimuli matching their own ventral colour variation may depend on 

how the stimuli are presented. Recent studies on human face colour change (i.e. skin-reddening) 

suggest that we detect perceptually smaller colour differences when the stimuli are presented on faces 

rather than on non-faces, and that colour differences are subjectively perceived as greater in 

magnitude when displayed on faces (reviewed in Thorstenson 2018). Similarly, lizards may show more 

fine-tuned colour discrimination when stimuli are displayed on the throats of conspecifics lizards 

rather than on circular stickers surrounding a well, a possibility that should be investigated in future 

studies. Another problematic aspect of morph categorization in lizards is that most studies have 

focused on the “pure” colour morphs, with mixed-morphs combining two different colours being 

either included within one of the pure colour morphs without justification, or entirely neglected from 

analysis (Carpenter 1995b; Sinervo and Lively 1996; Zamudio and Sinervo 2000; Galeotti et al. 2010; 

Pérez i de Lanuza et al. 2014; Pérez i de Lanuza and Font 2015; Taylor and Lattanzio 2016; Sacchi et 

al. 2017a). For a better understanding of colour polymorphism, whether these mixed morphs are 

perceived by conspecifics as categorically distinct or clustered together with one of the pure morphs 

should be evaluated in future research testing morph discrimination by conspecifics across different 

contexts and using different morph groupings to examine model fit (Teasdale et al. 2013; Yewers et 
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al. 2016; Stuart-Fox et al. 2020). Finally, although numerous studies across distantly related taxa have 

documented the importance of perceptual biases and sensory ecology in shaping the chromatic 

properties of social signals (Endler 1992; Hebets and Papaj 2005; Schaefer and Ruxton 2009; Stevens 

2013; Lindsay et al. 2019), no study has yet explored the possible existence of colour preferences in 

polymorphic lizards, which could help clarify the functional significance (if any) of lizard colour 

polymorphism in a communicative context (but see Wagner 1933; Benes 1969; Hodgkinson and Still 

1980). 

Perhaps the most important results included in this thesis concern our experimental 

assessment of whether alternative reproductive strategies, evolved by correlational selection and 

concerning male socio-sexual behaviour and/or female reproductive parameters, characterize the 

pure colour morphs of P. muralis. To correct the relative neglect of quantitative behavioural analysis 

in the literature on P. muralis colour polymorphism, in Chapter III and Chapter IV we put the focus 

on key aspects of the species’ behaviour and mating system which had received little attention. In 

Chapter III we found evidence that orange males tend to lose dyadic contests against other male 

morphs when confronting size-matched rivals in a neutral arena, which could result from the 

existence of a subordinate non-territorial strategy in this morph. However, a detailed analysis of these 

results and contrasting evidence from more recent studies argue against this interpretation (and the 

existence of alternative reproductive strategies in male morphs at large). To begin, in Chapter III 

lower levels of fighting ability were found in males showing either orange throat coloration and/or a 

smaller proportion of black coloration in their OVS, with our data being insufficient to disentangle 

the relative importance of each colour patch in determining contest outcome. Moreover, our results 

in Chapter IV, obtained both in a free-ranging population and in ten experimental mesocosm 

enclosures, strongly refute the hypothesis that alternative socio-sexual behaviour or space use 

strategies underlie colour morphs when lizards interact under more natural conditions. No colour 

morph was overrepresented among resident or transient lizards in the free-ranging population, and 

we did not observe morph differences in re-sighting propensity, inter-annual site-fidelity, distance 

between consecutive re-sightings, home-range size, or male-female spatial overlap. Lizards in the 

mesocosm experiment acclimated nicely and showed natural behaviour in accordance with our 

knowledge of the behaviour of free-ranging territorial lizards (Baird et al. 2001, 2003; Zamudio and 

Sinervo 2003; Baird 2013). Across colour morphs, social dominance was found to be the strongest 

predictor of male fitness. This was expected because social dominance in male lizards is typically 

associated with the ability to gain exclusive access to resources such as territories containing suitable 

basking/sheltering sites, which have a positive effect on the ability to thermo-regulate and are also 

attractive to females (Baird 2013; Whiting and Miles 2019). In addition, experimentally improved 

territories typically become smaller after treatment (e.g. by rock addition) while increasing female 

density (Calsbeek and Sinervo 2002c). Thus, the defence of a territory showing high microhabitat 

complexity (such as the high-quality sites in our enclosures) was expected to positively affect male 
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reproductive success via i) improving their ability to achieve a body temperature that maximizes 

physiological performance, ii) decreasing the energy expenditure of territory-defence, and iii) 

facilitating both mate-searching and mate-guarding (Edsman 1990; Calsbeek and Sinervo 2002c; 

Whiting and Miles 2019). Accordingly, males engaged frequently in chases and physical aggression 

against other males, and only a subset of highly dominant males (23%, all morphs being equally 

represented) succeeded in settling in high-quality sites. Females were similarly attracted to high-quality 

sites (and indirectly, males) but showed much lower levels of intra-sexual competition. Later in the 

experiment we observed durable associations of one male with one or more females lying in close 

vicinity (i.e. co-perching), a natural behaviour that has been interpreted in lizards as both a form of 

mate-guarding (While et al., 2015; Heathcote et al., 2016; Olsson et al., 2019), and a deterrent of male 

harassment (Censky, 1997; Drummond & Zaldívar-Rae, 2007). As expected, males in high-quality 

sites engaged in co-perching with a higher number of females, had smaller home-ranges, experienced 

significantly lower levels of sperm competition, and ultimately achieved higher reproductive success 

than males settled in low-quality sites. However, male colour morphs did not differ in their ability to 

establish themselves in high quality sites, win agonistic confrontations, or engage in either copulation 

or co-perching interactions with females. Likewise, male morphs did not differ in the number of 

females sired, offspring produced, or males with which they shared paternity (i.e. sperm competitors). 

Further, although the existence of alternative post-copulatory strategies in P. muralis male morphs 

should be specifically addressed in future studies, the observed alignment between socio-spatial 

dominance and paternity indirectly refutes the existence of physiological adaptations in any of the 

male morphs such as larger testis or ejaculates.  

Our results from Chapter IV and especially Chapter V also call into question the existence 

of alternative strategies in P. muralis, although this time in the form of differential breeding investment 

by female morphs. In neither of these studies we found evidence of a differential solution to the 

trade-off between egg number and size among female morphs. Heavier females were found to lay 

larger clutches irrespective of their colour morph, and the negative relationship between clutch size 

(i.e. egg number) and offspring quality (i.e. newborn mass) showed a similar slope in orange, white, 

and yellow females. The absence of differences in the viability, behaviour, and survival of juveniles 

resulting from either assortative or disassortative pairings in Chapter V further argues against the 

hypothesis that alternative strategies, evolved by correlational selection, may have favoured the build-

up of reproductive barriers among P. muralis colour morphs similar to those described in other 

polymorphic species (Gray and McKinnon 2007; Pryke and Griffith 2009a; Lancaster et al. 2014). 

These results run counter the expectation of most research on the functional significance of lizard 

colour polymorphism (Sinervo et al. 2007; Olsson et al. 2013; Stuart-Fox et al. 2020), and are also in 

contrast with some previous studies with P. muralis (Galeotti et al. 2007, 2013; Sacchi et al. 2009, 

2017b; Calsbeek et al. 2010; Zajitschek et al. 2012; Scali et al. 2013; Mangiacotti et al. 2019). In trying 

to publish these results, we have met with resistance from both editors and reviewers which have, 
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one way or another, judged our work based on how well the results matched the current zeitgeist 

rather than on the scientific soundness of our methodology. Some doubted the interest of “negative 

results” to their journal’s readership, others expressed their inconvenience (one reviewer even calling 

our results “disappointing”), while others observed that, by definition, it is statistically impossible to 

verify the null hypothesis (i.e. absence of differences) and hence questioned the relevance of our 

results. Much to the contrary, we think that they constitute an important contribution to the scientific 

conversation on lizard colour polymorphism. Our understanding of nature depends on the weighting 

of evidence for and against each hypothesis, a process recently described as “cumulative science” 

(Csada et al. 1996; Scargle 2000; Jennions and Møller 2002). Any form of publishing bias distorting 

the unbiased accumulation of supporting and contrasting evidence is potentially lethal for science 

reliability (Scargle 2000; Thornton and Lee 2000). Unfortunately, science-makers are as susceptible 

to unconscious bias as any other person, and humans show a tendency to search for, interpret, favour, 

and recall information in a way that confirms or supports one's prior beliefs or values (confirmation 

bias, Nickerson 1998). In his 1605 book “The advancement of learning”, Francis Bacon alludes to 

this particular bias by pointing out that it is human nature for “the affirmative or active to effect more 

than the negative or privative. So that a few times hitting, or presence, countervails oft-times failing 

or absence” (Petticrew 1998). We deem necessary to warn here against the establishment of a 

publication bias favouring “positive” or confirmatory results, as it will inevitably hinder our 

understanding of how nature works by giving rise to “echo chambers” where popular fit-for-all 

explanations may benefit doubly, first from the overrepresentation of supporting evidence in the 

literature, and second from the neglect of contrasting evidence (either through author self-censorship 

or editorial resistance; Rosenberg 2005; Pautasso 2010; Parker et al. 2016). 

Despite drawing substantial attention from evolutionary biologists, the evolutionary causes 

and consequences of lacertid colour polymorphism are still far from being resolved. After decades of 

study, the available evidence casts serious doubts about the generality of the Uta stansburiana model, 

and instead paints a much more complex picture with several evolutionary processes at stake and 

geographic variation playing a role in explaining the vast diversity of colour polymorphism in lacertid 

lizards (Huyghe et al. 2007, 2009a; Sinervo et al. 2007; Calsbeek et al. 2010; Runemark et al. 2010; 

Runemark and Svensson 2012; Galeotti et al. 2013; San-Jose et al. 2014; Sacchi et al. 2017b; Brock et 

al. 2020a). With respect to P. muralis, in Chapter IV and Chapter V we contend that the disagreement 

between our results and previous studies may prove biologically meaningful if carefully examined. 

This species shows the widest distribution of its genus, and most of the evidence suggesting 

physiological or behavioural morph differences comes from studies of the Southern Alps lineage, 

which is only distantly related to the Western European lineage found in the Pyrenees (Giovannotti 

et al. 2010; Schulte et al. 2012; Gassert et al. 2013; Yang et al. 2018). These observations, together 

with the high prevalence and ancient origin of colour polymorphism in wall lizards, suggest the 

intriguing possibility that genes coding for the expression of alternative colour morphs may become 
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linked to genes that influence other traits relevant to selection (i.e. physiology, behaviour, life-history, 

development) only at times, and hence be under selection only in some environments or in some 

lineages. This new perspective seems to better accommodate our current knowledge of lacertid colour 

polymorphism. Indeed, loss of the ancestral polymorphic condition seems to have occurred 

repeatedly within the genus Podarcis, and morph composition often shows considerable geographic 

variation even at relatively small scales. Therefore, we find it reasonable to investigate the possibility 

of spatially (and/or temporally) varying correlations between polymorphic colour expression and 

other phenotypic differences in Podarcis lizards, as well as to evaluate the relative importance of 

selection and genetic drift in shaping inter-populational differences in morph composition. 

Although this thesis tries to remedy some of the most frequently assumed (and inadequately 

studied) aspects of the link between behaviour, fitness, and colour polymorphism in P. muralis, a host 

of interesting questions remain unanswered. For instance, in these studies we have focused mainly 

on the three “pure” colour morphs of P. muralis, while neglecting the two mixed-morphs exhibited 

by a smaller fraction of lizards in many polymorphic populations. The existence of mixed-morphs 

has interesting implications regarding the possible role of alternative strategies and game theory in 

explaining the maintenance of P. muralis colour polymorphism. When viewed by conspecifics, the 

two mixed morphs of P. muralis could be confused with some of the pure colour morphs, or perceived 

as a categorically distinct morph (which could, in turn, affect receiver behaviour in ways relevant to 

fitness; Teasdale et al. 2013; Yewers et al. 2016; Stuart-Fox et al. 2020). While there are clear 

predictions and empirical evidence for the stability of systems with two or even three morphs 

(Maynard-Smith 1982; Alonzo and Calsbeek 2010; Kokko et al. 2014), an evolutionary stable strategy 

for a five-morph system proves challenging (due to the increased number of potential interactions). 

Therefore, we need to devote more attention to these mixed morphs, and come up with explanations 

for the functional significance of P. muralis colour polymorphism which accommodate the existence 

of intermediate colorations (i.e. considering adaptive, neutral, and maladaptive hypothesis for these 

mixed morphs). An interesting possibility, given the apparently identical genetic basis of orange and 

orange-white coloration and the fact that the latter constitutes a transient stage in the ontogeny of 

the former (Pérez i de Lanuza et al. 2013a; Andrade et al. 2019), is that the expression of orange-

white coloration may reflect poor developmental conditions (i.e. nutritional deficiencies) in adult 

lizards, and perhaps even convey information about its owner’s quality in social interactions. Our 

results from Chapter V partially refute this hypothesis since we did not observe any negative effect 

on the viability, behaviour, growth rate, or survival of the offspring produced in orange-white 

matings. However, new studies should take a closer look at this question by comparing the match 

between condition, social behaviour, and life-long fitness in “pure” and mixed-morphs in natural 

populations of P. muralis.  
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6.2. Shifting our perspective on the functional 

significance of P. muralis colour polymorphism 

In the wake of Sinervo’s pioneer work with Uta stansburiana, the hypothesis that lizard colour morphs 

may reflect underlying alternative reproductive strategies involving morph-specific behaviour or life-

history traits has come to dominate the field. Based on our results, we find it reasonable to reassess 

the allegedly central role of alternative reproductive strategies subject to frequency-dependent 

selection in explaining the maintenance of phenotypic variability in lizards. In the following 

paragraphs we will expand on three important reasons why we should shift our perspective. 

First, there are other contexts (besides morph-specific physiology or sexual behaviour) where 

colour polymorphism may play a functionally relevant role. As ethologists, here we will expand on a 

hypothesis concerning social behaviour, but many other unrelated with behaviour can be formulated. 

While most researchers have assumed that ventral coloration may influence social interactions by 

conveying information about behavioural strategies (Sinervo et al. 2007; Mangiacotti et al. 2019; 

Coladonato et al. 2020), the possible role of polymorphic colour variation in individual recognition 

has been generally overlooked. Individual recognition requires individuals to uniquely identify their 

social partners based on phenotypic variation, and show an individual-specific behavioural response 

(Tibbetts and Dale 2007; Tibbetts et al. 2008). Most territorial lizards studied to date show evidence 

of a “dear enemy” effect by which competing neighbours (after some initial confrontations to 

establish territories) direct low-intensity aggressive behaviour toward familiar males, but fiercely 

attack non-resident male strangers with which they have no previous experience (Qualls and Jaeger 

1991; Olsson 1994b; Whiting 1999; López and Martín 2002; Husak and Fox 2003; Baird 2013). 

Moreover, recent research on wall lizards suggests that males are able to discriminate between 

individual rivals of similar characteristics and familiarity solely on the base of their scent marks, 

remembering the spatial location of scent marks and behaving more aggressively toward males that 

consistently marked in the core of their experimental terrarium (Carazo et al. 2008; Font et al. 2012a). 

During the last two decades, research carried by Tibbetts and colleagues has shown how visual cues 

may play a role at least as important as that of chemical compounds in individual recognition. 

Polymorphic colour variation in facial features has been found to mediate inter-individual aggression 

by allowing individual recognition of familiar and unfamiliar conspecifics in Polistes paper wasps 

(Tibbetts 2002; Tibbetts et al. 2018, 2019, 2020). Further, by comparing Polistes species differing in 

the range of their colour variation, social systems, and ability for individual recognition, Sheehan and 

Tibbetts (2010) found support for the hypothesis that reduced aggression in social interactions may 

favour the evolution of distinctive phenotypes (i.e. identity signals) to facilitate efficient recognition. 

Although traditionally considered as mainly chemosensory (Mason and Parker 2010), wall lizards 

show both a sophisticated colour vision system and conspicuous colour patches (ventral colour 

polymorphism adding further complexity in some species), which makes it reasonable to think that 
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visual (as well as chemical) signals might be involved in individual recognition (Olsson 1994b; López 

and Martín 2001; Husak and Fox 2003).  

Figure 6.1. Throat colour variation within P. muralis colour morphs (the figure includes both males 

and females). Although the orange, white, and yellow ventral colours are perceived as discrete by the 

species visual system, there is considerable inter-individual variation (chromatic and achromatic) 

within each colour morph. Wall lizards possess a sophisticated visual system allowing them to 

discriminate subtle colour differences (that would go unnoticed to us humans), which makes it 

plausible to think that this variation could play a functionally relevant role in the context of individual 

recognition. Y = yellow, W = white, O = orange, OW = orange-white, YO = yellow-orange. 
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Even though chromatic variation among P. muralis colour morphs is discrete to the species’ 

visual system, there is also considerable variation (both chromatic and achromatic) within each morph 

(Fig. 2.6. and 6.1). This spectral variability (which P. muralis visual system is well-equipped to 

perceive) may play an overlooked role settling territorial disputes in P. muralis and other polymorphic 

lacertids by allowing individuals to identify their competing neighbours and adjusting their behaviour 

accordingly (Whiting 1999; Husak and Fox 2003; Font et al. 2012a). Three caveats against this 

hypothesis are worth emphasizing, which can be used to formulate testable predictions. First, it 

requires that individual recognition via visual signals may confer a selective advantage strong enough 

to promote the evolution of an additional individual recognition system partially redundant with the 

one based on chemical signals. Second, it requires inter-individual variation in ventral coloration to 

match the size of the typical P. muralis social network, so as to ensure that each of the social partners 

typically encountered by a lizard during the breeding season are sufficiently distinct to allow for 

efficient individual recognition (Tibbetts and Dale 2007; Carazo et al. 2008; Sheehan and Tibbetts 

2010; Font et al. 2012a). Third, perceptual limitations (i.e. such as visual acuity) must be considered 

when formulating hypotheses about the possible function of ventral coloration (see Box 1). Recent 

studies on Anolis visual acuity suggests that fine-scale details (e.g. dotted colour patterns in male 

dewlaps) may be visible to conspecifics only at distances of 0.5 m or shorter (i.e. during close-range 

social interactions; Fleishman et al. 2017, 2020). Due to the positive relationship between acuity and 

eye length, smaller lizard species (such as lacertid lizards) are expected to experience even lower visual 

acuity. Hence, while the fine-scaled details of P. muralis ventral coloration could possibly convey 

information about individual identity when observed at close proximity, it is likely that inter-

individual differences are simply not visible to conspecifics when observed at greater distances 

(Fleishman et al. 2020). Despite these caveats, future studies should investigate the potential role of 

ventral coloration in individual recognition, for example by assessing whether aggression declines 

towards lizards with experimentally altered ventral coloration as these novel colorations become 

familiar to their opponents (Tibbetts 2002; Tibbetts et al. 2008, 2017). Another promising approach 

would be to investigate whether the range of chromatic variation within each species of Podarcis lizards 

(with and without ventral colour polymorphism) may correlate positively with their performance in 

an individual recognition task (Sheehan and Tibbetts 2010). We think that much insight can be gained 

from testing this and other possible functions of P. muralis colour polymorphism in contexts different 

from reproductive strategies. 

Second, other evolutionary forces (besides those favouring alternative reproductive 

strategies) can generate frequency-dependent selection and prevent any of the morphs from 

becoming extinct (Roulin 2004; Roulin and Bize 2007; Svensson 2017). These include some forms of 

apostatic selection such as the existence of a rare prey/predator advantage (Lindström et al. 2001; 

Olendorf et al. 2006; Halpin et al. 2008; Lawrence et al. 2019), or a rare morph social advantage (in 

the outcome of agonistic confrontations or mate choice trials; (Gosden and Svensson 2009; Dijkstra 
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et al. 2010; Willink et al. 2019), which may explain the persistence of colour polymorphism in the 

absence of behavioural differences among the alternative colour morphs. Balancing selective regimes 

may also result from all morphs following the same behavioural rule (e.g. mate with the most 

uncommon morph, or mate with a morph different than own). Reproductive success is particularly 

difficult to measure in natural populations of Podarcis lizards. Therefore, no study to date has explicitly 

attempted to test frequency-dependent selection in natural populations of any Podarcis species 

showing colour polymorphism. However, we think that a mesocosm experiment such as the one in 

Chapter IV could allow researchers to investigate these questions in a semi-natural environment by 

introducing one morph consistently in lower frequency across the enclosures while also being able to 

assign parentage for all the resulting offspring. 

Third, other mechanisms different from frequency-dependent selection may also result in 

balancing selective regimes (Roulin 2004; Roulin and Bize 2007; Wellenreuther et al. 2014; Svensson 

2017). One of our aims in Chapter V was to investigate the existence of heterozygote advantage 

affecting viability selection (i.e. survival to adulthood) in the offspring of matings between P. muralis 

colour morphs, which could help explain the persistence of colour polymorphisms despite the 

assortative mating bias observed in natural populations (Pérez i de Lanuza et al. 2013a, 2016b). Our 

results do not support this hypothesis, yet, in light of new information on the genetic basis of P. 

muralis colour polymorphism (see Andrade et al 2019 and Chapter V), it would be interesting to re-

assess the potential existence of morph combination effects (that could have gone unnoticed at the 

phenotypic level we examined) in future studies focused at the genotypic level. Another mechanism 

which could explain the maintenance of P. muralis colour polymorphism is spatio-temporally varying 

selection (see Introduction). Several recent studies have reported correlations between local 

environmental factors and morph population frequencies in polymorphic organisms (McLean and 

Stuart-Fox 2014; McLean et al. 2014a,b, 2015), incorporating climate and other abiotic components 

of natural selection into the study of the adaptive significance of colour polymorphism (Roulin 2004; 

Svensson 2017; Svensson et al. 2020). In P. muralis, both climatic and demographic factors (i.e. sex 

ratio) may affect morph composition (Pérez i de Lanuza et al. 2017, 2018b; Pérez i de Lanuza and 

Carretero 2018). Such correlations could be explained by a direct relationship between colour morph 

and local environmental factors (e.g. if morphs represent adaptations to different habitats; Ahnesjö 

and Forsman 2006; Gray and McKinnon 2007; Forsman et al. 2008; McLean and Stuart-Fox 2014). 

Interestingly, in eastern Pyrenees both yellow and orange-yellow lizards have been found to be 

geographically restricted to a subset of populations showing relatively higher annual precipitation and 

marked seasonality, thus suggesting that differential ecophysiology may influence morph fitness in 

different environments (Pérez i de Lanuza et al. 2018b). Alternatively, the relationship between 

climate and morph composition could indirectly result from the effect of climatic factors on morph-

specific social interactions (e.g. non-random pairing) (McLean and Stuart-Fox 2014; McLean et al. 

2015; Pérez i de Lanuza and Carretero 2018). In P. muralis, morph richness has been found to be 
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associated with male-biased sex ratio in males but not in females, suggesting a relationship between 

the intensity of male-male competition and colour polymorphism (Pérez i de Lanuza et al. 2017). In 

light of these results, we think that much insight could be gained from investigating the environmental 

dependence of morph fitness in populations characterized by extreme morph compositions and 

socio-ecological contexts, as well as disentangling the relative influence of genetic drift, spatially 

varying selection and gene flow to geographic variation in P. muralis colour polymorphism. 

To conclude, in this thesis we have hopefully presented compelling arguments to shift our 

perspective on the functional significance of lacertid colour polymorphisms, suggested promising 

lines of investigation for future research, and (more broadly) contributed to our growing 

understanding of the mechanisms maintaining intra-specific variation in natural populations at large. 
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6.3. Conclusions 

Chapter II 

Although ventral colours are often believed to act as a social signal in lizards, morph 

classification by its putative intended receivers (i.e. conspecifics) has rarely been assessed 

objectively. We used visual modelling and a discrimination experiment to show that at least 

the pure colour morphs of Podarcis muralis are likely perceived as chromatically distinct 

colours, and can also be behaviourally discriminated by adult conspecifics. This constitutes 

a necessary requisite for a potential signalling role of colour polymorphism in intraspecific 

interactions, yet future studies should evaluate the categorization of lizards showing mixed 

morphs (i.e. orange-white or yellow-orange) according to conspecifics. 

Chapter III 

We assessed the role of male coloration in agonistic encounters and found that both the dark 

melanin-based ventrolateral spots and the polymorphic ventral coloration correlate with 

contest outcome. We also found that winners were more aggressive when opponents showed 

matching proportions of their OVS covered in black, suggesting that black patches play a 

role in rival assessment and fighting rules. While we found a trend by orange males to lose 

confrontations against other morphs, we also observed relatively smaller OVS area covered 

in black in this morph, and hence, our results did not allow us to disentangle the relative 

importance of both types of coloration. These results suggest a role for male coloration in 

mediating intra-sexual confrontations, at least when the rivals are size-matched and meet in 

a neutral arena. Future studies should evaluate the interplay between morphology, colour 

signals, performance traits, and other known determinants of contest outcome (i.e. prior 

experience, residency, etc) when lizards meet under more natural conditions. 

Chapter IV 

The colour morphs of P. muralis are often thought to reflect an alternative set of underlying 

reproductive strategies involving differential socio-sexual behaviour and/or space use. 

Conducting behavioural observations both in a free-ranging population from eastern 

Pyrenees and in ten experimental mesocosm enclosures, we did not find evidence suggesting 

that the alternative colour morphs in P. muralis may obtain their reproductive success through 

differential social behaviour, space use, or reproductive investment strategies. These results 

contradict the commonly held hypothesis that P. muralis morphs reflect alternative 

behavioural strategies, and suggest that we should instead turn our attention to other 

potential functional explanations. We discuss the worth of investigating the existence of 

spatially (or temporally) varying correlations between polymorphic colour expression and 
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other phenotypic differences in Podarcis lizards, as well as evaluating the relative importance 

of spatially-varying selection and genetic drift in shaping inter-populational differences in 

morph composition. 

Chapter V 

Correlational selection and heterosis are two of the mechanisms commonly thought to 

maintain colour polymorphism in nature. Both mechanisms have contrasting predictions 

regarding the effect of parental morph combination on offspring viability and fitness. We 

conducted controlled matings among pure colour morphs and found no overall effect of 

morph combination on clutch viability, offspring mass, short-term survival, and newborn 

foraging and antipredator behaviour. Our results refute the existence of alternative breeding 

investment strategies in female morphs, while also showing that inter-morph reproduction 

remains entirely viable among colour morphs. By keeping the juveniles in outdoor enclosures 

for a year, we found support for the hypothesis that orange and yellow colour expression 

depends on two recessive alleles located at two separate autosomal loci. This is in agreement 

with theoretical expectations that colour polymorphism should be governed by few loci with 

major phenotypic effects. Lastly, we show that juvenile ventral coloration reflects ultraviolet 

light and is likely perceived by conspecifics as a chromatically distinct colour different from 

any of the morph colours expressed by adult lizards. 
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ROMÁN.- “Inventen, pues, ellos y nosotros nos aprovecharemos de sus invenciones. Pues 

confío y espero en que estarás convencido, como yo lo estoy, de que la luz eléctrica alumbra 

aquí tan bien como allí donde se inventó.” 

SABINO.- “Acaso mejor.” 

·Miguel de Unamuno, El pórtico del templo (1906)· 
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Chapter VII: 

Resumen en castellano 

 

7.1. Introducción 

7.1.1. El enigma del polimorfismo y su estabilidad a lo largo del tiempo 

Uno de los principales objetivos de la biología evolutiva es entender los procesos evolutivos 

implicados en el origen y el mantenimiento de la variabilidad fenotípica. Muchas especies 

filogenéticamente alejadas presentan dos o más formas fenotípicas discretas (i.e. morfos), cuya 

expresión es genética (no varía a lo largo de la vida del animal adulto ni depende del ambiente o la 

condición física), y que parecen mantenerse en una misma población sin desaparecer aunque sus 

frecuencias relativas puedan oscilar a lo largo del tiempo (Ford 1945; Roulin 2004; Gray and 

McKinnon 2007). Cuando estas formas fenotípicas difieren en su coloración corporal reciben el 

nombre de morfos de color. Las especies polimórficas suponen un enigma particularmente 

interesante para la biología evolutiva. En el supuesto de que uno de los morfos tuviese una mayor 

eficacia biológica, esperaríamos que acabase fijándose en la población, conduciendo a la extinción del 

resto de morfos y a la desaparición del polimorfismo. Aunque los morfos no difiriesen en su eficacia 

biológica, el polimorfismo podría acabar perdiéndose debido a procesos estocásticos (i.e. deriva 

genética), particularmente en poblaciones pequeñas. Por último, el polimorfismo puede evolucionar 

en una especie si existe un régimen de selección disruptiva por el que ciertos fenotipos extremos 

obtienen una ventaja selectiva respecto a otras formas intermedias (Gray and McKinnon 2007; 

Wellenreuther et al. 2014; Svensson 2017). En este caso, sin embargo, es esperable que la selección 

en contra de estas formas intermedias resulte en un aislamiento reproductivo entre los morfos, y que 

el polimorfismo constituya un preludio más o menos breve a la especiación. Por tanto, el 

mantenimiento del polimorfismo a largo plazo requiere de mecanismos de selección estabilizadora 

(i.e. balancing selection) que contrarresten el efecto erosivo de la deriva génica, la selección y la posible 

aparición de barreras reproductivas entre morfos (Sinervo and Svensson 2002; Gray and McKinnon 

2007; Mckinnon and Pierotti 2010). 

7.1.2. Mecanismos para el mantenimiento del polimorfismo en la 

naturaleza 

El valor adaptativo del polimorfismo está frecuentemente asociado al mecanismo de selección 

responsable de su mantenimiento en el tiempo (Roulin 2004). Los morfos suelen diferir en otros 

rasgos (i.e. comportamiento, fisiología) además de su coloración. Se considera que estas co-
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variaciones han surgido mediante procesos de selección disruptiva que favorecen distintas 

combinaciones óptimas de rasgos fenotípicos (i.e. estrategias alternativas; Sinervo and Svensson 

2002b; Mckinnon and Pierotti 2010). Un buen ejemplo de este proceso lo encontramos en el caso de 

la polilla Biston betularia, en la que podemos encontrar dos morfos de colores distintos: uno de color 

claro y otro de color oscuro. Durante la primera parte del último siglo, el oscurecimiento de los 

troncos de los árboles en ciertas áreas industrializadas confirió una ventaja selectiva a las polillas de 

morfo oscuro (que resultaban más difíciles de detectar por parte de los depredadores), lo que provocó 

un aumento en su frecuencia respecto al morfo claro (Cook et al. 2012). Este caso ilustra cómo la 

evolución puede favorecer correlaciones genéticas entre el polimorfismo de color y otros rasgos (e.g. 

comportamiento), ya que las polillas que elijan posarse en superficies sobre las que sean crípticas 

perecerán en menor medida que las que elijan posarse sobre superficies que contrasten con su propia 

coloración (Kettlewell 1955; Majerus 1998, 2005). Además de en un contexto de cripsis, las 

coloraciones polimórficas pueden participar en otros contextos relevantes para la selección, y 

desempeñar por tanto una función clave para la eficacia de distintos tipos de estrategias alternativas 

(e.g. mimetismo, aposematismo, trampas sensoriales, termorregulación, señalización; Galeotti et al. 

2003; Roulin 2004; Mckinnon and Pierotti 2010). Sin embargo, la asociación entre las distintas 

estrategias alternativas y los morfos de color también podría producirse por la existencia de 

interacciones genéticas entre los genes responsables de la expresión del polimorfismo y de otros 

rasgos relevantes para la selección (e.g. ligamiento, pleiotropía). En este caso, los morfos constituirían 

un subproducto no adaptativo de la selección sobre estos otros rasgos, acompañando a las distintas 

estrategias pero sin cumplir ninguna función esencial para su eficacia (Roulin 2004; Mckinnon and 

Pierotti 2010; Svensson 2017). Este tipo de interacciones genéticas podrían estar detrás de la frecuente 

asociación entre polimorfismos de color y estrategias vitales caracterizadas por diferencias 

morfológicas, fisiológicas y de comportamiento. Aunque la mayor parte de los estudios se centran en 

las estrategias alternativas de reproducción, las ventajas conferidas por cada estrategia pueden 

manifestarse en otros aspectos de la vida de los organismos, como la evitación de los depredadores, 

el forrajeo o el estado inmunológico. 

 Para que un polimorfismo de color sea estable en el tiempo no basta con que cada morfo 

adopte una estrategia alternativa distinta. De hecho, la evolución de estrategias alternativas en cada 

morfo puede levantar barreras reproductivas entre estos al penalizar la producción de descendencia 

con rasgos intermedios, abriendo el camino a un proceso de diversificación por el que cada morfo 

daría lugar a una nueva especie. Numerosos ejemplos en la literatura demuestran cómo la selección 

sobre distintas combinaciones óptimas de rasgos (selección correlativa) favorece el apareamiento 

concordante y la aparición de incompatibilidades genéticas entre los morfos (Roulin 2004; Gray and 

McKinnon 2007; Pryke and Griffith 2009a; Lancaster et al. 2014). Por tanto, además de las estrategias, 

es necesario que exista un régimen de selección por el que las distintas estrategias obtengan el mismo 

éxito reproductivo en promedio (Shuster and Wade 2003). Existen cuatro mecanismos de selección 
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distintos por los que esta situación puede alcanzarse: i) cuando la eficacia de cada estrategia depende 

de su frecuencia relativa en la población (selección dependiente de frecuencia), ii) cuando la eficacia 

de cada estrategia depende del número absoluto de individuos en la población (selección dependiente 

de densidad), iii) cuando las interacciones competitivas entre las distintas estrategias son no transitivas 

(es decir, semejantes a un juego de piedra, papel y tijera), y iv) cuando la heterogeneidad ambiental 

provoca que la selección sobre las distintas estrategias varíe en el espacio o en el tiempo (selección 

fluctuante) (Brockmann 2001; Galeotti et al. 2003; Roulin 2004; Roulin and Bize 2007; Taborsky et 

al. 2008; Taborsky and Brockmann 2010; Wellenreuther et al. 2014; Svensson 2017). Estos cuatro 

mecanismos a menudo actúan junto a otros procesos (e.g. dinámicas migratorias de fuente-sumidero, 

preferencias de apareamiento sesgadas por el morfo, incompatibilidades genéticas) haciendo que el 

mantenimiento del polimorfismo responda a escenarios evolutivos muy distintos en cada una de las 

distintas especies examinadas hasta la fecha.  

 Además de la existencia de estrategias alternativas, existen otros mecanismos capaces de 

explicar el mantenimiento del polimorfismo en poblaciones naturales. Por ejemplo, dos o más morfos 

alternativos pueden coexistir si los individuos genéticamente intermedios (i.e. heterocigotos) obtienen 

una ventaja en términos de eficacia biológica (Gratten et al. 2008, 2010; Johnston et al. 2013). Al tener 

un menor de nivel de endogamia que los individuos homocigotos, los heterocigotos evitan la 

expresión de un mayor número de rasgos deletéreos (i.e. “ventaja del heterocigoto”), lo que les 

capacita para lidiar con un mayor rango de ambientes. Además, si esta ventaja concierne 

exclusivamente a la probabilidad de que un individuo alcance la edad de reproducción, el 

polimorfismo podrá mantenerse en el tiempo aunque en la especie exista preferencia por el 

apareamiento concordante (Roulin 2004; Roulin and Bize 2007). 

7.1.3. El polimorfismo de color en lagartos  

Varias especies de lagartos alejadas tanto filogenética como geográficamente presentan 

polimorfismos de color y constituyen, por tanto, un grupo adecuado para poner a prueba hipótesis 

acerca de la evolución y función de los polimorfismos. En la mayor parte de las familias en las que se 

han descrito morfos de color, las coloraciones alternativas se expresan en la superficie ventral del 

animal, particularmente en la garganta (Stuart-Fox et al. 2020). Parece haber también una notable 

convergencia en cuanto a los colores exhibidos. La mayor parte de las especies muestran 

combinaciones de los mismos tres fenotipos: un morfo naranja o rojo, otro morfo amarillo y un 

morfo blanco o azulado. En algunas especies también se dan coloraciones intermedias que pueden 

combinar dos de estos tres colores (Huyghe et al. 2007; Corl et al. 2010; Paterson and Blouin-Demers 

2018; Stuart-Fox et al. 2020). Las coloraciones naranjas y amarillas están basadas en la acumulación 

de pigmentos (pteridinas y carotenoides) en las capas superiores de la dermis, pero la importancia 

relativa de cada tipo de pigmento parece variar entre especies (San-Jose et al. 2013; Haisten et al. 

2015; Andrade et al. 2019; Stuart-Fox et al. 2020). Las coloraciones blancas o azuladas son, 
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probablemente, de naturaleza estructural, y sus propiedades espectrales dependen del ordenamiento 

de los cristales de guanina y su efecto sobre la dispersión de la luz incidente en la dermis (Bagnara et 

al. 2007; Umbers 2013). Aunque la arquitectura genética del polimorfismo se ha estudiado solo en 

pocas especies, la evidencia sugiere una base genética simple, con uno o dos loci autosómicos y tres 

o cuatro alelos involucrados en la expresión de las distintas coloraciones alternativas (Rankin et al. 

2016; McLean et al. 2017; Stuart-Fox et al. 2020). 

La investigación acerca del significado funcional del polimorfismo en lagartos se ha visto 

notablemente influida por los primeros trabajos realizados durante los años 80 y 90 en la lagartija de 

árbol norteña (Urosaurus ornatus; Hover 1985; Thompson and Moore 1991; Carpenter 1995) y la 

lagartija de mancha lateral norteña (Uta stansburiana; Sinervo and Lively 1996; Sinervo et al. 2000; 

Zamudio and Sinervo 2000; Calsbeek and Sinervo 2002). En ambas especies, la coloración ventral 

parece afectar de forma crítica a las interacciones sociales (además de estar asociada con otras 

diferencias morfológicas, fisiológicas y de comportamiento) lo que sugiere la existencia de estrategias 

alternativas de reproducción (Sinervo and Lively 1996; Sinervo et al. 2000a; Lattanzio and Miles 2016; 

Taylor and Lattanzio 2016; Paterson and Blouin-Demers 2018). En el caso de U. stansburiana, el 

seguimiento longitudinal de una población concreta en “Los Baños” (California, USA) permitió al 

equipo de investigación liderado por Barry Sinervo explicar el mantenimiento de tres morfos distintos 

en esta especie como un juego de piedra, papel y tijera entre tres estrategias alternativas de 

reproducción en machos, cada una asociadas genéticamente a un morfo distinto (Sinervo and Lively 

1996). Según las observaciones de comportamiento publicadas por este grupo, los machos de 

coloración naranja son muy agresivos con otros machos y a menudo desplazan a los machos azules 

para usurpar sus territorios. Aunque esta estrategia les permite aparearse con un número elevado de 

hembras, los machos naranja acaban patrullando espacios domésticos demasiado grandes para ser 

defendidos de forma efectiva, y a menudo pierden paternidad en favor de los machos de morfo 

amarillo. Estos últimos supuestamente imitan tanto el comportamiento como la coloración de las 

hembras receptivas y obtienen su éxito reproductivo de manera oportunista, realizando incursiones 

en los territorios de otros machos para copular con las hembras disponibles (pero sin defender un 

territorio propio). A su vez, los machos azules compensan su desventaja competitiva frente a los 

machos naranjas jugando una estrategia de guarda de la pareja que les protege en gran medida de la 

estrategia oportunista de los machos amarillos (Sinervo and Lively 1996; Sinervo et al. 2000a, 2006b; 

Zamudio and Sinervo 2000, 2003). De esta forma el polimorfismo se mantiene mediante un juego 

cíclico de piedra, papel y tijera en la que cada estrategia, cuando domina en la población, es vulnerable 

a la invasión por parte de otra de las estrategias. En machos, esta dinámica da lugar a oscilaciones 

periódicas de unos 5-6 años en la frecuencia relativa de cada uno de los morfos (Sinervo and Lively 

1996; Alonzo and Sinervo 2001; Sinervo et al. 2006b, 2007; Alonzo and Calsbeek 2010). Además, 

estos ciclos se combinan con oscilaciones periódicas (de unos dos años) en las frecuencias relativas 

de los morfos en hembras, donde la coloración ventral se asocia a dos estrategias distintas de inversión 
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reproductiva (i.e. las hembras naranjas invierten en la calidad de la descendencia mientras que las 

amarillas priorizan la cantidad) (Sinervo et al. 2000b, 2010; Sinervo 2001; Sinervo and Zamudio 2001). 

A la luz de estos resultados, Zamudio y Sinervo indicaron que los lagartos presentaban una serie de 

características ecológicas que favorecían la evolución de estrategias alternativas de reproducción con 

base genética, y que era esperable que en futuros estudios se detectasen escenarios evolutivos 

semejantes a los descritos en U. stansburiana en otras especies de lagartos polimórficos (Zamudio and 

Sinervo 2003; Sinervo and Calsbeek 2006). Por varias razones, señalaron a las lagartijas del género 

Podarcis como un grupo particularmente prometedor (Sinervo et al. 2007; Calsbeek et al. 2010).  

7.1.4. Especie de estudio: la lagartija roquera (Podarcis muralis, Laurenti 

1768) 

La especie del género Podarcis cuyo polimorfismo de color ha sido mejor estudiado es la lagartija 

roquera (Podarcis muralis). Esta especie destaca por ser la más ampliamente distribuida del género, con 

poblaciones desde el Norte de la Península Ibérica hasta el Mar Negro, y varios linajes en las islas y 

penínsulas mediterráneas (Arnold et al. 2002; Salvi et al. 2013). Esta especie presenta la coloración 

típica de muchos lacértidos: un dorso parduzco relativamente críptico, una coloración ventral 

polimórfica, y una línea de manchas azul-UV en la hilera de escamas ventrales externas (Pérez i de 

Lanuza et al. 2013b). Por su conspicuidad y su posición corporal (adecuada para controlar su 

visibilidad mediante la postura), la coloración ventral y las manchas azul-UV podrían funcionar como 

señales cromáticas (Font et al. 2009; Marshall and Stevens 2014; Pérez i de Lanuza et al. 2014; Martin 

et al. 2015c). En muchas poblaciones se distinguen dos coloraciones ventrales alternativas (morfos): 

blanco (w=white) o naranja (o=orange), y en algunas poblaciones aparece también un tercer morfo 

amarillo (y=yellow). Además, pueden encontrarse, normalmente en menor frecuencia, morfos de 

coloración intermedia, combinando manchas de dos colores: amarillo-naranja y blanco-naranja 

(Calsbeek et al. 2010; Pérez i de Lanuza et al. 2013a, 2019). Sin embargo, como en muchos otros 

lagartos polimórficos, la clasificación de los morfos se ha realizado de acuerdo a la visión humana, y 

aún no se ha validado de acuerdo al sistema visual de la especie (véase Teasdale et al. 2013). La 

coloración ventral de las lagartijas al nacer es blanquecina o grisácea para el ojo humano (aunque 

nunca se ha caracterizado con métodos objetivos de medición del color), y la coloración adulta se fija 

al alcanzar la madurez sexual (uno o dos años más tarde dependiendo de la población; Pérez i de 

Lanuza et al. 2013a). Aunque aún se sabe poco de la base genética de este polimorfismo, un estudio 

genómico reciente detectó relación entre la presencia de dos alelos recesivos en dos loci autosómicos 

distintos (implicados en el metabolismo de pteridinas y carotenoides), y la expresión de coloración 

naranja y amarilla (Andrade et al. 2019). Este mismo estudio confirmó que la coloración ventral es 

pigmentaria al revelar que los lagartos amarillos y naranjas difieren principalmente en la proporción 

de carotenoides y pteridinas integumentarias (y no en los pigmentos implicados). El cruce de animales 

de distinto morfo y su mantenimiento en cautividad hasta la expresión de la coloración adulta ayudaría 
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a confirmar el mecanismo de herencia y a obtener más información acerca de la ontogenia del 

polimorfismo del color ventral en esta especie.  

La hipótesis de que los distintos morfos de color de P. muralis reflejan estrategias alternativas 

de reproducción semejantes a las descritas en U. stansburiana ha dominado la literatura hasta hoy 

(Galeotti et al. 2007, 2013; Scali et al. 2013; Sacchi et al. 2017b; Coladonato et al. 2020; Mangiacotti 

et al. 2020). En este sentido, si bien es cierto que se han detectado diferencias entre los morfos en 

distintos rasgos (sobre todo fisiológicos), el patrón emergente es incoherente entre los distintos 

estudios, y dista mucho de aportar evidencia concluyente acerca de la existencia de estrategias 

alternativas bien definidas en los distintos morfos (Scali et al. 2013; Sacchi et al. 2017b, 2018). La 

realidad es que la existencia de estrategias alternativas en esta especie a menudo se ha asumido a partir 

de evidencias indirectas, mientras que aspectos clave para el éxito reproductivo de la especie (i.e. 

comportamiento social, sexual y espacial) han sido ignorados o estudiados de forma inapropiada 

(Calsbeek et al. 2010; Coladonato et al. 2020; Mangiacotti et al. 2020). En esta tesis tratamos de paliar 

estas carencias y descifrar el valor adaptativo del polimorfismo de color en la lagartija roquera 

mediante el uso de herramientas procedentes de la ecología sensorial, la teoría sobre selección sexual 

y la etología. 

7.2. Objetivos 

Esta tesis se centra en aspectos que han sido ignorados o inadecuadamente estudiados en anteriores 

trabajos que exploraban la relación entre comportamiento, eficacia biológica y polimorfismo de color 

en la lagartija roquera (Podarcis muralis), una especie de lacértido donde suele asumirse la existencia de 

estrategias alternativas de reproducción asociadas a cada morfo. En concreto, con esta tesis 

pretendemos:  

a) Mejorar la consistencia con la que clasificamos los morfos explorando la 

discriminabilidad de la variación cromática para el sistema visual de la especie 

mediante modelos visuales y un experimento de comportamiento (Capítulo II). 

b) Explorar la relación entre la coloración (incluyendo la coloración ventral 

polimórfica), el comportamiento agonístico y la habilidad competitiva en 

enfrentamientos por parejas entre machos (Capítulo III). 

c) Examinar la existencia de estrategias alternativas de reproducción que impliquen 

diferencias en el comportamiento social, sexual o espacial de los machos, así como 

la existencia de estrategias alternativas de inversión reproductiva (r/K) en hembras 

(Capítulos IV y V). 

d) Evaluar si la combinación parental de morfos afecta a la viabilidad de la 

descendencia, de acuerdo a lo esperado bajo selección correlativa o ventaja del 

heterocigoto (Capítulo V). 
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e) Incrementar nuestro conocimiento sobre la herencia y la ontogenia del 

polimorfismo de color (Capítulo V). 

 

7.3. Capítulo II: Discriminación de los morfos de 

color en la lagartija roquera por el sistema visual de 

la especie 

7.3.1. Introducción 

Varios trabajos sobre el polimorfismo de color en P. muralis asumen una función comunicativa para 

la coloración ventral en el contexto de las interacciones sociales entre individuos de la misma especie 

(Sacchi et al. 2017a; Coladonato et al. 2020; Mangiacotti et al. 2020). Un requisito indispensable para 

la validación de esta hipótesis es la obtención de evidencia empírica de que las lagartijas perciben los 

distintos morfos de color como categóricamente distintos y pueden discriminarlos (Endler 1990; 

Maynard-Smith and Harper 2003; Tibbetts et al. 2017). Sin embargo, ningún estudio ha examinado 

esta cuestión en P. muralis de acuerdo al sistema visual de la especie (Teasdale et al. 2013).  

7.3.2. Métodos y resultados 

En este capítulo, utilizamos tanto modelos visuales como un experimento de comportamiento para 

evaluar la discriminabilidad de los tres colores básicos que conforman el polimorfismo de color en P. 

muralis. Por una parte, calculamos las distancias cromáticas en el espacio de color perceptual de P. 

muralis entre las distintas combinaciones de morfos, y encontramos que probablemente las lagartijas 

perciben los tres colores como cromáticamente distintos, y que la distancia perceptual es mayor entre 

la coloración naranja y la blanca que entre la naranja y la amarilla. Por otra parte, utilizamos un 

experimento de aprendizaje para dilucidar si P. muralis es capaz de discriminar estímulos de color 

diseñados para imitar los morfos de color de la especie. Entrenamos a 20 lagartijas adultas para que 

se alimentasen de un dispositivo de madera provisto de cuatro pocillos, cada uno de ellos cubierto 

con una tapa y marcados con una pegatina de un color distinto (naranja, amarillo, blanco y un control 

acromático con la misma luminancia que la del color de entrenamiento). Para la mitad de las lagartijas, 

la presa se introdujo siempre en el pocillo marcado con el color amarillo, mientras que para la otra 

mitad la presa siempre estaba en el pocillo marcado con la pegatina naranja. Tras un promedio de seis 

ensayos las lagartijas mostraron evidencias de aprendizaje, reduciendo significativamente el tiempo 

transcurrido hasta hallar el alimento (i.e. latencia) y explorando menos pocillos antes de dar con el 

correcto que los esperados si hubiesen elegido al azar.  
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7.3.3. Discusión 

Nuestros resultados confirman que las lagartijas roqueras pueden discriminar entre estímulos que 

imiten los tres morfos de color puros presentes en la especie. La inclusión de un control acromático 

nos permite concluir que la discriminación se basa en las propiedades cromáticas de los estímulos, y 

no en diferencias de luminancia (Kelber et al. 2003). Además, el hecho de que la distancia cromática 

(en el espacio perceptual de la especie) varíe significativamente dependiendo de la combinación de 

morfos puede tener implicaciones adicionales sobre la detectabilidad y eficacia de la señal, y por tanto 

plantea cuestiones interesantes acerca del diseño de esta posible señal. Aunque estas observaciones 

constituyen un primer paso imprescindible para poner a prueba la hipótesis de que los morfos de 

color puedan actuar como señales visuales en un contexto de comunicación intra-específica, aún 

quedan varias cuestiones que deberían ser evaluadas en futuros trabajos. Por ejemplo, es posible que 

pese a ser capaces de discriminar los morfos de color, estos no tengan ningún efecto sobre el 

comportamiento de los conespecíficos. Además, este estudio se ha centrado en la coloración exhibida 

por los morfos puros, pero ignoramos si las lagartijas roqueras perciben a los morfos mixtos como 

una categoría aparte, o por el contrario los incluyen dentro de uno de los morfos puros. 

 

7.4. Capítulo III: El papel de la coloración en 

combates entre machos de lagartija roquera 

7.4.1. Introducción 

Los machos adultos de lagartija roquera muestran un dorso críptico (que posiblemente evolucionó 

para eludir la detección por parte de los depredadores) y unas manchas de color bastante más 

conspicuas en su superficie ventral y ventrolateral (Pérez i de Lanuza and Font 2015). Además del 

polimorfismo de color ventral, en las escamas ventrales externas los machos muestran dos tipos de 

manchas: unas manchas oscuras basadas en melanina y otras que presentan su pico de reflectancia en 

el ultravioleta cercano (azules para el ojo humano; Pérez i de Lanuza et al. 2014). Durante las 

interacciones agonísticas, los machos exhiben una serie de posturas que favorecen la visibilidad de 

estas manchas de color, sugiriendo una posible función comunicativa en el contexto de la 

competencia intrasexual (Kitzler 1941; in Den Bosch and Zandee 2001; Baird 2013).  

7.4.2. Métodos y resultados 

Para evaluar la importancia relativa de cada una de estas manchas sobre la intensidad y el resultado 

de los combates intrasexuales, capturamos 60 machos de lagartija roquera en distintas poblaciones 

del Pirineo (20 de cada morfo) y diseñamos un torneo anidado en el que cada lagartija se enfrentó a 

rivales de tamaño semejante en una arena neutra. En cada combate, registramos el comportamiento 
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de cada oponente y determinamos un vencedor solo si uno de los machos dejó de mostrar 

comportamientos agresivos y únicamente huía de su rival. Aunque no encontramos relación entre el 

tamaño y las propiedades espectrales de las manchas azul-UV y la habilidad competitiva (calculada 

mediante un modelo Bradley-Terry; Stuart-Fox et al. 2006; Firth and Turner 2012), las otras dos 

manchas de color examinadas sí que parecieron afectar al resultado de estos conflictos. Los machos 

de morfo naranja y aquellos cuyas manchas oscuras cubrían un área proporcionalmente menor que 

las de sus rivales mostraron una tendencia a resultar perdedores en enfrentamientos contra otros 

machos (u otros morfos).  

7.4.3. Discusión 

Entre las manchas de color examinadas, la coloración oscura destacó por presentar la relación más 

fuerte y estrecha con la habilidad competitiva de los machos y es, por tanto, la mejor posicionada 

para funcionar como una señal agonística. En particular, la observación de que la intensidad de los 

combates fue mayor cuando menor fue la diferencia en el tamaño de las manchas oscuras de los 

oponentes es especialmente notable, puesto que sugiere que los machos usan la información 

contenida en la señal para ajustar su inversión en el combate (Enquist and Leimar 1983; Arnott and 

Elwood 2009). La ausencia de relación entre las manchas azul-UV y la habilidad competitiva resulta, 

en cierta medida, sorprendente, dado que existen convincentes razones científicas para pensar que 

estas manchas podrían desempeñas un papel en el contexto de la competencia entre machos (Marshall 

and Stevens 2014; Pérez i de Lanuza et al. 2014; Martin et al. 2015c). Es posible que su efecto sea más 

importante en fases tempranas de los enfrentamientos, o que su presencia caracterice a los machos 

sexualmente maduros, pero que ni su tamaño ni sus propiedades espectrales informen acerca de la 

habilidad competitiva de su portador. La existencia de una desventaja competitiva en los machos de 

morfo naranja podría plantear interesantes cuestiones respecto a la existencia de una estrategia 

alternativa en este morfo (quizás una estrategia no-territorial que obtenga su éxito reproductivo de 

manera oportunista; Waltz 1982; Taborsky 2001; Shuster and Wade 2003). Sin embargo, puesto que 

los machos naranjas también mostraron manchas oscuras más pequeñas, nuestros datos no nos 

permiten dilucidar la importancia relativa de ambos tipos de manchas. Concluimos que para seguir 

investigando la posible existencia de estrategias alternativas en los morfos de color sería necesario 

examinar otros aspectos relacionados con la competencia intrasexual como la territorialidad, el 

comportamiento social o la competencia espermática (Healey et al. 2007; Olsson et al. 2009). 
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7.5. Capítulo IV: Comportamiento socio-sexual y 

uso del espacio en los morfos de color de la 

lagartija roquera 

7.5.1. Introducción 

La hipótesis de que el polimorfismo de color refleja estrategias alternativas de reproducción 

semejantes a las descritas en U. stansburiana subyace a la mayoría de los estudios sobre el valor 

adaptativo del polimorfismo en lagartos (Zamudio and Sinervo 2003; Olsson et al. 2013; Stuart-Fox 

et al. 2020). En este sentido, las lagartijas del género Podarcis (y especialmente la lagartija roquera, 

Podarcis muralis) se consideran un grupo particularmente prometedor. En primer lugar, como mínimo 

13 de las 24 especies reconocidas en el género presentan polimorfismos de color en la superficie 

ventral del cuerpo, pudiendo distinguirse hasta tres morfos “puros” (naranja, blanco, amarillo) y uno 

o más morfos mixtos (Arnold et al. 2002; Huyghe et al. 2007; Sacchi et al. 2007; Runemark et al. 2010; 

Andrade et al. 2019; Pérez i de Lanuza et al. 2019; Brock et al. 2020b; Jamie and Meier 2020). En 

segundo lugar, muchas de estas especies son filopátricas y ocupan hábitats donde los recursos 

importantes para la reproducción (e.g. refugios, zonas de asoleamiento) son fácilmente 

monopolizables (Strijbosch et al. 1980; Barbault and Mou 1988; Edsman 1990, 2001; Carretero 2007; 

Sinervo et al. 2007; Calsbeek et al. 2010; Font et al. 2012a). Por lo general, las hembras parecen verse 

atraídas por la calidad o familiaridad del hábitat, y no por ninguna característica particular de los 

machos (Edsman 1990, 2001; Font et al. 2012a). Por tanto, los machos experimentan una intensa 

competencia intrasexual en el contexto de disputas territoriales por acceder y defender estos recursos 

(y a las hembras asociadas) de otros machos sexualmente maduros (Edsman 1990; Font et al. 2012a). 

A pesar de esto, las hembras suelen aparearse con más de un macho por ciclo reproductivo de forma 

que la mayoría de las puestas muestran paternidad múltiple, lo que extiende el campo de acción de la 

selección sexual para los machos más allá de la cópula en forma de competencia espermática 

(Oppliger et al. 2007; Uller and Olsson 2008; Heathcote et al. 2016). Todos estos factores aumentan 

la variabilidad en el éxito reproductivo de los machos y reducen la posibilidad de que un macho pueda 

experimentar distintos ambientes durante su vida, lo que favorece la aparición de estrategias 

alternativas de reproducción con base genética en este sexo (Brockmann 2001; Shuster and Wade 

2003; Zamudio and Sinervo 2003). Dada la dificultad de realizar registros de comportamiento y 

determinar el éxito reproductivo individual en poblaciones naturales, la mayor parte de los estudios 

centrados en P. muralis han priorizado la detección de diferencias fisiológicas entre los morfos (e.g. 

estado inmune, respuesta al estrés, niveles hormonales; Galeotti et al. 2007; Calsbeek et al. 2010; 

Sacchi et al. 2017b) asumiendo de forma indirecta la existencia de diferencias clave en el 

comportamiento socio-sexual o espacial compatibles con la presencia de estrategias alternativas de 

reproducción en machos.  
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7.5.2. Métodos y resultados 

Para estudiar la posible existencia de estrategias alternativas de reproducción en poblaciones 

polimórficas de P. muralis, en este capítulo analizamos el comportamiento social, el uso del espacio y 

el éxito reproductivo de los morfos de color puros en una población natural del Pirineo oriental y en 

diez cercados experimentales (mesocosmos). La población natural estudiada habita una serie de 

muros de piedra (hoy abandonados y parcialmente cubiertos de vegetación) situados en una pendiente 

orientada hacia el este en la localidad francesa de Angoustrine-Villeneuve-des-Escaldes. La abundante 

población de lagartija roquera presente en estos muros nos permitió reunir un considerable volumen 

de datos sobre el comportamiento espacial de los lagartos durante las primaveras de cinco años 

consecutivos (2006-2010). Para los cercados experimentales utilizamos las instalaciones de la Station 

d’Ecologie Theorétique et Experiméntale (Moulis, Francia). Cada cercado consistía en un área (48 m2) de 

vegetación herbácea natural en la que instalamos seis pallets de madera, rocas, troncos y piedras para 

crear un hábitat atractivo para los lagartos. Colocamos los seis pallets en dos hileras y creamos dos 

tipos de hábitats (de alta y baja calidad) variando la cantidad de ladrillos, troncos y rocas apilados 

sobre cada tipo de pallet. Registramos el comportamiento de los lagartos durante las interacciones 

sociales, y cuando las hembras mostraron síntomas de gravidez, recapturamos a todas las lagartijas e 

incubamos las puestas para determinar la paternidad mediante análisis genéticos de microsatélites. En 

la población natural, no encontramos un efecto del morfo sobre la movilidad inter-anual, el tamaño 

del espacio doméstico o el solapamiento entre machos y hembras. De forma similar, el principal 

determinante del éxito reproductivo de los machos en los cercados experimentales fue la dominancia 

social, sin que el morfo jugase ningún papel relevante. Mientras que la mayor parte de las hembras se 

establecieron en los hábitats de alta calidad, solo un tercio de los machos (aquellos que mostraron 

mayor dominancia social) lograron establecer sus territorios alrededor de estos hábitats y desplazar al 

resto de machos a los pallets de baja calidad. Estos machos ganaron más enfrentamientos contra 

otros machos, presentaron espacios domésticos más pequeños, se aparearon y guardaron a un mayor 

número de hembras y experimentaron una competencia espermática menos intensa que los machos 

establecidos en pallets de baja calidad. Sin embargo, los morfos de color no difirieron en su habilidad 

para establecerse en pallets de alta calidad, imponerse en enfrentamientos agonísticos o mantener 

interacciones reproductivas con hembras. En consecuencia, los machos de distinto morfo se 

aparearon con un número similar de hembras, dejaron un número similar de descendientes y 

compartieron paternidad con un número similar de machos. 

7.5.3. Discusión 

Los resultados de este capítulo constituyen el análisis más detallado hasta la fecha de las posibles 

diferencias de comportamiento entre los morfos de P. muralis y aportan evidencia en contra de la 

hipótesis de que distintas estrategias alternativas de reproducción subyacen al polimorfismo de color 

en esta especie. En las especies con sistemas de apareamientos basadas en la defensa de recursos 
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(como la lagartija roquera), es esperable que la existencia de estrategias alternativas de reproducción 

se manifieste en forma de diferencias en la actividad, dominancia, territorialidad o comportamiento 

social entre los morfos (Sinervo et al. 2000a; Zamudio and Sinervo 2000, 2003; Taborsky 2001; 

Taborsky and Brockmann 2010). Nosotros no encontramos evidencia de estas diferencias. Además, 

la correspondencia entre la dominancia espacial, el comportamiento social y el éxito reproductivo de 

los machos sugiere que ninguno de los morfos presenta adaptaciones fisiológicas que pudiesen 

otorgarle una ventaja en el contexto de la selección sexual post-cópula (e.g. mayor volumen de 

eyaculado). A la luz de estos resultados, y teniendo en cuenta el considerable desacuerdo en la 

literatura acerca del significado funcional del polimorfismo de color en lacértidos (Huyghe et al. 2007, 

2009a; Calsbeek et al. 2010; Runemark et al. 2010; San-Jose et al. 2014; Brock et al. 2020b), 

proponemos revisar el papel central que tradicionalmente se ha otorgado a las estrategias alternativas 

de reproducción en el mantenimiento del polimorfismo de color en este grupo, y ampliar nuestra 

perspectiva para incorporar otros procesos evolutivos escasamente estudiados. Por ejemplo, 

sugerimos considerar la posibilidad de que la correlación entre el polimorfismo de color y otros rasgos 

fenotípicos haya ocurrido solo bajo ciertas condiciones o en ciertos ambientes (Roulin 2004; 

Mckinnon and Pierotti 2010), produciendo una discontinuidad que puede ayudarnos a explicar la 

pérdida del polimorfismo en varias especies de lagartijas del género Podarcis, así como la considerable 

variabilidad geográfica en el número y la frecuencia relativa de los distintos morfos (Runemark et al. 

2010; Pérez i de Lanuza et al. 2018b; Brock et al. 2020b).  

 

7.6. Capítulo V: Viabilidad, comportamiento y 

expresión del color en la descendencia de cruces 

entre los distintos morfos de color presentes en la 

lagartija roquera 

7.6.1. Introducción 

Aunque las estrategias alternativas de reproducción han sido descritas con mayor frecuencia en 

machos, este sesgo podría deberse simplemente a que entendemos mejor los factores que explican el 

éxito reproductivo en machos que en hembras (Shuster and Wade 2003; Neff and Svensson 2013; 

Lindsay et al. 2019). Sin embargo, las hembras también varían en su eficacia biológica, y varios 

estudios en lagartos sugieren la existencia de estrategias alternativas de inversión reproductiva en 

hembras por las que un morfo prioriza la calidad de los descendientes mientras otro prioriza la 

cantidad (Sinervo et al. 2000b; Sinervo and Zamudio 2001; Svensson et al. 2001b). La evolución de 

estrategias alternativas a menudo levanta barreras reproductivas entre los morfos (e.g. apareamiento 

concordante, incompatibilidades genéticas) con el fin de transmitir a la descendencia las 
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combinaciones de rasgos óptimas y evitar la producción de descendencia con combinaciones de 

rasgos desventajosas (Sinervo and Svensson 2002; Pryke and Griffith 2009a; Mckinnon and Pierotti 

2010). Por otra parte, la existencia de una “ventaja del heterocigoto” (uno de las mecanismos capaces 

de explicar la persistencia del polimorfismo de color en poblaciones naturales), debería tener el efecto 

opuesto sobre la viabilidad de los cruces entre morfos (resultando más viables los descendientes de 

cruces entre morfos; Roulin 2004; Gratten et al. 2008; Johnston et al. 2013; Wellenreuther et al. 2014).  

7.6.2. Métodos y resultados 

Para estudiar el efecto de la combinación parental de morfos sobre la viabilidad de la descendencia, 

realizamos una serie de cruces dirigidos en 44 recipientes circulares (170 cm de diámetro, 60 cm de 

altura) instalados al aire libre en la Station d’Ecologie Theóretique et Experiméntale (Moulis, Francia). En 

cada recipiente introdujimos tres hembras (una de cada morfo puro) y un macho (15 recipientes con 

macho blanco, 15 recipientes con macho amarillo y 14 recipientes con macho naranja). Registramos 

los apareamientos y las guardas de pareja durante un mes, y posteriormente incubamos las puestas y 

determinamos la paternidad. Para cada hembra registramos el tamaño de puesta, el número de huevos 

fértiles e infértiles y el peso de los juveniles al nacer. Además, para medir la calidad de la descendencia, 

sometimos a los juveniles a unas pruebas de comportamiento en las que evaluamos la habilidad para 

la obtención de alimento y la respuesta anti-depredadora. Después, instalamos a los juveniles en los 

mismos recipientes al aire libre y los visitamos al cabo de un año para evaluar el crecimiento y la 

supervivencia, y obtener datos acerca de la herencia y desarrollo de los morfos. Al caracterizar la 

coloración exhibida por los juveniles al nacer (blanca al ojo humano) de acuerdo al espacio perceptivo 

de la especie, encontramos que esta refleja en mayor medida el UV cercano y probablemente es 

percibida por los conespecíficos como un color crómaticamente distinto de cualquiera de los morfos 

expresados por los adultos. Además, la coloración expresada por los juveniles un año después 

coincidió con la base genética para el polimorfismo de color en P. muralis sugerida en un estudio 

genómico previo (Andrade et al. 2019). Es decir, que la expresión de coloración amarilla y naranja 

requiere de homocigosidad recesiva en dos locis autosómicos distintos. Respecto a la existencia de 

estrategias alternativas asociadas a los morfos en hembras, aunque por regla general el tamaño de 

puesta se relacionó negativamente con el peso de los juveniles al nacer, no encontramos diferencias 

en ninguna de estas variables entre los distintos morfos. Aunque encontramos un menor éxito de 

fertilización en uno de los cruces posibles (cuya causa es difícil de aclarar), en general no encontramos 

evidencias de que la combinación parental de morfos afectara a la viabilidad embrionaria, al 

desempeño en las pruebas de comportamiento o la supervivencia.  

7.6.3. Discusión 

Los resultados de este trabajo refutan la existencia de estrategias alternativas de inversión 

reproductiva asociadas al polimorfismo de color en hembras de P. muralis. Además, en contra de lo 

esperado si existiese selección correlativa o una ventaja del heterocigoto, no encontramos evidencia 
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de que la combinación parental de morfos afecte de forma determinante a la viabilidad, 

comportamiento o supervivencia de la descendencia. El menor éxito de fertilización que encontramos 

en cruces heteromórficos se debe a un único tipo de cruce de los seis posibles (hembra amarilla con 

macho naranja). Además, no parece reflejarse en el cruce contrario (con los sexos cambiados) y no 

encaja bien con lo esperado bajo selección correlativa (que debería afectar más a la viabilidad 

embrionaria que a la fecundación; Gray and McKinnon 2007; Pryke and Griffith 2009; Lancaster et 

al. 2014). En resumen, los resultados sugieren que, pese a que muchos investigadores consideran el 

polimorfismo como la antesala evolutiva de la especiación, no existen barreras reproductivas 

importantes al apareamiento entre morfos en P. muralis. Para comprender las razones por las que 

nuestros resultados contradicen lo hallado en otros estudios previos (Galeotti et al. 2013), 

proponemos investigar si los distintos linajes de P. muralis pueden diferir en la correlación entre el 

polimorfismo de color y otros rasgos fenotípicos de interés para la selección, así como la posible 

dependencia ambiental de la eficacia biológica de los morfos (Roulin 2004; Svensson 2017). Nuestros 

resultados también incluyen importantes aportaciones al respecto de la herencia y la ontogenia de los 

morfos. Por una parte, la confirmación de que el polimorfismo de color en P. muralis presenta una 

base genética recesiva e implica a dos loci distintos coincide con otros trabajos recientes en sugerir 

que un número reducido de loci autosómicos gobiernan la expresión del polimorfismo en lagartos 

(Andrade et al. 2019; Stuart-Fox et al. 2020). A pesar de esta convergencia, los alelos responsables de 

la expresión de cada morfo parecen tener relaciones de dominancia distintas en cada especie 

estudiada, lo que puede tener implicaciones para su significado funcional y debería ser abordado en 

futuros trabajos. Por último, la caracterización del color ventral de los juveniles como un color 

cromáticamente diferenciado mejora nuestro entendimiento del desarrollo de los morfos, puesto que 

hasta ahora era común asumir que únicamente las lagartijas de morfo naranja o amarillo 

experimentaban un cambio ontogenético en la coloración, mientras que las lagartijas de morfo blanco 

retenían la coloración juvenil (Sacchi et al. 2007; Pérez i de Lanuza et al. 2013a; Pérez i de Lanuza 

and Font 2015). 

 

7.7. Discusión general 

A pesar del considerable interés que ha despertado la posible existencia de estrategias alternativas de 

reproducción en la lagartija roquera (y en otros lagartos polimórficos), varios aspectos clave de esta 

hipótesis han sido ignorados o se han estudiado de forma inapropiada. En esta tesis hemos tratado 

de paliar estas carencias adoptando un enfoque integrativo que incorporase nuestro conocimiento 

actual sobre la ecología sensorial de P. muralis, análisis cuantitativo del comportamiento, y métodos 

genéticos para determinar la eficacia biológica. En conjunto, nuestros resultados refutan la existencia 

de estrategias alternativas de reproducción que impliquen diferencias en el comportamiento social, 

sexual o reproductivo de los machos de distintos morfos, así como la existencia de estrategias 
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alternativas de inversión reproductiva en hembras. Estos resultados contradicen las expectativas de 

muchos autores con respecto al significado funcional del polimorfismo de color en lagartos (Zamudio 

and Sinervo 2003; Sinervo et al. 2007; Calsbeek et al. 2010), y también están en aparente contradicción 

con algunos trabajos previos realizados en poblaciones polimórficas de lagartija roquera en el norte 

de la Península Itálica (Galeotti et al. 2013; Sacchi et al. 2017b, 2017a; Coladonato et al. 2020). La 

existencia de un sesgo de publicación a favor de los llamados “resultados positivos” (evidencia 

confirmatoria acerca de teorías conocidas) ha dificultado considerablemente la publicación de los 

trabajos contenidos en esta tesis (Csada et al. 1996; Scargle 2000; Jennions and Møller 2002). 

Consideramos necesario advertir de que nuestra comprensión del funcionamiento de la naturaleza 

depende de la acumulación imparcial de evidencia a favor y en contra de cada hipótesis, y que por 

tanto la existencia de sesgos que favorezcan la evidencia confirmatoria puede conducir a una 

sobreestimación ilusoria del apoyo empírico a ciertas hipótesis (Nickerson 1998; Scargle 2000; 

Thornton and Lee 2000). En este sentido, creemos que el proceso editorial de revisión debería juzgar 

la calidad de los trabajos en virtud de la validez de la metodología empleada para contestar a las 

preguntas científicas planteadas, en lugar de por los resultados obtenidos (Petticrew 1998; Rosenberg 

2005; Pautasso 2010). 

 En lugar de ignorarlos, integrar los resultados aquí expuestos con la evidencia disponible 

podría mejorar considerablemente nuestra comprensión del significado funcional del polimorfismo 

de color en P. muralis. Tras dos décadas de trabajo, aún estamos lejos de comprender el valor 

adaptativo del polimorfismo de color en lacértidos, así como los mecanismos responsables de su 

persistencia en el tiempo. Por ahora, la principal conclusión que podemos extraer de la literatura (y 

de esta tesis) es que U. stansburiana no representa el modelo general en lagartos, en los que parece que 

la evolución del polimorfismo responde a escenarios evolutivos muy distintos en cada especie 

estudiada (Huyghe et al. 2007, 2009a; Sinervo et al. 2007; Calsbeek et al. 2010; Runemark et al. 2010; 

Runemark and Svensson 2012; Galeotti et al. 2013; San-Jose et al. 2014; Sacchi et al. 2017b; Brock et 

al. 2020a). A la luz de estos resultados, proponemos revisar el papel central que tradicionalmente se 

ha otorgado a las estrategias alternativas de reproducción en el mantenimiento del polimorfismo de 

color en este grupo, y ampliar nuestra perspectiva para incorporar otros procesos evolutivos 

escasamente estudiados. 

 En primer lugar, cabe recordar que existen otros contextos en los que el polimorfismo de 

color podría desempeñar una función relevante para la selección. A menudo se ha asumido que la 

coloración ventral podría estar influyendo en las interacciones sociales mediante la señalización de 

estrategias alternativas de comportamiento (Sinervo et al. 2007; Calsbeek et al. 2010; Mangiacotti et 

al. 2019; Brock et al. 2020a). Una hipótesis alternativa y plausible (que sin embargo ha recibido mucha 

menos atención) es la posibilidad de que la coloración ventral influya en las interacciones sociales al 

facilitar el reconocimiento individual entre conespecíficos (Taylor and Elwood 2003; Tibbetts and 

Dale 2007). La mayoría de los lagartos territoriales que han sido estudiados muestran el llamado efecto 
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de “querido enemigo” (i.e. dear enemy): los machos (tras un período inicial de enfrentamientos con sus 

vecinos) modulan su agresividad en función de su familiaridad, reduciendo su agresividad en 

posteriores enfrentamientos con sus vecinos pero persiguiendo y escalando el conflicto fácilmente 

cuando se enfrentan a machos desconocidos (Tibbetts and Dale 2004; Stuart-Fox et al. 2006; Whiting 

et al. 2006; Ducrest et al. 2008; Tibbetts and Lindsay 2008; Tibbetts and Izzo 2010; Ligon and 

McGraw 2013; Briffa 2014). Sin embargo, algunos estudios en lagartijas del género Podarcis sugieren 

que los machos son capaces de discriminar entre rivales con los que están igualmente familiarizados 

en función de sus marcas de olor, recordando la posición de estas y dirigiendo mayor agresividad a 

aquellos individuos cuyas marcas solían encontrar en el centro de su terrario experimental (Carazo et 

al. 2008; Font et al. 2012a). A pesar de que tradicionalmente se ha considerado a los lacértidos como 

animales eminentemente quimiosensoriales (Mason and Parker 2010), la sofisticación de su sistema 

visual y la diversidad de vistosas coloraciones en este grupo hace razonable pensar que las señales 

visuales podrían también participar en el reconocimiento individual. El trabajo de Elizabeth Tibbetts 

y sus colaboradores en avispas del género Polistes demuestra que las señales visuales pueden jugar un 

papel tan importante como las señales químicas en el reconocimiento individual (Tibbetts 2002; 

Tibbetts et al. 2018, 2019, 2020). Estas avispas utilizan la variabilidad cromática en el rostro de sus 

conespecíficos para distinguir entre avispas conocidas y desconocidas. Además, la comparación de 

especies con distintos sistemas sociales, variabilidad cromática y habilidad para el reconocimiento 

individual sugiere que la menor agresión recibida en interacciones sociales favorece la aparición de 

fenotipos nuevos y distintos que faciliten el reconocimiento individual (Sheehan and Tibbetts 2010). 

En la lagartija roquera, a pesar de que los distintos morfos son diferenciados de forma discreta por el 

sistema visual de la especie, dentro de cada uno de los morfos existe una considerable variabilidad 

(tanto cromática como acromática; Capítulo II). Esta variabilidad (apreciable por el sistema visual 

de P. muralis) podría jugar un papel clave y hasta ahora inexplorado en la mediación de interacciones 

sociales al permitir a los individuos reconocer a sus conespecíficos y ajustar su comportamiento en 

consecuencia (Olsson 1994b; Whiting 1999; López and Martín 2002; Husak and Fox 2003; Font et 

al. 2012a). Futuros estudios podrían abordar esta cuestión, por ejemplo, examinando si la agresión 

dirigida a lagartijas con coloraciones experimentalmente alteradas disminuye a medida que sus 

oponentes se familiarizan con estas nuevas coloraciones (Tibbetts 2002; Tibbetts et al. 2008, 2017). 

Otra posibilidad sería evaluar si el rango de variabilidad cromática en distintas especies de P. muralis 

(con y sin polimorfismo ventral) correlaciona positivamente con su habilidad para el reconocimiento 

individual (Sheehan and Tibbetts 2010).  

 En segundo lugar, la evolución de estrategias alternativas de reproducción no es el único 

proceso capaz de generar selección dependiente de frecuencia y evitar la desaparición del 

polimorfismo en una especie. Algunas formas de selección apostática como serían la existencia de 

una ventaja para el depredador (o la presa) menos frecuente en cada momento (Lindström et al. 2001; 

Olendorf et al. 2006; Halpin et al. 2008; Lawrence et al. 2019), o una ventaja idéntica en un contexto 
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de selección social (por ejemplo, en el resultado de los enfrentamientos intrasexuales o en la elección 

de pareja; Gosden and Svensson 2009; Dijkstra et al. 2010; Willink et al. 2019) también podrían 

asegurar la persistencia del polimorfismo en ausencia de diferencias comportamentales entre los 

morfos (Roulin 2004; Roulin and Bize 2007). Comprobar la existencia de selección dependiente de 

frecuencia es muy difícil en poblaciones naturales, pero creemos que el uso de diseños experimentales 

de mesocosmos (como el empleado en el Capítulo IV) podría constituir una aproximación eficaz 

para estudiar los cambios en la eficacia biológica de los morfos cuando se encuentran en menor 

frecuencia. 

 En tercer lugar, aunque la existencia de selección dependiente de frecuencia ha recibido 

mucho atención en lagartos, existen otros mecanismos capaces de mantener el polimorfismo (Roulin 

2004; Mckinnon and Pierotti 2010; Svensson 2017). Un polimorfismo de color puede perpetuarse si 

la selección varía en el tiempo o en el espacio, y si la escala de los cambios y/o una dinámica 

balanceada de migración impide la desaparición de los morfo en desventaja (Roulin 2004; Mckinnon 

and Pierotti 2010; Svensson 2017). Un aspecto escasamente estudiado hasta ahora en P. muralis es la 

variabilidad geográfica en la composición del polimorfismo (i.e. el número de morfos presentes en 

una población y sus frecuencias relativas). Sin embargo, algunos trabajos realizados en poblaciones 

polimórficas de P. muralis en el Pirineo (incluyendo aquellas estudiadas en esta tesis), han descrito 

interesantes relaciones entre la composición poblacional del polimorfismo y factores ambientales, 

tanto bióticos (razón de sexos; Pérez i de Lanuza et al. 2017) como abióticos (clima; Pérez i de Lanuza 

et al. 2018). Estos estudios suponen una motivación para continuar indagando acerca de la posible 

dependencia ambiental de la eficacia biológica de los morfos, así como dilucidar la importancia 

relativa de la deriva genética, la selección fluctuante y el flujo génico sobre la variabilidad 

interpoblacional en el polimorfismo de la lagartija roquera. 

 En conclusión, con esta tesis esperamos haber aportado argumentos convincentes para 

ampliar nuestra perspectiva sobre el significado funcional del polimorfismo de color en lacértidos, 

además de sugerir algunas líneas de investigación prometedoras y contribuir de forma general a 

nuestro entendimiento de los procesos evolutivos responsables del mantenimiento de la variabilidad 

fenotípica en la naturaleza. 
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Through the eye of a lizard: hue discrimination in a lizard with
ventral polymorphic coloration
Guillem Pérez i de Lanuza1,*,‡, Javier Ábalos1,2,*, Alicia Bartolomé1,2 and Enrique Font2

ABSTRACT
Colour polymorphisms are thought to be maintained by complex
evolutionary processes, some of which require that the colours of the
alternative morphs function as chromatic signals to conspecifics.
Unfortunately, a key aspect of this hypothesis has rarely been
studied: whether the study species perceives its own colour variation
as discrete rather than continuous. The European common wall lizard
(Podarcis muralis) presents a striking colour polymorphism: the
ventral surface of adults of both sexesmay be coloured orange, white,
yellow or with a mosaic of scales combining two colours (orange–
white, orange–yellow). Here, we used a discrimination learning
paradigm to test whetherP.muralis is capable of discriminating colour
stimuli designed to match the ventral colours of conspecifics. We
trained 20 lizards to eat from colour-coded wells bored in wooden
blocks. Blocks had four colour-coded wells (orange, white, yellow and
an achromatic control), but only one contained food (mealworm
larvae). After six trials, the lizards performed significantly better than
expected by chance, showing a decrease in both the number of wells
explored and the latency to finding the food. Using visual modelling
techniques, we found that, based on their spectral properties and the
lizards’ cone sensitivities, the ventral colours ofP. muralis correspond
to discrete rather than continuous colour categories, and that colour
discriminability (i.e. distance in perceptual space) varies depending
on the morphs compared, which may have implications for signal
detection and discrimination. These results suggest that P. muralis
can discriminate hue differences matching their own ventral colour
variation.

KEY WORDS: Colour discrimination, Colour polymorphism, Colour
vision, Learning experiment, Visual modelling

INTRODUCTION
Understanding the processes responsible for the evolution of
population polymorphisms is one of the most exciting challenges
facing evolutionary biology. Colour polymorphic species such as
the peppered moth, Biston betularia, have been extensively used as
models to test important evolutionary hypotheses about the origins
and maintenance of phenotypic variation (Majerus, 1998; Gray and
McKinnon, 2006; Oliveira et al., 2008; Svensson et al., 2009;
McKinnon and Pierotti, 2010; Wellenreuther et al., 2014; Svensson,
2017). However, assessing colour variants and their functional

significance in colour polymorphic species is not straightforward.
Colour variation is often described from the perspective of a
human viewer but should instead be judged from the perspective
of the appropriate receivers (Bennett et al., 1994; Eaton, 2005),
which requires the use of modern instrumentation and methods
for objective colour characterization (e.g. reflectance
spectrophotometry and visual modelling). Also, the widely held
assumption that the colours of the different morphs act as chromatic
signals and that conspecifics use colour variation to identify
alternative phenotypes (e.g. related to age, sex, individual quality or
reproductive strategies) and adjust their behaviour accordingly has
rarely been tested.

Recent work with pollinating insects and birds and with cichlid
fish underscores the importance of considering perceptual
mechanisms in the study of colour polymorphisms (Chittka and
Raine, 2006; Muchhala et al., 2014; Thairu and Brunet, 2015).
Cichlids show striking and hypervariable interpopulation and
intrapopulation colour polymorphisms, and abundant evidence
has demonstrated that colour discrimination, visual ecology and
sensory drive play a critical role in the evolution of this interesting
polymorphic clade (e.g. Seehausen et al., 2008). However, there is
no information on morph discrimination for most colour
polymorphic species, including lizards (but see Teasdale et al.,
2013; Merkling et al., 2016).

The European common wall lizard Podarcis muralis (Laurenti
1768) (family Lacertidae) has attracted much interest in studies of
colour polymorphism (e.g. Calsbeek et al., 2010; Galeotti et al.,
2013; Pérez i de Lanuza et al., 2013, 2017). To the human eye, this
species may show up to five discrete ventral colour morphs that are
fixed at sexual maturity: white, yellow and orange pure-colour
morphs, as well as white–orange and yellow–orange mixed
phenotypes that display a mosaic of scales of two different
colours (sensu Pérez i de Lanuza et al., 2013; Pérez i de Lanuza
and Font, 2015). These colours extend over the throat and the belly
in males but, at least in some populations, are restricted to the throat
in females (females in these populations have a white belly).
Much effort has been devoted to the identification of consistent
behavioural, morphological, physiological or ecological correlates
of the colour variation, but the results are so far inconclusive (Sacchi
et al., 2007; Calsbeek et al., 2010; Galeotti et al., 2013; Pérez i de
Lanuza et al., 2014).

While it is often assumed that the ventral colours in P. muralis
function as social signals, the evidence in this regard is very scant. It
is possible that the ventral coloration, while correlated with other
phenotypic traits, has no effect on receiver behaviour and is
therefore not a chromatic signal to conspecifics. Rather, a link
between polymorphic coloration and alternative phenotypes could
result from pleiotropic effects of whatever genes are responsible for
the polymorphism. However, there are some indications that lizards
assess each other’s ventral colours and adjust their behaviour based
on their own colour relative to that of others with which theyReceived 6 September 2017; Accepted 18 January 2018
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interact. For example, although morphs are not spatially segregated,
males and females pair assortatively by ventral colour (Pérez i de
Lanuza et al., 2013, 2016). Also, male ventral colour seems to be
important in the resolution of lab-staged fights (Ábalos et al., 2016).
Further, it has been suggested that females may adjust their breeding
strategy according to their own and their mate’s colour morph
(Galeotti et al., 2013).
A necessary condition for the colour of alternative morphs

to function as social signals is that the animals themselves can
perceive them as different stimuli, which ultimately depends on their
visual perception, not ours (Teasdale et al., 2013; Pérez i de Lanuza
and Font, 2014). Research on colour polymorphicP. muralis rests on
the reasonable assumption that lizards perceive their own chromatic
variation as categorically distinct phenotypes (i.e. morphs), much as
humans do. However, nobody has formally tested this assumption.
Given the known differences between the visual systems of lizards
and humans, establishing the existence of discrete colour morphs
from the lizards’ perspective is essential for many current
hypotheses about the genetic underpinnings of the polymorphism
and the evolutionary processes generating and maintaining it (e.g.
Cote et al., 2008; Paterson and Blouin-Demers, 2017).
Although the human visual system has little trouble identifying

discrete colour morphs in P. muralis, lizards could perceive
their own colour variation in a different way. Podarcis muralis
has, in common with other diurnal lizards, a sophisticated colour
vision system with four types of single cones that are sensitive to
light in the wavelength range between 320 and 700 nm (Pérez i de
Lanuza and Font, 2014; Martin et al., 2015). Their retinas also
contain large numbers of long-wavelength sensitive double cones
that are thought to be responsible for luminance (i.e. brightness)
perception (Loew et al., 2002; Olsson et al., 2013). As the ventral
colours differ both in spectral shape and in luminance (Pérez i de
Lanuza et al., 2013; Pérez i de Lanuza and Font, 2015),
discrimination of the alternative morphs could be based on either
of these variables.
Discrimination experiments are a useful tool to confirm animal

colour vision and the perception of colour differences (Kelber et al.,
2003; Kelber and Osorio, 2010). There is no shortage of papers
testing the ability of lizards to visually discriminate between stimuli
of different size, shape, pattern, luminance or colour (i.e. hue). In his
comprehensive review of learning processes in reptiles, Burghardt
(1977) listed 12 such studies, of which half involved some type of
hue discrimination, and more have been published in the ensuing
decades. These studies have shown that lizards can discriminate
between stimuli differing only in hue (e.g. Wagner, 1933;
Swiezawska, 1949; Rensch and Adrian-Hinsberg, 1963; Elinor
and Benes, 1969; Dücker and Rensch, 1973) or in luminance (e.g.
Vance et al., 1965; Garzanit and Richardson, 1974; Peterson, 1976;
Hodgkinson and Still, 1980). Unfortunately, few studies have used
standard colour stimuli with known reflectance properties (e.g.
Ostwald, Munsell) and many do not include luminance controls (i.e.
greys). Luminance controls may be of little relevance if the focus of
the study is learning per se rather than colour discrimination (e.g.
Leal and Powell, 2012). But if the goal is to establish that colour
vision is present, luminance controls are essential to ensure that the
animals respond differentially to hue-independent stimuli (Kelber
et al., 2003). Also, most studies using colours as discriminanda
make no attempt to use colours that resemble natural stimuli that the
animals might encounter in the field, such as colours of prey or
conspecifics (but see Hews and Dickhaut, 1989).
Here, we used a behavioural experiment adapted from previously

used experimental designs (Leal and Powell, 2012; see also Clark

et al., 2014) to test whether P. muralis can discriminate the ventral
colour variation shown by this species. Additionally, we reanalysed
spectral data collected in previous studies (Pérez i de Lanuza et al.,
2013, 2014; Pérez i de Lanuza and Font, 2015) and used visual
modelling techniques based on the receptor noise model (Vorobyev
and Osorio, 1998) to assess the colour variation and quantify the
degree of discriminability among colour morphs from a lizard’s
visual perspective.

MATERIALS AND METHODS
We captured 20 lizards (10 males and 10 females) by noosing (i.e.
using a pole with a slipknot that tightens around the neck of the
lizard) on 8 July 2015 in Angostrina (Eastern Pyrenees, France).
The lizards were individually held in cloth bags and transferred by
car to the Ethology lab at the University of Valencia (470 km) on the
day following their capture. In the laboratory, lizards were housed in
individual terraria (20×40 cm and 26 cm high) provided with water,
a shelter, and a brick over which an incandescent reflector lamp
(40 W; Parabolica RP50 Radium, Wipperfürth, Germany) was
suspended. Terraria were housed in an animal room with
temperature and light cycle mimicking average field conditions at
the capture site (thermal gradient of 24–40°C inside the terraria
during the day; 12.5 h light:11.5 h dark). In addition, ultraviolet
(UV)-rich fluorescent tubes (Reptistar 5.0, Sylvania, Danvers, MA,
USA; colour temperature 6500 K) suspended above the terraria
were switched on for 1.5 h (12:00 h–13:30 h) three times per week.
During the colour discrimination experiments (11 July to 27 August
2015), lizards had access to food only during the experimental trials,
but individuals failing to eat in five consecutive trials were
discarded from the experiment and fed 3–4 times per week. After
the experiments were completed, all lizards were released back at
their capture location on 31 August 2015. Lizards were captured
under research permit number 2013095-0001 from the Préfecture
des Pyrénées-Orientales (France). This research complied with the
ASAB/ABS Guidelines for the Use of Animals in Research and all
applicable local, national and European legislation.

Colour discrimination experiment
For the colour discrimination experiment, we trained lizards to eat
mealworm larvae (Tenebrio molitor; ca. 2 cm long and 150 mg)
dusted with vitamins (Exo Terra, Montreal, QC, Canada) from a
well in a wooden block. The block had four evenly spaced circular
wells (2 cm diameter, 1.5 cm deep) and each well was associated
with a different colour by means of two coloured paper stickers: a
ring-shaped sticker surrounding the well’s entrance and a
rectangular sticker marking its position on the lateral side of the
block (Fig. 1). In total, we used 10 wooden blocks, each of which
was used by only two lizards. Each block had three wells fitted with
orange, white and yellow stickers resembling the ventral colours of
P. muralis, and a fourth grey-coloured sticker having the same
luminance as the training colour (see ‘Experimental stimulus
design’, below). To prevent the lizards from locating prey using
chemical cues, we placed two live mealworm larvae inside all wells
for 2 weeks before the start of the experiment, and two nights per
week during the experiment (Monday and Thursday; 19:30 h–
09:30 h).

We trained half the animals (five males and five females) to eat
from the orange well, and the other half to eat from the yellow well
(Fig. S1). To begin a trial, we introduced two larvae into the orange
or yellow well, and positioned the wooden block inside the
terrarium of the animal to be tested (4 cm from the shelter’s
entrance; see Fig. 1). A trial ended when the lizard located and ate
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the prey or after 25 min had elapsed. We tested each lizard on
alternate days to ensure motivation toward the food reward (one trial
per day). Prior to each trial, the position of the coloured stickers was
determined using a random number generator, discarding
combinations in which the larvae would remain in the same
position as in the previous trial. During trials, both the UV-rich
fluorescent tube and the incandescent lamp were on, providing a
continuous light spectrum across the entire visual range of P.
muralis (see irradiance spectrum in Fig. S2). We conducted trials
during the lizards’ natural daily period of activity (10:00 h–13:30 h
and 16:00 h–19:00 h local time).
The experiment comprised a training phase and a testing phase.

Training consisted of six trials (12 days) during which the
mealworm larvae were in the orange or yellow well and we
gradually reduced their visibility by partially covering the well with
a white plastic lid weighing 8.5 g (i.e. covering 50% of the opening
in trials 1 and 2, 75% in trials 3 and 4, 95% in trials 5 and 6). During
the testing phase (18 trials, 36 days), we presented thewooden block
with all four wells completely covered and videorecorded every trial
using a photographic camera (Canon© EOS 60D, Tokyo, Japan)
mounted on a tripod. We played back each filmed trial and one
researcher (J.A.) recorded whether or not the animal found and
consumed the prey, the number of incorrect lids lifted (errors), and
the time elapsed from when it left the refuge until it lifted the correct
lid (latency).

Experimental stimulus design
Experimental stimuli were designed to resemble the natural colour
variation found in P. muralis ventral coloration. We prepared a
palette of whites, yellows and oranges in Adobe Illustrator and
printed them on five types of paper differing in whiteness,

brightness and shade (resulting in 790 stimuli). These stimuli
were measured with a portable spectrometer (see details below) and
differences from natural lizard reflectance spectra (averaged over at
least 164 spectra per morph; Fig. 2) were explored graphically,
comparing colour variables (i.e. hue, chroma and brightness), and
calculating chromatic and achromatic distances between any two
colours using visual modelling (see details below). We chose the
three chromatic stimuli that best matched natural colours (orange:
CMYK=0%, 99%, 91%, 0%, Couché mate 130 g m−2; white:
CMYK=6%, 10%, 21%, 2%, Color copy 250 g m−2; yellow:
CMYK=0%, 23%, 86%, Couché mate 130 g m−2; Fig. 2; Fig. S3).

By presenting an achromatic control with the same luminance as
the training colour, we controlled the possibility that lizards base
their discrimination on luminance differences among the colour
stimuli. We designed two achromatic controls that were isoluminant
with the chromatic yellow and orange experimental stimuli.
Unfortunately, no evidence regarding how lizards judge
luminance differences is available. Therefore, we conservatively
designed the achromatic stimuli to show an absolute luminance (i.e.
the integral of the spectral curve) similar to that of the chromatic
stimuli (orange–achromatic: CMYK=0%, 0%, 0%, 82%, Couché
mate 130 g m−2; yellow–achromatic: CMYK=0%, 0%, 0%, 67%,
Couché mate 130 g m−2; Fig. 2; Fig. S3). However, as it has been
hypothesized that luminance is perceived by a sensory channel
involving the long-wavelength sensitive cones (as single cones:
Fleishman et al., 1997; Fleishman and Persons, 2001; or as the main
component of double cones: Osorio and Vorobyev, 2005), we also
compared luminance between the chromatic stimuli and their
corresponding achromatic stimuli using visual models assuming
that luminance is processed by the long-wavelength sensitive cones
(see methodological details in ‘Visual modelling’, below).

4 cm
20 cm

40 cm

d

b

c

a

2 cm

A

25 cm

25 cm

4 cm

2.5 cm

B

4.5 cm 2 cm

Fig. 1. Experimental terraria. (A) Location of
elements within the individual terraria:
(a) wooden block (only inside the terraria
during experiments); (b) basking brick;
(c) shelter; (d) water dish. (B) Schematic view
of the experimental wooden block as seen
from above (top, lids removed) and from the
side facing the shelter (bottom, lids on wells).
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Statistical analyses
In order to account for inter- and intra-individual variability within
trials, we grouped experimental trials in blocks of three, hence
defining six blocks where the number of errors and mean latency
were calculated. We then compared the mean number of errors per
individual in each block with the average expected by chance
(Baldwin, 1979; Margules and Gallistel, 1988; Brannon and
Terrace, 1998). With four options to choose, the maximum

number of errors is three. If choosing randomly, lizards are
equally likely to make 0, 1, 2 or 3 errors. By multiplying each
number of errors by its probability (1/4) we obtain the mean number
of errors expected by chance (�X errors=0×1/4+1×1/4+2×1/4+3×1/
4=6/4=1.5). We established better-than-chance performance in a
block of trials as the criterion for successful learning.

To check for a decrease in both the mean number of errors and the
mean latency with time, we ran two generalized linear mixed
models (GLMMs) with errors (Poisson distribution) and latency
(Gaussian distribution) as dependent variables, block and sex as
fixed factors, and animal identity, training colour and (only in the
model with number of errors) whether or not the animal located the
prey as random factors. We checked graphically that both the
number of errors and latency followed non-normal distributions
(qqplots in R; http://www.R-project.org/). We power-transformed
latency to follow a normal distribution by calculating the fourth root
of each value (Shapiro–Wilk test for normality: W=0.99, P=0.14).
We did not transform the number of errors as transforming count
data is not recommended (O’Hara and Kotze, 2010), and adjusted a
GLMM following a Poisson distribution after checking the mean
and the variance of this variable had similar values (�X=1.12,
S2=0.98).

In addition, as a more conservative test of discrimination
learning, we coded the performance of each individual lizard in
each trial as either 1 (if the lizard’s first choice was correct) or 0 (if
the lizard made any number of errors). Then, we fitted a logistic
mixed model with the lizard’s performance as dependent variable,
trial and sex as fixed effects, and animal identity, training colour and
whether or not the animal located the prey as random factors. We
plotted the fitted model with confidence intervals against time (i.e.
trial) to check for a significant increase in the probability of correct
first choice from chance levels (0.25).

Model fitting and model selection were conducted using
backward single-term deletions (P≤0.05) of the saturated model
followed by model comparisons via likelihood ratio tests (lme4
package in R: Bates et al., 2015; http://www.R-project.org/). We did
not find a problem of over-dispersion in the Poisson model
(ϕ=1.002). We explored graphically that residuals from both models
conformed to normality and homoscedasticity assumptions by
plotting them against the logarithm of the fitted values.

Visual modelling
To determine quantitatively the discriminability between pairs of
ventral colours (i.e. white against yellow, white against orange, and
yellow against orange) we used Vorobyev and Osorio’s (1998)
receptor noise model. Calculations were performed in R 3.3.2
(http://www.R-project.org/) using the package PAVO (Maia et al.,
2013). We assumed a cone abundance ratio of 1:1:1:4
(corresponding to the UV-, short-, middle- and long-wavelength
sensitive cones; J. F. Le Galliard, personal communication based on
results fromMartin et al., 2015), and aWeber fraction of 0.05 for the
long-wavelength sensitive cone (Siddiqi et al., 2004; previously
used in other studies with lacertids: Marshall and Stevens, 2014;
Martin et al., 2015). Cone absorbance spectra of P. muralis were
obtained from the literature (Martin et al., 2015). As the illuminant,
we used the irradiance spectrum inside the experimental terraria
resulting from the combination of the light provided by the
incandescent lamp and the UV-rich fluorescent tube (Fig. S2). The
discriminability between morphs was expressed as just noticeable
differences (JND). A value of 1 JND is traditionally assumed as the
threshold of discrimination between two colour patches, i.e. pairs of
colours giving values <1 JND are not discriminable, values between
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Fig. 2. Reflectance spectra. Lines represent spectra from natural Podarcis
muralis throats (solid lines and shaded area represent means±1 s.e.m.) and the
correspondingartificial stimuli (long-dashed lines represent the chromatic stimuli;
grey lines for yellowand orangemorphs represent the corresponding achromatic
stimuli). For clarity, the spectra have been normalized by dividing the reflectance
at eachwavelengthby theentire reflectanceunder the curve (i.e. luminance).See
sample sizes for natural spectra in Materials and methods.
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1 and 3 JND represent colours that are discriminable under good
illumination conditions, and values above 3 JND represent easily
discriminable colours (Siddiqi et al., 2004; Marshall and Stevens,
2014). However, as behavioural data to confirm this assumption in
P. muralis are completely lacking, these thresholds have to be
interpreted with caution. Therefore, we conservatively adopted a
threshold of 3 JND to declare that two colours were discriminable to
the lizards.
To determine quantitatively whether our experimental stimuli

resembled the lizards’ ventral coloration, we also used Vorobyev
andOsorio’s (1998) receptor noise model to calculate chromatic and
achromatic distances between natural spectra and the spectra
obtained from the artificial stimuli. Based on these analyses, we
chose for behavioural experiments those artificial chromatic stimuli
that minimize the chromatic distance when compared with natural
spectra (see below), and those artificial achromatic stimuli that
minimize the achromatic distance when compared with artificial
chromatic stimuli.
For visual modelling, we used reflectance spectra of throat

coloration in the same Pyrenean population of P. muralis fromwhich
experimental animals were obtained (Angostrina, Eastern Pyrenees,
France). Spectra were compiled from previously published studies
(Pérez i de Lanuza et al., 2013, 2014; Pérez i de Lanuza and Font,
2015; raw data are available from the corresponding author on
request), resulting in a dataset of 643 adult lizards showing pure
morphs (199 white males, 88 white females, 135 yellow males, 57
yellow females, 131 orange males and 33 orange females).
Reflectance spectra were obtained with a USB-2000 portable
spectrometer and a PX-2 xenon strobe light source (Ocean Optics
Inc., Dunedin, FL, USA), calibrated with a Spectralon white diffuse
reflectance standard (Labsphere) (for more details, see Font et al.,
2009; Pérez i de Lanuza et al., 2013, 2014; Badiane et al., 2017).
Irradiance inside the experimental terraria was measured with a
second USB-2000 spectrometer calibrated by means of a LS1-CAL
calibration light source (Ocean Optics), using a cosine-corrected
irradiance probe (Ocean Optics CC-3-UV). To assess differences in
discriminability (i.e. chromatic distances) between the different pairs
of ventral colours, we used a generalized linear model including the
paired colour combinations (i.e. white–yellow, white–orange and
yellow–orange) and sex as factors, as well as their interaction.
As parameters used to run visual models (i.e. cone proportion:

1:1:1:4; Weber fraction=0.05) are not supported by any empirical
data in P. muralis, and because small variations in visual parameters
can affect the results of visual modelling (Lind and Kelber, 2009;
Bitton et al., 2017; Olsson et al., 2017), we repeated the analyses to
assess whether our results are robust to variations in these
parameters. Therefore, we also ran models with cone proportions
of 1:1:1:1, 1:1:1:8 and 2:3:3:11 (i.e. the original count presented by
Martin et al., 2015), and Weber fraction values of 0.03 and 0.07.

RESULTS
Colour discrimination experiment
Twelve lizards (seven males: three trained to eat from the orange well
and four from the yellow well; and five females: three trained to eat
from the orange well and two from the yellow well) completed the
experiment. The remaining eight individuals failed to uncover a well
in five consecutive trials and were discarded from the experiment.
The mean number of errors per block was significantly smaller

than expected by chance (1.5) in all but the first two blocks of trials
(Table 1, Fig. 3). Both the number of errors (Fig. 3) and latency
(Fig. S4; Table 2) showed a significant reduction with time
(Errors∼Stage, Z=−2.40, standard coefficient±s.e.=−0.30±0.13,

P=0.016; see Table S2; Latency∼Stage, t=−3.49, standard
coefficient±s.e.=−0.55±0.16, P<0.0001; see Table S1). Also, we
found an effect of sex on the number of errors (Errors∼Sex, Z=2.58,
standard coefficient±s.e.=0.34±0.13, P=0.001), with females
committing fewer errors than males on average across blocks
(mean±s.e.m., males: 1.24±0.09, females: 0.94±0.10; Fig. 2). After
finding violations of normality in the model with the number of
errors, we ran a bootstrap analysis based on 10,000 simulations and
compared the mean coefficients, their standard errors and P-values
with those obtained before. This analysis confirmed our GLMM
results showing similar coefficients but smaller standard errors and
P-values (see details in Table S1).

Plotting the logistic mixed model fitted with confidence intervals
against time showed that the probability of the lizards’ first choice
being correct nearly doubled during the experiment, from chance
levels in the first trial (P±CI=0.23±0.08) to even odds in the last trial
(P±CI=0.41±0.04; Fig. 4).

Throughout the experiment, no colour was overrepresented in the
total record of errors (trained to orange, χ2=3.15, d.f.=2, P=0.207;
trained to yellow, χ2=0.703, d.f.=2, P=0.704; Fig. 5). However,
wrong first choices were biased towards yellow in lizards trained to
orange more frequently than to white or to the achromatic grey
control (χ2=8.41, d.f.=2, P=0.015), while lizards trained to yellow
showed a marginally non-significant bias toward orange (χ2=5,
d.f.=2, P=0.08; Fig. 5).

Visual modelling
The natural spectra from the three morphs are relatively segregated
in colour space (Fig. 6). Assuming a discrimination threshold of
3 JND and the proposed cone proportions (i.e. 1:1:1:4) and Weber
fraction (i.e. 0.05), the three colours are chromatically discriminable
considering all paired combinations (Fig. 7). Similar results were
found using models with alternative cone proportions and/or Weber
fraction (see Materials and methods). The effect of considering
other visual parameters is graphically illustrated in Fig. S6.

Discriminability varied with morph combination (t=−5.66,
standard coefficient±s.e.=−0.13±0.02, P<0.00001), the white–
orange combination being more discriminable than the white–
yellow and the yellow–orange combinations (P<0.00001), and the
white–yellow combination being more discriminable than the
orange–yellow combination (P<0.00001). Male morphs were
more discriminable than female morphs (t=−4.27, standard
coefficient±s.e.=−0.07±0.02 P=0.00002), and the interaction
between morph combination and sex was significant (t=4.10,
standard coefficient±s.e.=0.05±0.01, P=0.00005). The results
remained significant using visual models with alternative visual
parameters (Table S3).

Table 1. Number of errors in colour discrimination experiment

Block N

No. of errors

PMean CI

1 32 1.34 0.35 0.158
2 34 1.29 0.41 0.153
3 32 1.19 0.36 0.049
4 36 1.08 0.36 0.013
5 35 1.09 0.30 0.008
6 33 0.73 0.27 1.92e−5

Mean number of errors and 95% confidence interval (CI) in each of six
consecutive blocks of trials (three trials per block) comprising the training
phase and the experiment, and P-values for one-way Wilcoxon tests (μ<1.5).
N, number of trials per block (out of 36) in which all 12 trained lizards uncovered
at least one well.
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DISCUSSION
Our results show that adult P. muralis learn to perform a procedural
task (lifting the one lid among four giving access to prey in a colour-
coded well), as shown by a significant reduction in both the number
of errors and latency throughout the experiment. The fraction of
lizards that successfully learned to perform the discrimination task
(12 out of 20) is similar to that observed in experiments with other
lizard species (e.g. Leal and Powell, 2012). The number of wrong
choices was smaller than expected by chance after six trials (a week
of testing) and the probability of correct first choice after 18 trials
nearly doubled from initial chance levels. These results demonstrate
that P. muralis is capable of discriminating experimental colour
stimuli designed to match natural colours on the ventral surface of
this species. Although the achromatic controls did not match
perfectly the luminance of chromatic stimuli, as lizards did not
choose the achromatic (grey) control incorrectly more often than the
other available incorrect stimuli, we can reasonably assume that the
discrimination was based on wavelength (i.e. hue) rather than
luminance differences among stimuli. This evidence provides
support for the idea that P. muralis is capable of discriminating its
own ventral colour variation based on hue. Results of reflectance
spectrophotometry and visual modelling reinforce this conclusion,
showing that ventral colours of P. muralis correspond to discrete
rather than continuous colour categories based on their spectral
properties (independent of the human visual system) and lizard cone
sensitivities. Interestingly, lizards were able to discriminate the two
artificial stimuli showing the smallest perceptual distance (i.e.
yellow versus orange), which is in the lower range of perceptual
distances generated by the natural yellow and orange morphs
(Fig. 7).
Our results bear out the assumption that the ventral

polymorphism of P. muralis is discrete, encompassing several

chromatically distinct morphs. On a practical note, our results also
provide support for the use of a categorical classification of ventral
colours in P. muralis, although perhaps not in other lacertid species.
For example, in Zootoca vivipara, the assumption that the
polymorphism is represented by categorically distinct colour
morphs unleashed a heated controversy (Vercken et al., 2007,
2008; Cote et al., 2008). Unfortunately, although mate choice is
involved in the maintenance of colour polymorphism in Z. vivipara
(Sinervo et al., 2007; Fitze et al., 2014; San-José et al., 2014), colour
discrimination among morphs was not tested and thus there is no
conclusive evidence that lizards discriminate morphs visually, or
that ventral colours in this species act as social signals.

Previous studies of the visual system of P. muralis demonstrated
that ventral colours differ in conspicuousness when viewed against
other body patches or against natural backgrounds (i.e. rocks,
vegetation), which raises interesting questions regarding their
potential role as social signals (Pérez i de Lanuza and Font,
2015). The results presented here indicate that colour
discriminability varies according to the morphs being compared,
white and orange being more discriminable than white and yellow,
and yellow and orange ventral colours, and white and yellow being
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Fig. 3. Mean number of errors per
block of trials. Left, mean number of
errors, pooled from males and females
(12 lizards, three trials per block). Right,
mean number of errors per block of trials,
grouped by sex (f, females; m, males).
Each well of the wrong colour uncovered
by a lizard in the allotted time (25 min)
was considered an error (maximum of
three errors). Error bars represent s.e.m.
After two blocks of trials, the lizards
responded to training by showing a
significantly smaller number of errors
than expected by chance (dashed line
at 1.5).

Table 2. Latency in colour discrimination experiment

Block N

Latency (s)

Mean CI s.e.m.

1 27 284.67 119.75 58.26
2 30 325.60 116.91 57.16
3 29 310.07 127.80 62.39
4 35 243.09 99.48 48.95
5 30 217.03 125.91 61.56
6 31 152.13 31.65 64.64

Mean latency, s.e.m. and 95% CI in each of six consecutive blocks of trials
(three trials per block) comprising the training phase of the experiment. N,
number of trials per block (out of 36) in which the trained lizards found the prey.
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Fig. 4. Fitted logistic mixedmodel of the probability of correct first choice
against time (i.e. trial). Circles and error bars represent mean probability with
95% confidence intervals in each trial. Blue line and shaded area are the
smoothed tendency line with its confidence interval. The learning curve shows
that the probability of correct first choice nearly doubled during the experiment.
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more discriminable than yellow and orange combinations. Although
behavioural results supporting this conclusion are lacking,
chromatic distances obtained with visual modelling techniques
may be good predictors of colour discriminability, even when
distant colours are compared (Fleishman et al., 2016). Therefore,
discriminability differences among pairs of ventral colours of P.
muralis may have implications for signal detection and
discrimination. This may be especially relevant for intrasexual
and intersexual interactions that can be modulated by ventral colour,
such as mate choice or male–male contests (Pérez i de Lanuza et al.,
2013, 2016; Ábalos et al., 2016).
We found that sexes differ in colour morph discriminability, a

finding that could have biological relevance (Zhou et al., 2015).

However, this result may be a consequence of sexual dichromatism
(i.e. slight differences in spectra), resulting in small (but significant)
differences in colour distances between males and females
(see, for example, the chromaticity diagram in Fig. 6). We also
found that males and females differ in the number of errors, but this
difference may be caused by the small sample size used in the
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Trained to yellow

AW

Y

Trained to orange

A

O

W

A

W

Y

Pooled first errors

Pooled total errors

Fig. 5. Pie charts representing the relative frequency of each colour
among the pooled errors performed by the lizards. Colour stimuli:
O, orange; W, white; Y, yellow; A, achromatic stimulus matching the luminance
of either orange or yellow.
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Fig. 6. Chromaticity diagram showing the location of chromatic points. (A) The entire receptor space; (B) detail of the volume occupied by the chromatic
points. Circles correspond to chromatic points from the natural ventral colours (pooling males and females). Triangles correspond to the artificial stimuli. The
colours of symbols indicate the morph. Sample sizes are given in Materials and methods. The overlap between the white and the yellow volumes amounts to
27.8% of the white volume and 4.9% of the yellow volume; the overlap between the white and the orange volumes represents 5.1% of the white volume and 0.7%
of the orange volume; the overlap between the yellow and the orange volumes is 12.2% of the yellow volume and 9.1% of the orange volume. The white artificial
stimulus is located outside (but close to) the cloud of white natural colours. The other two artificial stimuli fall within their respective cloud of natural colours, but are
located at the periphery. However, note that the perceptual distance between the artificial stimuli is smaller than that of many chromatic points of different morphs.
Wavelengths: S, short; M, middle; L, long; UV, ultraviolet.
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Fig. 7. Box-plots showing chromatic distances generated by pairs of
colour morphs. Morphs: W, white; Y, yellow; O, orange. White box-plots
correspond to males and grey box-plots correspond to females. In each case,
horizontal lines, boxes, error bars and points indicate, respectively, the
median, the 25–75% range, the 10th and 90th percentiles, and the 5th and
95th percentiles. Horizontal dotted lines indicate the discriminability thresholds
of 1 just noticeable difference (JND; values above 1 JND indicate pairs of
colours that are discriminable under good illumination conditions) and 3 JND
(values above 3 JND indicate easily discriminable pairs of colours). Results
considering other cone proportions and other Weber fraction values are
detailed in Fig. S5. The impact of these variations is graphically reported in Fig.
S6. Horizontal grey lines indicate chromatic distances of the experimental
stimuli for each pair of colour morphs.
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experiment, which allows for extremely good performers to bias our
results.
Although colour polymorphisms provide invaluable models to

study the evolution and maintenance of polymorphisms generally
(e.g. Roulin, 2004; Sinervo and Calsbeek, 2006; Chunco et al.,
2007; Pryke and Griffith, 2009; McKinnon and Pierotti, 2010;
McLean and Stuart-Fox, 2014; Wellenreuther et al., 2014;
Svensson, 2017), insufficient attention has been paid to colour
(morph) discrimination and its implications for understanding the
significance of polymorphic coloration. It is often assumed that
colour polymorphic animals perceive their own colour variation as
different morphs, and that colour variants represent qualitatively
different signals. However, this assumption has an unstable
foundation if no evidence of colour discrimination is provided.
We encourage other researchers to obtain evidence that their study
animals are capable of chromatically discriminating their colour
variation as independent colour morphs and show behavioural
evidence of doing so.
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Dücker, G. and Rensch, B. (1973). The visual learning capacity of Laceria viridis
and Agama agama. Z. Tierpsychol. 32, 209-214.

Eaton, M. D. (2005). Human vision fails to distinguish widespread sexual
dichromatism among sexually ‘‘monochromatic’’ birds. Proc. Natl Acad. Sci.
USA 102, 10942-10946.

Elinor, S. and Benes, E. S. (1969). Behavioral evidence for color discrimination by
the whiptail lizard, Cnemidophorus tigris. Copeia 1969, 707-722.
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“The Universe is a dark forest. In this forest, hell is other people. An eternal threat that 

any life that exposes its own existence will be swiftly wiped out. This is the picture of cosmic 

civilization. It’s the explanation for the Fermi Paradox”. 

·Cixin Liu, The Dark Forest· 

“I come in peace… take me to your lizard”. 

·Douglas Adams, The Hitchhiker’s Guide to the Galaxy· 
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Abstract
Colour signals play a key role in regulating the intensity and outcome of animal contests. Males of
the common wall lizard (Podarcis muralis) show conspicuous ventrolateral ultraviolet (UV)-blue
and black patches. In addition, some populations express a striking ventral colour polymorphism
(i.e., discrete orange, white and yellow morphs). In this study, we set out to evaluate the potential
signalling function of these colour patches by staging pairwise combats between 60 size-matched
adult lizards (20 per morph). Combats were held in a neutral arena, with each lizard facing rivals
from the three morphs in a tournament with a balanced design. We then calculated a fighting ability
ranking using the Bradley–Terry model, and used it to explore whether ventral colour morph,
the size of UV-blue and black patches or the spectral characteristics of UV-blue patches (i.e.,
brightness, hue, chroma) are good predictors of fighting ability. We did not find an effect of the
UV-blue patches on contest outcome, but the size of black patches emerged as a good predictor of
fighting ability. We also found that winners were more aggressive when facing rivals with black
patches of similar size, suggesting that black patches play a role in rival assessment and fighting
rules. Finally, we found that orange males lost fights against heteromorphic males more often than
yellow or white males. In light of these results, we discuss the potential signalling function of
ventrolateral and ventral colour patches in mediating agonistic encounters in this species.
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fighting ability, intrasexual competition, colour polymorphism, UV signals, melanin, Podar-
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1. Introduction

In a world of limited resources, males of many vertebrate systems often en-
gage in contests with members of their own species, either over access to
females or resources that are necessary to attract potential mates. Chromatic
signals mediate the intensity of these confrontations by allowing animals
to assess rivals prior to physically interacting, thereby reducing the costs
of aggressive conflicts (Briffa, 2014). For example, in male widow birds
(Euplectes ardens) the size and spectral properties of the red collar pre-
dict territorial behaviour and the intensity of aggressive responses against
simulated intruders (Pryke et al., 2001). Similar colour ornaments acting as
agonistic signals (i.e., armaments) have been described in numerous verte-
brates and invertebrates (e.g., Pryke & Griffith, 2006; Miyai et al., 2011;
Todd et al., 2011). In lizards, several colour signals have been shown to con-
vey information about dominance and male fighting ability in intrasexual
confrontations (Stapley & Whiting, 2006; Baird, 2013; Olsson et al., 2013).
For instance, in the Australian frillneck lizard (Chlamydosaurus kingii), the
carotenoid-based colour of the frill acts as a reliable signal of fighting abil-
ity, and males exhibiting more colourful frills are dominant in size-matched
dyadic contests (Hamilton et al., 2013). Similarly, research on Anolis has
demonstrated that the display of brightly coloured dewlaps plays an impor-
tant communicative role in several contexts, including male–male contests
(Jenssen et al., 2000; Tokarz et al., 2003; Simon, 2011), its role in determin-
ing contest outcome being dependent on the degree of territoriality of the
species (Lailvaux & Irschick, 2007).

Lacertid lizards comprise 42 different genera and more than 300 species
inhabiting a wide variety of habitats across the Old World (Uetz & Hosek,
2015). Although their mating systems are insufficiently documented, they
seem to be characterized by strong male–male competition over resources
(e.g., territoriality in the genus Podarcis; Edsman, 1990; Font et al., 2012)
or females (e.g., mate-guarding in Lacerta agilis; Olsson, 1994; and Lacerta
schreiberi; Marco & Pérez-Mellado, 1999). The role of colour signals in
this group has been relatively neglected, possibly because lacertids have
been traditionally considered to be mainly chemosensory (Mason & Parker,
2010). Despite this historical bias, lacertids have a colour vision system as
sophisticated as that of other lizards that rely heavily on vision for many
aspects of their biology (Pérez i de Lanuza & Font, 2014; Martin et al.,
2015a), and very often exhibit complex colour patterns that at least in some
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Figure 1. Left: male common wall lizard Podarcis muralis. This species has a relatively cryp-
tic dorsum and conspicuous ventrolateral coloration. The ventrolateral area usually presents
a complex pattern with black and UV-blue patches. Right: ventral view of both sexes to il-
lustrate the colour polymorphism. Individuals from the three main morphs present orange,
yellow or white ventral coloration. In our study population, the ventral colour is restricted to
the throat in females, but extends to the belly in males. This figure is published in colour in the
online edition of this journal, which can be accessed via http://booksandjournals.brillonline.
com/content/journals/1568539x.

cases seem to have evolved under strong intrasexual competition in males
(Bajer et al., 2011; Olsson et al., 2011; Pérez i de Lanuza et al., 2013a).

The common wall lizard (Podarcis muralis) is a suitable lacertid model in
which to test ideas about the role of colour signals in animal contests. Males
of P. muralis exhibit a complex ventrolateral pattern on their outer ventral
scales (OVS) combining black melanin-based patches (Bowker et al., 1987)
and conspicuous ultraviolet (UV)-blue structurally based patches (Figures
1, 2b; Pérez i de Lanuza & Font, 2015). Chromatic variables of male UV-
blue patches have been found to correlate with bite force and body condition
(Pérez i de Lanuza et al., 2014a), while a recent study showed that the over-
all area covered by black patches correlates positively with male dominance
status (While et al., 2015). In addition to ventrolateral colour patches, some
populations of P. muralis express a pigment-based ventral colour polymor-
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Figure 2. (a) Means of the relative blue area (ABlue) in the ventrolateral patches, for each
morph. Error bars represent the standard error of the mean. (b) Representative pictures of the
ventrolateral pattern in males of the three pure morphs. Blue coloration sometimes extends to
the second row of ventral scales in orange males, while this is rare in white or yellow morph
males. This figure is published in colour in the online edition of this journal, which can be
accessed via http://booksandjournals.brillonline.com/content/journals/1568539x.

phism with discrete white (w), orange (o) or yellow (y) pure morphs, as well
as intermediate orange-yellow and white-orange morphs (Figure 1; Pérez i
de Lanuza et al., 2013b). Although recent studies suggest that different phe-
notypic optima and breeding strategies may be favoured in each morph, the
evolutionary origins and functional significance underlying colour polymor-
phism in P. muralis are still far from resolved (Calsbeek et al., 2010; Galeotti
et al., 2013; Pérez i de Lanuza et al., 2013b; but see Sacchi et al., 2015). As
in many Podarcis species, P. muralis shows a resource-based polygynous
mating system in which males set out territories that overlap with the home
ranges of several females, engaging in frequent contests with intruding males
(Edsman, 1990). During these male–male interactions, lizards compress their
body laterally (Kitzler, 1941; Olsson, 1992, 1994) in a way that exposes
the ventrolateral colour patches, but also the ventral coloration, which could
hence also be involved in signalling during agonistic encounters (see Huyghe
et al., 2012). These territorial contests are pivotal for the reproductive success
of males, since females seem to be attracted to good quality territories rather
than to males of certain phenotypic characteristics (Font et al., 2012; Olsson
et al., 2013), and frequently remain within the same territory even when the
owner is removed and another male takes his place (Edsman, 2001).

In this study we explored the effect of ventral and ventrolateral colour
patches during pairwise agonistic interactions between size-matched males
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with no previous experience that confronted each other in a neutral arena
(i.e., no residency effect). We designed our dyadic encounters as a tourna-
ment in order to calculate an overall fighting ability for each individual that
we could relate to chromatic variables of ventral and ventrolateral colour
patches and to levels of winner/loser aggression. We calculated individual
fighting ability using a Bradley–Terry model (B-T; Bradley & Terry, 1952;
Firth & Turner, 2012), which allows for simultaneous analysis of the relative
influence of multiple individual traits on fighting ability, can accommodate
an incomplete matrix of confrontations, and takes proper account of de-
pendency among contests involving the same individual (Stuart-Fox et al.,
2006).

2. Materials and methods

2.1. Study species

Animals participating in this study came from a colour polymorphic pop-
ulation of P. muralis from the Cerdanya valley in the eastern Pyrenees
(France). To minimize potential previous fighting experience between op-
ponents, lizards were captured in eight different areas at least 300 m apart,
or separated by a geographic barrier (e.g., river). Between 17 and 19 May
2014, we captured 20 adult males of each pure morph (i.e., w, white; y, yel-
low; o, orange) by noosing, and transported them to the laboratory at the
University of Valencia (Valencia, Spain). We only captured lizards with a
snout-to-vent length (SVL) larger than 65 mm to restrict the sample to large
adult males, ensuring that all individuals participating in the tournament had
fully developed colour patches (Pérez i de Lanuza et al., 2013b, 2014a) and
were large enough to exhibit full-blown agonistic behaviour (Edsman, 1990),
while minimising the range of possible size differences between potential
contestants (Sacchi et al., 2009). For each lizard, we used SVL (± 1 mm)
and body mass (± 0.1 g) measures at the time of capture to calculate a body
condition index (BCI) as the residual from a least-squares linear regression
of log(body mass) against log(SVL) (Green, 2001).

2.2. Animal housing and maintenance

In the laboratory, we housed lizards individually in glass terraria (20 × 40
and 25 cm high) with an artificial grass substrate, a water dish, a shelter, and
a small brick for basking over which we suspended a 40 W incandescent
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lamp. Shelters consisted of two tiles (one serving as base and one serving
as a removable lid) separated with felt so as to leave a 90 × 90 × 12 mm
cavity for the lizard to take refuge. We covered all but the front wall of ev-
ery terrarium with brown cardboard paper to prevent visual contact between
animals from adjoining terraria. We set the temperature and light cycle to
mimic average field conditions during the reproductive season at the cap-
ture site (15°C at night, 26°C during the day; 12.5L:11.5D), and additionally
provided all lizards with full spectrum light (Reptistar 5.0: Sylvania, Dan-
vers, MA, USA) for 1 h three times weekly (12.00–13.00 h) to ensure an
effective calcium metabolism, preventing avitaminosis and metabolic bone
disease (Adkins et al., 2003). We fed lizards Tenebrio molitor larvae dusted
with vitamins (Exo Terra, Montreal, QC, Canada) three times weekly and
allowed lizards to acclimate to laboratory conditions for 14 days before the
experiments. Overall, animals stayed in the laboratory less than two months
(19 May–13 July) before being released back to their capture location in the
field.

2.3. Experimental design

In order to examine the effect of colour patches on male–male contest out-
come, we used a tournament design in which every male faced three different
rivals (one of each morph) with a minimum of three days between con-
secutive contests. The order of contests was randomized for each morph
combination to control for a potential order effect. At the conclusion of
the 90 initially planned contests, we staged nine additional heteromorphic
fights between the three more successful individuals of each morph in order
to increase the nestedness of the final tournament network and give addi-
tional resolving power to the B-T model (Stuart-Fox et al., 2006); note these
fights were pooled with the rest in our analyses. To reduce the potential noise
introduced by size asymmetry and prior experience (Baird, 2013), we al-
lowed a maximum size difference between contestants of 10% in SVL, and
only confronted males from different capture areas (see above). Finally, to
eliminate the effect of residency, we staged the encounters in a neutral ex-
perimental arena consisting of a glass terrarium (70 × 30 and 40 cm high)
divided into two equal compartments by an opaque partition. Each compart-
ment was illuminated by a 40 W lamp and a full spectrum lamp (Reptistar
5.0) equipped with a high frequency ballast (Quicktronic, Osram, Munich,
Germany) (Evans et al., 2006). We performed five combats daily between
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Table 1.
Behaviours used to calculate the individual Aggression Score (AS) of lizards participating in
the tournament (see text for details).

Behaviour Description Score

No response 0
Stare Looks toward rival 1
Approach Reduces distance with rival 2
Chase Quickly follows fleeing rival 3
Display Throat extension, trunk compression and back arching 4
Mouth gaping Opens mouth 5
Lunge Hits rival with closed mouth 6
Bite Holds rival for <2 s 7
Bite-hold Holds rival for >2 s 8

4 June and 1 July 2014 at the natural peak activity hours for this population
(10.00–13.30 and 16.00–19.00 local time). Immediately before each trial, we
randomly determined the initial side of the arena for each opponent, chased
the lizards into their shelter, and transferred them into the experimental arena
along with their own basking stone. We then disassembled the shelter leav-
ing the base tile in the arena and allowed a 30 min acclimation period before
withdrawing the opaque partition and allowing the opponents to interact. All
contests were filmed with a digital video camera (XM2, Canon®, Tokyo,
Japan). The experimental arena was thoroughly cleaned with water, then al-
cohol, and again with water after every combat.

In each contest, we designated a winner only if one of the males ceased
agonistic behaviours (Table 1) and repeatedly fled if approached by its oppo-
nent. In addition to this categorical measure, we also calculated a quantitative
variable based on the level of aggression shown by each lizard in each staged
contest. In order to do this, we played back filmed contests and recorded each
time a lizard performed any of the behaviours described in Table 1. We as-
signed a score to each of these behaviours based on Carazo et al. (2008),
which allowed us to calculate an individual aggression score as the sum of
every agonistic behaviour performed by each lizard in each contest (i.e., one
aggression score per lizard and contest). We also calculated a measure of
aggression ratio for each contest as the quotient between the winner aggres-
sion score and the sum of both winner and loser aggression scores (i.e., one
aggression ratio per contest). We interrupted combats if they escalated to
the point of risking injuries (bite-holds in head or limbs lasting more than
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1 min), which was only necessary in one combat. None of the contests re-
sulted in observable injuries.

2.4. Colour measurements

We determined morph visually at the time of capture in the field (Pérez i de
Lanuza et al., 2013b). We recorded spectrophotometric measurements in a
single session at the conclusion of all contests to minimize the stress induced
by manipulation prior to the experiments. We recorded reflectance spectra of
the UV-blue patches with a portable USB-2000 spectrometer equipped with
a PX-2 Xenon strobe light (Ocean Optics, Dunedin, FL, USA; for further
details see Font et al., 2009). Measurements encompassed the 300–700 nm
range to cover the entire visual spectrum of P. muralis (Pérez i de Lanuza
& Font, 2014; Martin et al., 2015a). We recorded spectra from the second,
third and fourth UV-blue patches in both sides and averaged them to pro-
vide an individual mean spectrum for each lizard. We then extracted data
for the standard variables describing colour: brightness (spectral intensity),
chroma, and hue (Endler, 1990; Bradbury & Vehremcamp, 2011). We cal-
culated brightness of the UV-blue patches (OVS-Qt) as the total area under
the 300–700 nm reflectance curve, hue (OVS-hue) as the wavelength where
peak reflectance is located, and UV-chroma (OVS-CUV) as the area under the
300–400 nm reflectance curve divided by the area under the entire spectral
curve (i.e., 300–700 nm) (Endler, 1990; Molina-Borja et al., 2006; Pérez i de
Lanuza et al., 2014a).

In addition, we measured the relative ventrolateral area covered by black
and blue patches in each lizard. For this purpose, we obtained an image
of both sides of every lizard using a portable digital scanner (Lide 700F,
Canon®), and then calculated the proportion of black and blue coloured area
out of the total ventrolateral surface (Figure 2b) using ImageTool Version 3.0
(Wilcox et al., 2002). We defined total ventrolateral surface as the area cov-
ered by the first two rows of OVS, between the insertions of the fore and
hind limbs. We determined the proportion of coloured area by dividing the
blue or black area by total ventrolateral surface; the same researcher (J.A.)
measured all areas following a blind protocol. We confirmed the reliability of
these measurements by calculating repeatability (r) as defined by Lessels &
Boag (1987) in a subsample of lizards (N = 15; rblue = 0.97; rblack = 0.97).
Due to an endoparasitic infection unnoticed at the time of capture, one lizard
died in the laboratory before its colour patches could be measured, reducing
the final sample for colour variables to 59 individuals.
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2.5. Statistical analyses

We used the Bradley–Terry model (B-T model) for planned comparisons to
extract a global index of fighting ability for each contestant (Bradley & Terry,
1952). Staged contests can be considered as a subset of all the possible inter-
actions between rivals from which relative fighting ability can be estimated.
The B-T model is a type of generalized linear model that takes proper ac-
count of dependencies within and between contests while accommodating
an incomplete matrix of all possible interactions (Firth, 2005). This model
assumes every contestant has a positive value of fighting ability, such that
the most likely contest outcome is given by the ratio of the abilities of both
contestants (Whiting et al., 2006), and estimates a hierarchy based on transi-
tivity (Stuart-Fox et al., 2006). Using the R package BradleyTerry2 (Firth &
Turner, 2012) in R 2.1.5.1 (R Core Team, 2014) we fitted B-T models to 99
fights involving 60 lizards, obtaining a ranking based on individual fighting
ability estimates. The model was calculated with ‘bias reduction’, as is rec-
ommended when players face each other only once, and coding ties as half a
win for each rival (Firth & Turner, 2012).

We used a generalized linear model (GLM) to explore the relationship
between ventral colour morph (considered as a fixed factor), the three spec-
tral variables of the UV-blue patches (i.e., OVS-Qt, OVS-Hue, OVS-CUV),
the relative area of blue (ABlue) and black (ABlack) colour patches, body size
(SVL), and fighting ability estimates as the dependent variable. We checked
that all variables conformed to heteroscedasticity and normality assump-
tions, and assumed a Gaussian distribution for fitting the GLM. We started
with the following full model representing our main hypothesis: Fighting
ability ∼ Morph + SVL + OVS-Qt + OVS-CUV + OVS-Hue + ABlue +
ABlack. Model fitting was done manually in R 2.1.5.1 (R Core Team, 2014)
and model selection was conducted using backward single term deletions
(p � 0.05) of the saturated model followed by model comparisons via like-
lihood ratio tests.

We run linear mixed effects models to explore the relationship between
individual aggression score and colour variables. We also explored potential
receptor-dependent costs of coloration (i.e., variation in aggression score
caused by rival coloration) by running linear mixed models with SVL, OVS-
Hue, OVS-CUV, OVS-Qt, Morph, ABlue, ABlack and rival aggressive score as
fixed factors, and intercepts for winner and loser identity as random effects.
Finally, in order to assess the relationship between aggression ratio, body
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size, morph, and the size of black colour patches, we run the following post
hoc linear mixed effects model: Aggression ratio ∼ Winner ABlack × Loser
ABlack + Winner Morph × Loser Morph + Winner SVL × Loser SVL +
(1|Winner) + (1|Loser). p-values were obtained via likelihood ratio tests of
the full model after single-term deletions.

3. Results

We could identify a winner in 76 out of 99 contests (Figure A1 in the Ap-
pendix). Overall, the mean aggression score of each individual male across
contests was significantly correlated with the estimate of fighting ability
calculated with the B-T model from the global tournament network (Mean
aggression score ∼ Fighting ability, R = 0.59, t56 = 5.515, p < 0.0001, Fig-
ure A2 in the Appendix).

3.1. Inter-morph differences

Yellow males won 66% of heteromorphic combats (N = 36), while white
males won 58% (N = 39) and orange males only 24% (N = 37). Yellow
and white males defeated orange males in the majority of contests (W >

O: 76%, N = 17; Y > O: 75%, N = 20), while results for contests be-
tween white and yellow males were more balanced (Y > W: 58%, N = 19).
However, males with different ventral coloration did not differ in their mean
aggression score across contests (Mean AS, F2,58 = 1.73, p = 0.187). We
found no significant differences in body size (SVL, F2,60 = 1.84, p = 0.168)
or body condition (BCI, F2,60 = 2.858, p = 0.0658) among morphs, de-
spite a trend for yellow males in our sample to show lower BCI than
males of the other two morphs (Figure A3 in the Appendix). UV-blue
spectral variables did not differ between morphs (OVS-Qt, F2,59 = 2.807,
p = 0.0691; OVS-Hue, F2,59 = 0.088, p = 0.916; OVS-CUV, F2,59 = 1.349,
p = 0.268). ABlack showed marginally non-significant differences between
morphs (ABlack, F2,58 = 3.038, p = 0.0561), likely due to males of the
white morph having slightly larger ABlack than males from the orange morph
(Tukey’s post hoc, W-O ± SEM = 0.058 ± 0.024, t2,58 = 2.39, p = 0.052;
Y-O ± SEM = 0.042 ± 0.025, T2,58 = 1.69, p = 0.218; Y-W ± SEM =
−0.016 ± 0.025, t2,58 = −0.64, p = 0.801). Orange morph males had higher
ABlue than white and yellow males (Figure 2; ABlue, F2,58 = 25.49, p <

0.0001; Tukey’s post hoc, W-O ± SEM = −0.083 ± 0.012, t2,58 = −6.75,
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p < 0.0001; Y-O ± SEM = −0.067 ± 0.013, t2,58 = −5.33, p < 0.0001),
while the white and yellow morphs did not differ (Tukey’s post hoc, Y-W ±
SEM = 0.016 ± 0.013, t2,58 = 1.24, p = 0.434).

3.2. Predictors of fighting ability

In accordance with the observed differences in contest outcome, we detected
a marginally significant difference in the fighting ability of different morphs
(one way-ANOVA: Fighting ability ∼ Morph, T2,59 = 3.337, p = 0.043;
Figure 3). Orange males seem to have slightly lower fighting ability than
yellow males (Tukey’s post hoc, W-O ± SEM = 0.007 ± 0.003, t2,58 = 2.08,
p = 0.104; Y-O ± SEM = 0.008 ± 0.003, t2,58 = 2.37, p = 0.054; Y-W ±
SEM = −0.001 ± 0.003, t2,58 = 0.35, p = 0.93).

However, after model selection, only ABlack (mean ± SEM = 0.249 ±
0.128) remained as a significant predictor of individual fighting ability
(Fighting ability ∼ABlack, t56 = 2.453, Std. Coef. = 0.31, p = 0.017, Fig-
ure 4). ABlack was not related to mean aggression score (Spearman correla-
tion: S56 = 26808, ρ = 0.175, p = 0.188), BCI (T56 = 0.032, p = 0.974) or
ABlue (t56 = −1.23, p = 0.223). We found no relationship between the spec-
tral variables of UV-blue patches and fighting ability (R < 0.1, p > 0.2 in all
cases).

Figure 3. Within-morph means of fighting ability estimates obtained with the Bradley–Terry
model. Error bars represent the standard error of the mean. This figure is published in colour
in the online edition of this journal, which can be accessed via http://booksandjournals.
brillonline.com/content/journals/1568539x.

http://booksandjournals.brillonline.com/content/journals/1568539x
http://booksandjournals.brillonline.com/content/journals/1568539x
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Figure 4. Scatterplot showing the relationship between fighting ability and black relative area
in the ventrolateral scales (ABlack) for each individual participating in the tournament.

3.3. Predictors of aggression score and aggression ratio

Winner or loser aggression scores were unrelated to colour variables from
any of the contestants. In every mixed model, the aggression score of one
rival was best predicted only by the aggression score of its opponent (Win-
ner aggression score ∼ Loser aggression score, t5,76 = 5.6, p < 0.0001). In
contrast, aggression ratio showed a significant relationship with the ABlack

of both contestants. Specifically, combats between males with similar ABlack

resulted in higher aggression ratios. After model selection, aggression ra-
tio was found to be significantly related to the interaction between the
ABlack of each contestant (Winner ABlack × Loser ABlack; χ2 = 4.74, df = 1,
p = 0.029) (Table 2), but not with their morph (Winner Morph × Loser
Morph; χ2 = 6.63, df = 1, p = 0.16), nor their SVL (Winner SVL × Loser
SVL; χ2 = 0.0003, df = 1, p = 0.99). To examine the significance of this
interaction, we used a 3D plot, which suggests that aggression ratio increases
as the asymmetry between winner and loser ABlack decreases (Figure 5).

4. Discussion

In this study, we set out to assess the potential role of P. muralis ventral (i.e.,
morph; orange, yellow or white) and ventrolateral (i.e., UV-blue and black)
colour patches in determining contest outcome in male–male conflicts. Nei-
ther the size nor the spectral variables of UV-blue patches affected contest
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Table 2.
Mixed effects linear model used to explore the relationship between body size, morph, black
coloration and aggression ratio in staged contests between Podarcis muralis male lizards.

Term Coefficient SE Variance SD χ2 df p

Fixed factors
Winner ABlack ×

Loser ABlack

0.19 0.09 4.74 1 0.029

Winner ABlack −0.09 0.12 0.53 1 0.47
Loser ABlack −0.02 0.13 0.03 1 0.87

Random factors
Loser identity 0.41 0.64
Winner identity 0.33 0.57

Figure 5. 3D plot exploring the relationship between aggression ratio and the interaction
between the black relative area (ABlack) of both opponents.
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outcome, but both ABlack and ventral colour morph did. ABlack was a partic-
ularly good predictor of fighting ability that also affected the difference in
aggression score between winners and losers, in a way that suggests it may
be functional as an agonistic signal (see below).

4.1. Black ventrolateral patches as chromatic signals of fighting ability

As stated, ABlack was the best predictor of fighting ability in our models,
and we also found that the interaction between winner and loser ABlack was
a significant predictor of the aggression ratio of a contest. Namely, win-
ners behaved relatively more aggressively towards losers as the difference
in winner-loser ABlack decreased, and less so as it increased. This effect was
strong and persisted despite controlling for the interaction between both ri-
vals’ SVL in our post hoc model. Hence black coloration does not appear
to act as a simple surrogate of size (Gosá, 1987) but rather as an agonis-
tic signal used by males to assess their rivals’ fighting ability, and adjust
their investment in the fight accordingly. This is in agreement with a re-
cent study reporting that the amount of ventral black coloration strongly
correlates with dominance status in two different lineages of P. muralis
(i.e., Tuscany and Western Europe lineages; While et al., 2015). Further-
more, results from this study strongly suggest that the introgression of the
Italian lineage (with exaggerated black coloration) onto Western France is
likely driven by male–male competition favouring this character (While et
al., 2015).

Several studies across different taxa have also documented the influence
of black (melanin-based) coloration in the formation of hierarchies, domi-
nance status, and in the resolution of contests (insects: Tibbetts et al., 2010;
fish: Horth, 2003; Johnson & Fuller, 2014; birds: González et al., 2002;
Chaine et al., 2011; reptiles: Lebas & Marshall, 2001; Osborne, 2005; Mafli
et al., 2011; Qi et al., 2011). Interestingly, and in agreement with predictions
from the sequential assessment game model (Enquist & Leimar, 1983), we
found that the most aggressive contests were those involving opponents with
similarly-sized melanin patches, which has also been reported in organisms
as phylogenetically distant as the paper wasp (Polistes dominulus; Tibbetts et
al., 2010; Tibbets & Sheehan, 2011), or the bluefin killifish (Lucania goodie;
Johnson & Fuller, 2014). Thus, melanin-based signals seem to convey valu-
able information about opponents’ fighting abilities in a broad diversity of
taxa.
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Melanin-based signals are usually considered to have low production costs
in vertebrates (Hill & Brawner, 1998; Badyaev & Young, 2004; Stoehr, 2006;
but see Roulin, 2016), but there is evidence in different species suggesting
they frequently act as badges of status with socially-enforced costs (e.g.,
Møller, 1987; Senar & Camerino, 1998; Tibbets & Dale, 2004; Diep & West-
neat, 2013; Roulin, 2016). In addition, activity in the melanocortin system —
which is responsible for the production of melanin-based coloration — co-
varies with several behavioural and physiological traits in vertebrates, such
that darker individuals are often more aggressive, sexually more active and
more resistant to various sources of stress than lighter animals (Ducrest et
al., 2008). We suggest future studies should examine the mechanisms un-
derlying honest signalling by means of melanin-based colour patches in P.
muralis.

4.2. Size and reflectance of UV-blue patches are not related to contest
outcome

We did not find a relationship between fighting ability or aggression score
and the size or any of the spectral characteristics of UV-blue patches. Taken
at face value, these results seem to argue against the possibility that con-
spicuous UV-blue patches convey information about male competitive skills.
However, there is now compelling evidence suggesting that UV-blue patches
may play an important role in intra-sexual competition in several Podarcis
species (Marshall & Stevens, 2014; Pérez i de Lanuza et al., 2014a; Martin
et al., 2015b), including Podarcis muralis (McGregor et al., 2016, unpub-
lished data). It is possible that UV-blue patches play a significant role in
more natural contexts than the short-range encounters artificially enforced
by our experimental design (see also Martin et al., 2015b). It is also possible
that, due to potential within-season changes in coloration, our spectrophoto-
metric measurements, taken after the experiment was completed and towards
the end of the reproductive season in this population, failed to reflect the true
characteristics of UV-blue patches during combats (Martin et al., 2015b).
Finally, our negative results may be due to UV-blue patches playing an im-
portant role only in the early stages of contests (when assessment takes
place), but failing to predict contest outcome if the conflict escalates into
physical aggression (Baird et al., 2013). We suggest future studies should
aim to experimentally manipulate the area and spectral variables of the UV-
blue patches, and set up contests in larger enclosures.
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4.3. Morph-specific bias in fighting ability

Our finding that orange males have a propensity to lose heteromorphic con-
frontations seems to contradict a previous study that did not report any
inter-morph differences in fighting ability in Italian polychromatic popula-
tions of P. muralis (Sacchi et al., 2009).

Although this discrepancy might arise from geographical/phylogenetic
differences between the Italian and French lineages, it could also have orig-
inated from crucial differences in the experimental design and data analysis.
Sacchi et al. (2009) found no differences among morphs in the aggression
exhibited during contests, and no effect of ventral coloration over contest
score (calculated as the difference in aggression score between contestants).
In agreement with these results, in the present study we found no differences
in levels of mean aggression score among morphs, nor of an effect of the
opponents’ ventral coloration on aggression ratio. However, the analysis of
fighting ability estimates revealed significant inter-morph differences in the
ability to win intrasexual confrontations. Estimating fighting ability directly
from contest outcome in a nested tournament experimental design (rather
than extrapolating it from aggressive scores obtained from independent sub-
sets of contests; Sacchi et al., 2009), may have allowed for a more powerful
analysis of the role played by ventral coloration in the agonistic context. Ad-
ditionally, as Sacchi et al. (2009) performed combats in a resident-intruder
scenario, residency — a strong determinant of contest outcome in lizard en-
counters (Whiting, 1999; Olsson & Shine, 2000) — may have easily masked
the relatively weaker effect of ventral coloration (Stuart-Fox & Johnston,
2005). In Lacerta agilis, for example, resident males defeated intruder males
in all staged combats regardless of their coloration (Olsson, 1993), while
males with larger colour patches were more likely to win fights when con-
frontations took place in a neutral arena (Olsson, 1994). Other previous
studies with lizards have also linked colour polymorphisms to differences
in fighting ability using experimental designs that control for a residency
effect. For example, in the agamid Ctenophorus decresii orange males con-
sistently showed the highest levels of aggression when confronted to the
other morphs (Yewers et al., 2016), while in Ctenophorus pictus red-headed
males outcompeted yellow-headed males in dyadic contests (Healey et al.,
2007). In the phrynosomatid Urosaurus ornatus blue–green throated males
were more likely to defeat orange throated males (Carpenter, 1995). In con-
trast to our results, in populations of Podarcis melisellensis with the same

http://dx.doi.org/10.1163/1568539X-00003366


J. Abalos et al. / Behaviour (2016) 17

type of orange–yellow–white ventral polymorphism as P. muralis, orange
males show greater fighting ability than yellow or white males (Huyghe et
al., 2012).

Sexual selection often plays a role in the origin and maintenance of pop-
ulation polymorphisms as strong intra-sexual competition might promote
the evolution and maintenance of alternative mating strategies (Taborsky,
2008), which frequently correlate with discrete phenotypic traits (e.g., colour
morphs; Wellenreuther et al., 2014). For example, in Uta stansburiana peri-
odic oscillations in the relative frequencies of three discrete morphs reflect a
cyclical ‘rock–paper–scissors’ game that is driven by frequency-dependent
selection on three alternative reproductive strategies (Sinervo & Lively,
1996). Following these results, much attention has been paid to the possibil-
ity that other lizard colour polymorphisms might similarly reflect the exis-
tence of alternative reproductive tactics maintained by ‘rock–paper–scissors’
dynamics of selection. For instance, San-José et al. (2014) found that the
lacertid Zootoca vivipara experiences similar fluctuations in the relative fre-
quencies of morphs that appear to be consistent with frequency-dependent
cycles of cumulative selection. However, the reason why alternative mating
strategies should be associated with different colorations remains an intrigu-
ing question far from being resolved (Pérez i de Lanuza et al., 2013b; but
see Sinervo et al., 2006), and future experimental studies in polymorphic
systems should test the presumed signalling role of the alternative ventral
colours.

Until now, research on colour polymorphism in P. muralis has revealed
several between-morph differences in morphological and physiological traits
(Sacchi et al., 2007a, b; Calsbeek et al., 2010; Galeotti et al., 2010, 2013) that
might suggest that different phenotypic optima are being favoured in each
morph (i.e., increased body size and susceptibility to infection in the orange
morph; Calsbeek et al., 2010), but it is still unclear whether these differences
correlate with morph-specific behavioural syndromes and/or mating strate-
gies (but see Sacchi et al., 2009; Pérez i de Lanuza et al., 2013b; Sacchi et al.,
2015). The lower fighting ability of orange males in our experiments could
be explained by a number of causes, such as by inter-morph behavioural dif-
ferences in territory acquisition and defence or in inherent fighting ability.
The relative impact of colour signals on contest outcome has been found
to vary in species of Anolis with different levels of territoriality (Lailvaux
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& Irschick, 2007). It would be interesting to investigate whether the dif-
ferences we observed in the fighting ability and black coloration of orange
males might be explained by differences in territorial behaviour, and hence in
the relative importance of black coloration, across morphs. We suggest future
studies should take a closer look at inter-morph differences in fighting abil-
ity and other behavioural and physiological aspects relevant to male–male
competition (e.g., territoriality and sperm competition).
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Appendix

Figure A.1. Tournament network including all the 76 contests (out of 99 staged) in which
a winner could be determined. Numbers inside circles denote individuals and the colour
represents their morph (o, red; w, grey; y, yellow). Arrows connect opponents that were
confronted, pointing toward the loser. The Bradley–Terry model calculates individual fighting
ability estimates from nested tournament networks such as this one. This figure is published in
colour in the online edition of this journal, which can be accessed via http://booksandjournals.
brillonline.com/content/journals/1568539x.

http://dx.doi.org/10.1163/1568539X-00003366
http://booksandjournals.brillonline.com/content/journals/1568539x
http://booksandjournals.brillonline.com/content/journals/1568539x


J. Abalos et al. / Behaviour (2016) 25

Figure A.2. Scatterplot showing the relationship between mean aggression score (AS) and
fighting ability for each individual participating in the tournament.

Figure A.3. Box plots showing the values of BCI and SVL separated by colour morph.
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Abstract
Explaining the evolutionary origin and maintenance of color polymorphisms is a major 
challenge in evolutionary biology. Such polymorphisms are commonly thought to re-
flect the existence of alternative behavioral or life-history strategies under negative 
frequency-dependent selection. The European common wall lizard Podarcis muralis 
exhibits a striking ventral color polymorphism that has been intensely studied and 
is often assumed to reflect alternative reproductive strategies, similar to the iconic 
“rock–paper–scissors” system described in the North American lizard Uta stansburi-
ana. However, available studies so far have ignored central aspects in the behavioral 
ecology of this species that are crucial to assess the existence of alternative repro-
ductive strategies. Here, we try to fill this gap by studying the social behavior, space 
use, and reproductive performance of lizards showing different color morphs, both in 
a free-ranging population from the eastern Pyrenees and in ten experimental meso-
cosm enclosures. In the natural population, we found no differences between morphs 
in site fidelity, space use, or male–female spatial overlap. Likewise, color morph was 
irrelevant to sociosexual behavior, space use, and reproductive success within ex-
perimental enclosures. Our results contradict the commonly held hypothesis that P. 
muralis morphs reflect alternative behavioral strategies, and suggest that we should 
instead turn our attention to alternative functional explanations.

K E Y W O R D S

alternative strategies, color polymorphism, free-ranging population, mesocosm, Podarcis 
muralis, social behavior

1  | INTRODUC TION

Explaining the maintenance of phenotypic variability over time 
remains a central question in evolutionary biology. Population 

polymorphisms are a particularly widespread form of pheno-
typic variability (Galeotti, Rubolini, Dunn, & Fasola, 2003; Gray 
& McKinnon, 2007; Mckinnon & Pierotti, 2010; Roulin, 2004; 
Svensson, 2017). In polymorphic populations, individuals of the 
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same sex and age may exhibit different phenotypes (e.g., color 
morphs) that are heritable, fixed in adults, and not condition-depen-
dent (Galeotti et al., 2003; Mckinnon & Pierotti, 2010; Roulin, 2004). 
Selectively neutral polymorphisms are expected to be lost eventu-
ally due to stochastic processes (i.e., genetic drift; Roulin, 2004), and 
the long-term maintenance of polymorphisms within a population 
requires some form of balancing selection, for example, via nonran-
dom mating, source–sink dynamics, overdominance, or rare morph 
advantage (Galeotti et al., 2003; Roulin & Bize, 2007; Roulin, 2004; 
Svensson, 2017; Wellenreuther, Svensson, & Hansson, 2014).

Sexual selection often plays a major role in the maintenance 
of color polymorphisms (Roulin & Bize, 2007; Wellenreuther 
et al., 2014). Discrete variation among conspecifics in behavior or 
life histories associated with reproduction (termed alternative re-
productive strategies, ARS) is frequently coupled with alternative 
color morphs (Ducrest, Keller, & Roulin, 2008; Roulin & Bize, 2007; 
Roulin, 2004; Shuster & Wade, 2003; Wellenreuther et al., 2014; 
Willink, Duryea, & Svensson, 2019; Zamudio & Sinervo, 2000). ARS 
are particularly frequent in males of polygynous (or polygynandrous) 
species, which experience a high variance in mating success and, 
thus, stronger sexual selection. In these species, the uneven distribu-
tion of fertilizations among males playing the conventional strategy 
allows the evolution of behavioral ARS (e.g., monogynist, satel-
lite, sneaker) adapted to exploit distinct mating niches (Greenfield 
& Shelly, 2008; Shuster, 2008; Shuster, Briggs, & Dennis, 2013; 
Shuster & Wade, 2003; Taborsky, Oliveira, & Brockmann, 2008; 
Waltz, 1982). Genetically fixed strategies are favored whenever 
males tend to experience only one selective regime during their life-
time, so that specializing in alternative resources has higher fitness 
than being a generalist (Brockmann, 2001; Roulin, 2004; Zamudio & 
Sinervo, 2003). For instance, certain characteristic of the environ-
ment (e.g., heterogeneous distribution of resources, short breeding 
season) can interact with aspects of the species' ecology (e.g., short 
life span, adaptive site fidelity) producing resource-defense mating 
systems (i.e., territoriality) in which subordinate males are unlikely 
to disperse. Males of such species tend to experience a single social 
environment during their lifetime, promoting the evolution of fixed, 
rather than conditional, behavioral strategies (Shuster & Wade, 2003; 
Zamudio & Sinervo, 2003). Balancing selection can maintain these 
alternative strategies, even if genetically fixed, whenever they ob-
tain equal average fitness across contexts. This can happen in a wide 
array of scenarios, such as marked seasonality or spatial environmen-
tal heterogeneity (Brockmann, 2001; Taborsky & Brockmann, 2010). 
In sympatry, ARS can obtain equal fitness through frequency-de-
pendent selection (Gross, 1996; Shuster & Wade, 2003; Taborsky 
et al., 2008). Occasionally, two or more strategies can cycle in 
frequency over time if presenting a lower frequency confers a fit-
ness advantage (negative frequency-dependent selection (NFDS; 
Brockmann, 2001; Roulin, 2004; Taborsky et al., 2008; Takahashi, 
Yoshimura, Morita, & Watanabe, 2010; Willink et al., 2019). Color 
polymorphism may participate of this evolutionary process and be 
maintained under two different conditions. On the one hand, al-
ternative color morphs may be directly selected for because of an 

adaptive advantage they confer in the context of ARS (e.g., sexual 
mimicry in damselflies; Svensson, Willink, Duryea, & Lancaster, 
2020; Willink et al., 2019). Alternatively, color morphs may be an 
indirect by-product of selection on other attributes related to the 
ARS (i.e., when genes involved in morphology, physiology, or behav-
ior have pleiotropic effects on color production; Galeotti et al., 2003; 
Roulin & Bize, 2007; Roulin, 2004, 2016; Wellenreuther et al., 2014).

One of the best-studied cases of color polymorphic ARS is the 
side-blotched lizard, Uta stansburiana. Adult males of this species 
present one of three alternative throat colors (blue, orange, and yel-
low), each of which is associated with different sociospatial behaviors. 
Orange-throated males establish large territories overlapping with 
several females by outcompeting blue-throated males in territorial 
disputes. These vast territories make orange males vulnerable to los-
ing fertilizations in favor of the nonterritorial yellow morph, which 
uses female mimicry to sneak copulations opportunistically. In turn, 
blue-throated males compensate their competitive disadvantage 
by guarding females directly and hence securing more fertilizations 
against the yellow sneaker males (Alonzo & Sinervo, 2001; Calsbeek 
& Sinervo, 2002a; Sinervo & Lively, 1996; Sinervo et al., 2006; 2007; 
Sinervo & Zamudio, 2001; Zamudio & Sinervo, 2000;). This dynamic 
gives rise to periodic oscillations in the relative frequencies of U. stans-
buriana male color morphs, in a cyclical “rock–paper–scissors” (RPS) 
game whereby each color morph, when predominant, is vulnerable to 
invasion by another color morph (Sinervo & Calsbeek, 2006; Sinervo 
& Lively, 1996). These results sparked a proliferation of studies aimed 
at detecting similar differences in reproductive behavior among the 
numerous species of lizards with color polymorphism (Bastiaans, 
Morinaga, Castañeda Gaytán, Marshall, & Sinervo, 2013; Fernández 
et al., 2018; Huyghe, Herrel, Adriaens, Tadić, & Van damme, 2009; 
Huyghe, Vanhooydonck, Herrel, Tadic, & Van Damme, 2007; Olsson, 
Healey, & Astheimer, 2007; Olsson, Stuart-Fox, & Ballen, 2013; San-
Jose, Peñalver-Alcázar, Milá, Gonzalez-Jimena, & Fitze, 2014; Yewers, 
Pryke, & Stuart-Fox, 2016; Yewers, Stuart-Fox, & Mclean, 2018). For 
a number of reasons, morph-specific ARS, morph fluctuations, and 
rock–paper–scissors dynamics similar to those described in Uta stans-
buriana have been predicted to occur in Eurasian lacertids, particularly 
in wall lizards (genus Podarcis, family Lacertidae; Sinervo et al., 2007; 
Calsbeek, Hasselquist, & Clobert, 2010; Mangiacotti et al., 2019). First, 
ventral color polymorphisms involving three alternative colors (i.e., or-
ange, white, and yellow) have been documented in adult individuals 
of at least 11 out of the 24 species currently recognized within the 
Podarcis genus, and is thus thought to have an ancestral origin (Andrade 
et al., 2019; Speybroeck, Beukema, Bok, Van der Voort, Velikov, 2016; 
Huyghe et al., 2007; Jamie & Meier, 2020; Pérez i de Lanuza, Bellati, 
Pellitteri-Rosa, Font, & Carretero, 2019; Runemark, Hansson, Pafilis, 
Valakos, & Svensson, 2010; Sacchi et al., 2007). Second, many of these 
species show high site fidelity, low interannual survival, and occupy 
habitats where resources relevant to reproduction (e.g., stone walls) 
are unevenly distributed (Barbault & Mou, 1988; Calsbeek et al., 2010; 
Carretero, 2007; Edsman, 1990, 2001; Font, Barbosa, Sampedro, 
& Carazo, 2012; Sinervo et al., 2007; Strijbosch, Bonnemayer, & 
Dietvorst, 1980). Third, males of many wall lizards experience strong 



10988  |     ABALOS et AL.

intrasexual competition, mainly in the contexts of territorial disputes 
and sperm competition. Females seem to be attracted to high-quality 
and/or familiar patches of habitat rather than to males with certain 
phenotypic characteristics (Edsman, 1990, 2001; Font, Barbosa, et al., 
2012). Moreover, behavioral observations and genetic analyses have 
confirmed that receptive females often mate with more than one male 
before oviposition, which results in a high incidence of multiple pater-
nity (Heathcote et al., 2016; Oppliger, Degen, John-Alder, & Bouteiller-
Reuter, 2007; Uller & Olsson, 2008). Consequently, adult males try to 
secure fertilizations by investing significant time and energy in the 
defense of territories offering resources valuable to females (such as 
basking spots, shelters, optimal egg-laying sites) against other males 
(Baird, 2013; Edsman, 1990; Font, Barbosa, et al., 2012). The outcome 
of this territorial disputes is crucial to male reproductive success, and 
patterns of shared paternity have often been found to reflect spatial 
and social dominance among males (MacGregor, Lewandowsky, et al., 
2017; MacGregor, While, et al., 2017; Oppliger et al., 2007; Uller & 
Olsson, 2008; While et al., 2015). For these reasons, alternative color 
morphs in many wall lizards are often believed to represent the visible 
mark of heritable ARS involving differential sociospatial behaviors in 
males (Andrade et al., 2019; Calsbeek et al., 2010; Huyghe et al., 2007; 
Pérez i de Lanuza, Carretero, & Font, 2017; Sinervo et al., 2007).

The European common wall lizard (Podarcis muralis) shows the 
widest distribution within the genus Podarcis, and many populations 

exhibit a striking color polymorphism (Speybroeck, Beukema, Bok, 
Van der Voort, and Velikov, 2016). Adults of both sexes may show 
up to five alternative ventral color morphs: three uniform (pure) 
morphs, that is, orange (O), white (W), and yellow (Y), and two in-
termediate mosaics combining orange and white (OW) or yellow 
and orange (YO) (Pérez i de Lanuza, Font, & Carazo, 2013; 2019; 
Figure 1). These color morphs are fixed at maturity (Pérez i de 
Lanuza et al., 2013), and recent research suggests that orange and 
yellow color expression is caused by recessive homozygosity at 
two separate loci in the regulatory regions of two genes associated 
with pterin (SPR) and carotenoid (BCO2) metabolism, respectively 
(Andrade et al., 2019). Interestingly, each of these morphs is found 
in geographically distant sublineages of the species thought to have 
diverged up to 2.5 million years ago (Andrade et al., 2019; Salvi, 
Harris, Kaliontzopoulou, Carretero, & Pinho, 2013; Figure S1). Local 
morph composition shows considerable geographical variation, 
although white ventral coloration is typically the most common 
(>50%), while the orange and especially the yellow morph rarely 
predominate. The yellow and yellow-orange morphs are often 
the most infrequent, and in Pyrenean populations, they seem to 
be geographically restricted to a subset of localities (<50%) char-
acterized by male-biased sex ratios and marked climatic season-
ality (Pérez i de Lanuza et al., 2017; Pérez i de Lanuza, Sillero, & 
Carretero, 2018).

F I G U R E  1   (a) Color variation in the 
ventral surface of adult Podarcis muralis 
lizards. (b) Close-up of an orange morph 
male showing UV-blue and black spots in 
its outer ventral scales (OVS)



     |  10989ABALOS et AL.

At least the pure morphs in P. muralis are often assumed to re-
flect alternative behavioral or life-history strategies (e.g., Calsbeek 
et al., 2010; Galeotti et al., 2010; Scali et al., 2013; Zajitschek, 
Zajitschek, Miles, & Clobert, 2012). The colors are indeed well 
suited to function as color signals. They are highly conspicuous 
to the species visual system and heritable, and their ventral posi-
tion allows the lizards to control their exposure through posture 
(Andrade et al., 2019; Pérez i de Lanuza, Carretero, & Font, 2016; 
Pérez i de Lanuza & Font, 2015, 2016). Moreover, the alternative 
colors show discrete variation and are chromatically discriminated 
as categorically distinct by conspecifics (Pérez i de Lanuza, Ábalos, 
Bartolomé, & Font, 2018; Pérez i de Lanuza et al., 2013), which 
makes them particularly suited to convey information about strat-
egy (Tibbetts, Mullen, & Dale, 2017). Research on P. muralis has 
revealed several differences in morphological, physiological, and 
behavioral traits across color morphs (e.g., Calsbeek et al., 2010; 
Galeotti et al., 2013; Pérez i de Lanuza & Carretero, 2018; Sacchi, 
Mangiacotti, Scali, Ghitti, & Zuffi, 2017; Scali et al., 2013; Zajitschek 
et al., 2012). However, there is no clear evidence that these cor-
related traits reflect morph-specific strategies, whether in the con-
text of sexual or natural selection. Furthermore, available studies 
have focused on morphology and physiology (Calsbeek et al., 2010; 
Galeotti et al., 2007, 2010; Galeotti, 2013; Pellitteri-Rosa, 2010; 
Sacchi, Mangiacotti, et al., 2017; Sacchi et al., 2007), while central 
aspects in the behavioral ecology of this species have received little 
attention (Abalos, Pérez i de Lanuza, Carazo, & Font, 2016; Pellitteri-
Rosa et al., 2017; Sacchi et al., 2015; Sacchi et al., 2009). In particular, 
the interaction between sociospatial behavior, reproductive success, 
and shared paternity is key to ascertain whether P. muralis color 

morphs obtain their fitness using alternative behavioral strategies 
during the breeding season. If behavioral ARS underlie color poly-
morphism in P. muralis, the alternative color morphs may show equal 
reproductive success but differential investment in social domi-
nance, territoriality, space use, and/or postcopulatory sexual behav-
ior (e.g., mate-guarding), which often translate into morph-biased 
patterns of cosiring and clutch monopolization (Formica, Gonser, 
Ramsay, & Tuttle, 2004; Sinervo & Lively, 1996; Sinervo, Miles, 
Frankino, Klukowski, & DeNardo, 2000; Zamudio & Sinervo, 2000). 
However, no previous study has investigated the alignment of poly-
morphic coloration, social behavior, and reproductive performance 
in sufficient detail to draw firm conclusions about the existence of 
behavioral ARS in P. muralis. To fill this gap, we monitored morph 
differences in spatial behavior in a free-ranging polymorphic popula-
tion from the eastern Pyrenees across a period of 5 years. We com-
plemented this with a mesocosm experiment using ten experimental 
populations with balanced sex ratio and morph frequencies to study 
the spatial and sociosexual behavior of P. muralis pure color morphs 
in a controlled environment. Our experimental design was aimed to 
detect behavioral differences in space use or social behavior among 
the color morphs, as well as morph differences in shared paternity, 
rather than frequency-dependent effects on morph fitness. For this 
reason, we introduced the morphs in equal frequencies to optimize 
our sample size of individual lizards representing each morph within 
the enclosures. Incidentally, as the balanced morph ratios employed 
are highly unlikely to occur in natural populations, this design also al-
lows us to test whether the higher prevalence of white morph lizards 
observed across the species distribution range results from some 
form of frequency-dependent fitness effect.

F I G U R E  2   Space use in a free-ranging population of P. muralis. (a) Photographic composition of a stone wall in Angoustrine. Roman 
numbers mark reference points for precision. (b and c) Schematic representations of the wall vertical surface used as home- (color shades, 
95% MCP) and core ranges (solid-line polygons, 50% MCP) by two females (b) and three males (c) during the breeding season of 2010. (d) 
Diagram of the linear home- and core range lengths estimated for each lizard as the width of the corresponding MCP (solid-lines = home 
range, color shades = core range). (e) Google Earth satellite image of the study site in Angoustrine (Map data: Institut Cartogràfic de 
Catalunya), with arithmetic center of each pure morph lizard core range during the period examined (367 lizards, 125 females, and 242 
males)
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2  | MATERIAL S AND METHODS

2.1 | Spatial behavior in a free-ranging population of 
Podarcis muralis

During the spring seasons of 2006–2010, we collected data on 
the activity and spatial behavior of a population of wall lizards in 
Angoustrine (42°28′43″N, 1°57′12″E), eastern Pyrenees. The study 
site (ca 140 × 500 m = 7 ha; Figure 2) consists of a series of abandoned 
terraced fields characterized by granite outcrops and old dry-stone 
walls partially covered in vegetation (see Font, Barbosa, et al., 2012). 
Lizards were mostly sighted perching on the stone walls, usually re-
maining within the boundaries of a single wall for the whole breeding 
season. In any particular year, lizards showing at least six resightings 
on the same wall were considered resident, while lizards showing five 
or fewer resightings and/or sighted at walls located more than 100 m 
apart were considered nonresident transients (Edsman, 1990). We 
only considered lizards measuring at least 56 mm from snout to vent 
(SVL), which ensures they had developed full-blown adult ventral col-
oration (Figure S2; Pérez i de Lanuza et al., 2013).

To examine potential intermorph differences in activity levels, 
for each lizard we counted the total number of sightings, the mean 
days elapsed between consecutive sightings, and the mean distance 
between consecutive sightings. As frequently done when a species' 
habitat is physically constrained (e.g., river fauna; Ahlers, Heske, 
Schooley, & Mitchell, 2010; Kornilev, Dodd, & Johnston, 2010; 
Kramer, 1995), we calculated a one-dimensional measure of home 
range size for each lizard inhabiting a particular stone wall. We op-
erationally defined the width of the 95% minimum convex polygon 
(MCP) encompassing the lizard's cluster of resightings on a stone wall 
as the lizard's linear home range size, and the width of the 50% MCP 
as the linear core range in which the animals were most frequently 
observed (Figure 2; Grassman, Tewes, Silvy, & Kreetiyutanont, 2005; 
Heupel, Simpfendorfer, & Hueter, 2004; Powell, 2000). To determine 
what fraction of male core ranges constitutes a territory (Maher & 
Lott, 1995), we defined the exclusive range of each male as the part 
of its core range that did not show overlap with the core range of any 
other male (i.e., territory; Kerr & Bull, 2006). Then, for each male with 
a reliable linear home range estimate (≥17 sightings; see Appendix S1) 
we measured spatial overlap by counting the number of resident fe-
males whose core ranges overlapped at least partially with either the 
home range, or the exclusive range of the focal male. To account for 
the vertical dimension of the lizards' home ranges, we also calculated 
the mean perching height of each resident lizard sighted.

2.2 | Mesocosm experiment

2.2.1 | Lizard capture and housing

We captured 190 lizards (100 females and 90 males) by noosing from 
12 polymorphic localities spread across the Cerdanya Valley (Eastern 
Pyrenees). In each of these localities, we captured 2–8 lizards 

(SVL ≥ 56 mm) showing each of the pure color morphs (O, W, Y) so as 
to avoid a geographical bias in our sample. No lizards were captured 
from populations lacking any of the pure color morphs. To ensure 
captured females were not gravid, we captured females at the end 
of the previous breeding season (September 2017), and transferred 
them to the Statión d’Ecologie Théorique et Expérimentale (SETE, 
Moulis, France). There, we housed females in groups of 3–5 coming 
from the same locality in outdoor circular plastic tanks (170 cm di-
ameter, 60 cm high), where they were kept under natural conditions 
for 130 days (Bestion, Teyssier, Aubret, Clobert, & Cote, 2014; Le 
Galliard, Ferriere, & Clobert, 2005). In May 2018, after an artificial 
hibernation period (see Appendix S1), we reinstalled the females in 
the outdoor tanks for 2 weeks while we captured the males.

2.2.2 | Morphometry

Two days before the onset of the experiment, we measured SVL 
(0.1 mm) and mass (±0.01 g) of each lizard with a ruler and a spring 
balance (Pesola, Schindellegi, Switzerland). Using a digital caliper 
(±0.01 mm; Mitutoyo, Telford, UK), we quantified interlimb length 
(ILL) in females, and two head measurements in males: length (HL) 
and width (HW) (Olsson, Shine, Wapstra, Ujvari, & Madsen, 2002). 
We also removed ~5 mm from the tail tip of each individual and pre-
served the tissue in 90% ethanol for genetic analyses.

2.2.3 | Experimental enclosures and egg incubation

To study social behavior and mating patterns in ten experimental 
populations of P. muralis, we released 180 lizards of either sex into ten 
experimental enclosures at the Metatron research facility (Caumont, 
France; Legrand et al., 2012). Within each of these enclosures, we 
created two types of sites that varied in structural complexity. Each 
site consisted of a wooden pallet (~1.2 m2) with differing number of 
bricks, cinderblocks, rocks, and logs piled above, which acted both 
as shelter and as basking sites (Figure S3.). We arranged high- and 
low-quality sites (respectively HQ and LQ) in two rows of three pal-
lets along the N-S axis, separated by a line of six rocks (which we also 
considered as LQ habitat) (MacGregor & While, et al., 2017). We then 
surrounded the area with a plastic barrier (70 cm high) to prevent any 
escapes or intrusions. In total, each experimental cell had 47 m2.

On 23 May 2018, we released nine males (3O:3W:3Y) within each 
of the enclosures (simultaneously and always from the southeast 
corner). We monitored male behavior (see below) for 7 days before 
releasing nine females (3O:3W:3Y) within each enclosure. Due to pos-
thibernation mortality, the white female morph was underrepresented 
in two of the ten experimental enclosures (5o:1w:3y). Prior to release, 
we marked each lizard permanently on the ventral scales using a dis-
posable medical cautery unit (Ekner, Sajkowska, Dudek, & Tryjanowski, 
2011) and drew a dorsal number with a toluene xylene-free permanent 
marker to facilitate individual recognition during behavioral observa-
tions (see Video S1 in the Appendix S1; Ferner & Plummer, 2016). To 
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minimize the noise introduced by size asymmetries and prior social 
interactions, we allowed a maximum SVL difference of 2 mm (with-
in-sexes) and only put lizards together in the same experimental enclo-
sure if they had been captured at least 300 m apart.

On 22 June, we released the males at their capture location (pre-
viously determined using a GPS device) and housed females individ-
ually in the laboratory until oviposition (see Appendix S1). We lost 
22 clutches due to females laying eggs before we retrieved them 
from the enclosures (12 females) or because they failed to produce 
a clutch (10 females). These lost clutches were evenly distributed 
across enclosures (χ2 = 14.667, p = .10) and female morphs (or-
ange = 8, white = 8, yellow = 6). For the remaining 68 females, we 
counted the number of fertile and infertile eggs within each clutch 
by noting the presence of a calcified shell and vascularization 48 hr 
after oviposition (Köhler, 2006). We incubated the resulting 230 

fertile eggs in plastic cups filled with moist coco husk (1:2 coco:wa-
ter by weight) and covered with a perforated lid at a constant tem-
perature of 28°C (Memmert GmbH + Co.KG incubator, Schwabach, 
Germany). Upon hatching, each of the 209 born juveniles was mea-
sured (SVL), weighted, sampled for DNA, permanently marked, and 
released at the outdoor tanks in the SETE Moulis. For 21 embryos 
that died before hatching, we obtained DNA samples via dissection 
of the eggs. Average clutch size was 5.57 ± 0.20 eggs, average fertil-
ization success (fertile eggs/clutch size) was 67%, and average hatch-
ing success (hatched/fertilized eggs) was 90%.

2.2.4 | Behavioral observations

From 23 May to 22 June, we conducted observations of spatial and 
social behavior at the natural peak activity hours for the lizards 
(9.30–14.30; 16.30–19.30), spacing consecutive visits to the same 
enclosure at least 1 hr and ensuring an even distribution of obser-
vations across the different time periods. Two researchers (JA and 
AB) recorded the identity, position, and behaviors of the lizards 
participating in social interactions using a behavior sampling rule 
in recording sessions lasting 40 min. A social interaction was con-
sidered to occur whenever a marked lizard in our visual range di-
rected any of the behaviors listed in Table 1 toward a conspecific. 
During interactions, we recorded the first occurrence of the be-
haviors performed by each lizard. Consecutive interactions involv-
ing the same lizards were recorded as different events whenever 
the participants remained further than 30 cm apart for longer than 
2 min. To ensure interobserver reliability, JA and AB collected be-
havioral data together for the first 6 days of the experiment (Cohen's 
kappa ± CI95% = 0.87 ± 0.05; Kaufman & Rosenthal, 2009). A third 
observer (OL) performed sequential rounds visiting all the enclo-
sures every 2.5 hr to collect data on the lizards' spatial behavior. 
Using scan sampling, we determined the identity and location of 
every lizard in sight on a scale map of the enclosure that included 
the six wooden pallets. Each enclosure was observed from a starting 
position located 1 m from the plastic barrier surrounding it for 5 min, 
and then walking around it (randomizing direction between consecu-
tive visits) to record lizards that were not visible from the starting 
position. To balance sampling effort across enclosures, scanning of a 
single enclosure was restricted to a maximum period of 15 min after 
the first lizard was spotted.

2.2.5 | Behavioral analyses

We classified the interactions according to their sociosexual con-
text into four types: intrasexual competitive and noncompetitive, 
and male–female reproductive and nonreproductive. Intrasexual in-
teractions were deemed competitive whenever one lizard (i.e., the 
loser) used fast-paced locomotion to flee from another lizard (i.e., the 
winner) showing display behavior and/or physical aggression (i.e., 
display, bite, or chase). In males, where competitive encounters were 

TA B L E  1   Partial ethogram used during behavioral observations 
to collect data on social interactions within the experimental 
enclosures

Behavior Description

Approacha  Movement toward a nonfleeing conspecific

Display Gular extension, back-arching, shoulders 
raised, head down, sagittal compression (any 
combination)

Bite One or more bites to another individual 
(excluding tail grab)

Retreata  Movement away from a nonchasing 
conspecific

Chase Rapidly following another FLEEING lizard

Flight Fast-paced movement to withdraw from a 
CHASING lizard

Foot shakes IIb  Sequence of front-leg waves in the air or onto 
the substrate

Tail grab A male bites the tail or inguinal region of a 
female. Often followed by copulation

Tail shake Shaking entire tail (or its posterior portion) 
swiftly from side to side

Mating Two lizards engage in copulation

Coperching Two or more lizards lying together in close 
vicinity (<15 cm; >30 s)

Cloacal drag Pulling body forward while keeping cloaca in 
contact with substrate

aWe classified the mode of locomotion used as either running (fast-
paced) or any other mode of locomotion (slow-paced). 
bPodarcis muralis lizards perform four types of foot shake displays 
(named I, IIa, IIb, and III; see Font et al., 2012 and references therein), of 
which two (IIa and IIb) are given in a social context. We only recorded 
these two types of foot shakes. Type IIa: rapid large amplitude vertical 
movements of front legs frequently performed by females in male–
female interactions (belly-down, head-up posture). Losers of male–male 
agonistic interactions often perform this type of foot shakes, which are 
hence considered in this context as submissive/appeasement displays 
(see Font & Desfilis, 2002; Aragón, López, & Martín, 2006 for details in 
other Podarcis lizards). Type IIb: Performed by males when approaching 
females (limbs extended, often displaying; Pérez i de Lanuza, Font, et 
al., 2016). 
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numerous, we used the R package BradleyTerry2 to fit a Bradley–
Terry model to the observed matrix of contest outcomes within each 
enclosure to obtain an individual index of social dominance for every 
male (further details in Abalos et al., 2016; Firth & Turner, 2012; 
Stuart-Fox, Firth, Moussalli, & Whiting, 2006). To examine potential 
nontransitive relations of dominance among male color morphs, we 
also fitted three logistic mixed models (one for each morph) on the 
contest outcome of heteromorphic encounters and tested whether 
the probability of winning against other morphs differed from even 
odds. Male–female interactions were classified as reproductive 
when the lizards engaged in sex-specific display behaviors (i.e., ♂: 
display; ♀: foot shakes, tail shake), copulatory behavior (i.e., tail grab, 
mating), or prolonged physical vicinity (i.e., coperching). To examine 
the effect of morph combination on the frequency of male–female 
reproductive interactions, we used social network analysis on the 
compiled version of SOCPROG (Whitehead, 2009) (Appendix S1).

Positional data were used to examine the putative effect of 
color morph on activity, space use and overlap with conspecifics. To 
account for habitat use within the enclosures, we estimated range 
areas by adjusting the smoothing factor in a fixed-kernel contour 
analysis until it matched the area of the 95% MCP (smoothing mul-
tiplier = 0.75, matrix cell number = 40; Kie, 2013; Row & Blouin-
Demers, 2006; MacGregor, Lewandowsky, et al., 2017; MacGregor, 
While, et al., 2017). Lizards with fewer than nine sightings (N = 3) 
were excluded from the analysis (see Appendix S1). For each lizard, 
we calculated range size and overlap with conspecifics both at the 
95% (home range) and at the 50% (core range) isopleth levels. Each 
lizard was assigned to a high- or low-quality site based on the posi-
tion where the 50% kernel estimate indicated peak density. Because 
of the high lizard density within the enclosures, male-exclusive areas 
were peripheral and uninformative, so we did not conduct further 
analyses on them. When calculating home range estimates, we ex-
cluded the positional data collected during the first 6 days of the 
experiment to allow for an acclimation period. All spatial analyses 
were conducted in Ranges 9 (Anatrack Ltd., UK; Kenward, Casey, 
Walls, & South, 2014).

2.2.6 | Parentage analyses

We isolated DNA from tail-tip samples using the DNeasy 96 Blood 
& Tissue Kit (Qiagen, Valencia, CA, USA), obtaining a final elution 
volume of 150 µl in AE buffer. We then combined the primers of 
six microsatellite loci described in P. muralis (Heathcote, Dawson, 
& Uller, 2014; Richard et al., 2012) into two different multiplexes 
(MPA: Pm16, Pm09, PmurC168; MPB: Pm19, Pm14, PmurC038) and 
ran standard PCR with 26 cycles and a final extension step of 30 min 
at 60°C. Forward primers were labeled with different fluorescent 
dyes (FAM, NED, HEX). Diluted PCR products (1:5) were genotyped 
together with an internal ladder (Red ROX-500) on an ABI 3130 
genetic analyzer (Applied Biosystems Inc.). One researcher (HL) 
scored the alleles for every adult and juvenile lizard in Geneious 
7.0.4 (Biomatters, available at http://www.genei ous.com), which 

we used to conduct parentage analysis in Cervus 3.0 (Kalinowski, 
Taper, & Marshall, 2007; Marshall, Slate, Kruuk, & Pemberton, 1998). 
We assigned paternity based on the log-likelihood statistic of each 
mother–father–offspring trio (LOD scores), using two confidence 
levels (strict: 95%, relaxed: 80%) and the nine males within each en-
closure as candidate fathers. Critical LOD scores were determined 
by running a simulation paternity analysis based on 100,000 off-
spring with known mothers and nine candidate fathers. We could 
reliably assign paternity to every offspring examined (strict: 209 ju-
veniles, relaxed: 229 juveniles).

To quantify individual fitness, we operationally defined two vari-
ables based on the results of the paternity analysis: mating success 
(i.e., the overall number of different mates with whom a lizard con-
ceived offspring) and reproductive success (i.e., the total number of 
embryos/hatchlings sired). Since selection will depend on relative 
rather than absolute fitness, we then divided the fitness measures of 
each lizard by the mean for all same-sex conspecific within its enclo-
sure. In addition, to evaluate intermorph differences in sperm com-
petition intensity, for each male we determined the average number 
of competitors with which he shared paternity of a clutch.

2.2.7 | Statistical analyses

We ran linear mixed models using the lme4 package (Bates, 2014) 
in R (R Core Team, 2019), and model selection was conducted using 
backward single-term deletions (p < .05) of the saturated model fol-
lowed by model comparisons via likelihood-ratio tests (at α = 0.05). 
All numerical variables were centered and scaled before running the 
models (Schielzeth, 2010). We checked that all response variables 
conformed to homoskedasticity and normality assumptions before 
assuming a Gaussian distribution in model fitting. For some variables 
that did not conform to these assumptions even after transforma-
tion, we fitted models using different distributions (Appendix S1).

2.2.8 | Power analysis

Using G*Power (Erdfelder, Faul, & Buchner, 1996) and the meth-
odology provided by Thalheimer and Cook (2002), we determined 
the effect size for an array of published morph differences de-
tected in U. stansburiana and other polymorphic lizards thought 
to present some form of ARS (Table S1). We then used G*Power 
to calculate the smallest effect size that our sample size from the 
free-ranging population allowed us to detect (sensitivity analysis), 
and the sample size required to detect biologically meaningful dif-
ferences among morphs in the mesocosm experiment (a priori re-
quired sample size). We chose the more conservative approach of 
conducting these a priori analyses in G*Power instead of by simula-
tion since this latter approach requires the researcher to directly 
determine estimates for both fixed and random effects, for which 
we had no previous reliable information (Green & Macleod, 2016). 
However, to better accommodate for the mixed-model statistical 

http://www.geneious.com
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design of our experiments, we additionally used the estimates 
obtained here to run a simulation-based analysis of power on the 
probability of detecting medium-sized (Cohen's d > 0.5) and large 
(Cohen's d > 0.8) effects with growing sample sizes (Haenlein & 
Kaplan, 2004; Hoenig & Heisey, 2001; O’Keefe, 2007). We cre-
ated two artificial LMMs using the simr package in R (Green & 
Macleod, 2016), one corresponding to the free-ranging population 
and another corresponding to the mesocosm experiment. In the 
former, we replicated the terms and parameters of the standard-
ized model exploring morph differences in home range size. In the 
latter, we replicated the terms and parameters of the standard-
ized model exploring morph differences in social dominance (see 
Appendix S1). Following Green and Macleod (2016), we then 
modified the standardized estimate for the morph factor (i.e., ef-
fect size) to either 0.5 or 0.8, and conducted a power analysis by 
running 1,000 simulations at 10 different levels of sample size 
(range = 5–50 lizards within each morph).

3  | RESULTS

3.1 | Spatial behavior in a free-ranging population of 
Podarcis muralis

In total, we accumulated 5,046 sightings of 472 different liz-
ards. Eighty-seven lizards were observed more than 1 year (maxi-
mum = 3 years, 21 lizards). Out of those, 76 (87.4%) were found 
on the same wall as the previous year, seven (8%) moved between 
neighboring walls, and only four (4.6%) changed to a nonadjoining 
wall between years. Only 181 males and 101 females were large 
enough (SVL ≥ 56 mm) to be included in the analyses about morph 
differences (Table S2). For each variable considered, we provide sep-
arate measures of centrality and dispersion for males and females in 
Table S3. Residents represented 59.6% of both adult male and female 
lizards, and no color morph was overrepresented among resident or 
transient lizards (GLMM (binomial): χ2 = 1.60, p = .81). Movements 
between walls were similarly frequent among color morphs (GLMM 
(gamma), χ2 = 2.80, p = .59). Color morphs did not differ in the total 
number of resightings accumulated, the mean days elapsed between 
consecutive resightings, or the mean distance between consecutive 
relocations (p > .28; see Table S4 for more details and effect size).

We could calculate reliable estimates of linear home- and core 
ranges for 83 lizards, but decided to exclude mixed-morph lizards 
from the analyses due to their scarcity. The final dataset consisted 
of 70 lizards: 18 females and 52 males with at least 17 resightings 
(Table S2). Neither sex showed significant differences in SVL among 
color morphs (LMM: χ2 = 6.61, p = .16). Males had both larger linear 
home ranges and core ranges than females, and also perched higher 
on the stone walls (p < .01; Table S4). Morphs did not differ in the 
size of their home- and core ranges, neither in males (LMM: home 
ranges: χ2 = 4.31, p = .19; core ranges: χ2 = 2.41, p = .30), nor in fe-
males (LMM: home ranges: χ2 = 0.44, p = .80; core ranges: χ2 = 3.09, 
p = .21). Similarly, mean perching height did not differ among color 

morphs (χ2 = 1.01, p = .60; Table S4). In males, we did not find signif-
icant intermorph differences in the number of females within their 
linear home- or core range (GLMM (gamma): χ2 < 1, p > .3). Likewise, 
males of different color morphs did not differ in the size of their ex-
clusive ranges (i.e., the fraction of core range that is not shared with 
any other male) or in the number of female core ranges partially in-
cluded within those ranges (p > .35; Table S4).

3.2 | Mesocosm experiment

3.2.1 | Morphology and color traits

None of the morphometric traits examined (reported to be under 
intrasexual selection in male wall lizards; Baird, 2013; Pérez i de 
Lanuza, Carazo, & Font, 2014; While et al., 2015) were found to 
differ among color morphs in our sample of experimental males 
(Table S5). In females, neither SVL nor ILL (both positively correlated 
with fecundity; Kratochvíl, Fokt, Rehák, & Frynta, 2003; Olsson 
et al., 2002) varied with color morph, but white morph females (be-
fore reproduction) were found to be significantly heavier than or-
ange females (Table S5).

3.2.2 | Spatial behavior

Overall, we accumulated 7,190 resightings of the marked lizards 
in 655 scan samplings. The total number of resightings per lizard 
differed significantly between sexes (males were resighted more 
often), but not among color morphs (GLMM (negative binomial): sex: 
χ2 = 57.11, p < .001; morph: χ2 = 0.81, p = .67). Likewise, we found a 
strong intersexual difference in the ability to settle in high- or low-
quality sites, but no intermorph difference (GLMM (binomial): sex: 
χ2 = 56.38, p < .001; morph: χ2 = 1.37, p = .50; Figure 3). In fact, even 
though lizards were evenly distributed among sites (HQ: N = 91, LQ: 
N = 89), females had three times higher odds of settling in HQ sites 
(OR = 3.26), whereas only highly dominant males managed to oc-
cupy HQ sites (Figure S4). Specifically, an increase of one SD in social 
dominance among males meant 4.5 times higher odds of settling in 
HQ sites (p < .001; Table S6). Males settled in HQ pallets did not dif-
fer in body size, weight, or head variables from males settled in LQ 
pallets (LMM: χ2 < 1, p > .2).

As expected, males had larger home- and core ranges than fe-
males, and lizards settling in HQ sites occupied smaller areas than 
lizards in LQ sites (LMM on k50: sex χ2 = 34.95, p < .001; pallet qual-
ity: χ2 = 7.64, p = .006). In males, variation in home- and core range 
size was significantly explained by social dominance (p < .001; Table 
S6), but not by color morph (p > .20; Table S6). In females, we found 
significant differences in home- and core range areas among female 
color morphs, with white morph females showing the largest areas 
(p < .001; Table S7). Male–female spatial overlap was not affected 
by color morph, but was significantly associated with site quality in 
both sexes (p < .01; Tables S6 and S7). Males established in HQ sites 
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overlapped with 3.0 ± 1.2 more females, and females established in 
LQ sites overlapped with 1.7 ± 1.0 more males.

3.2.3 | Intrasexual competition

We recorded 927 intrasexual interactions (614 in males and 384 
in females). Competitive interactions were more common among 
males (N = 543; 88% of total male–male interactions) than among 
females (N = 25; 7%), which were often observed in groups en-
gaged in prolonged coperching in the vicinity of a male (N = 338, 
88%). In males, display posturing and/or foot shakes (IIa, appease-
ment, Table 1) were observed in 60% of these competitive en-
counters, a third of them (36%) ended with a rapid chase/flight, 
and 16% involved physical aggression (i.e., bites). Display behav-
ior and bites were usually exhibited only by the winning lizard 
(display: N = 307, 91% only by winner; bite: N = 89, 70% only by 
winner), while foot shakes were almost exclusively performed 
by losing males (N = 70, 93% only by loser) with no differences 
among morphs (χ2 = 3.07, p = .22). No morph combination was 
overrepresented among these contests (χ2 = 5.63, p = .40). We 
found no evidence of an intermorph difference in the index of so-
cial dominance estimated from the Bradley–Terry model (p = .68; 
Table S6 and Figure 4). After dealing with pseudoreplication (200 
different pairs of rivals; Table S8), we found no effect of morph 
combination on the outcome of heteromorphic contests (GLMM 
(binomial): orange: χ2 = 0.33, p = .56; white: χ2 = 1.83, p = .18; yel-
low: χ2 = 0.88, p = .35). In fact, for either of the morphs involved 
in these combinations, the probability of winning did not differ 
significantly from even odds (Figure 4).

3.2.4 | Male–female interactions and parentage

In total, we recorded 1,230 male–female interactions, of which 
1,098 were deemed as reproductive because they involved the ex-
change of sex-specific behaviors (441), prolonged coperching (551), 
and/or copulatory behavior (153).

Male color morphs did not differ in the number of females with 
which they interacted, engaged in coperching, or engaged in cop-
ulatory behavior (p > .57; Table S9). Unsurprisingly, males settled 
in HQ sites engaged in reproductive interactions more frequently 
(LMM: χ2 = 36.91, p < .001) and with a higher number of females 
than males settled in LQ sites (p < .001; Table S9; Figure 5). We found 
no difference in relative reproductive success or relative mating suc-
cess among male color morphs (p > .19; Table S9). Males settled in 
HQ sites showed significantly higher relative reproductive success 
(p < .001), but not relative mating success (p = .107; Table S9). Sperm 
competition intensity faced by each individual male was also inde-
pendent of color morph (p = .56), but significantly higher in low-qual-
ity sites (p = .001; Table S9). No morph combination in male cosirings 
was more prevalent than expected by chance (χ2 = 2.13, p = .83; 
Table S10). Results from the analysis of male fitness are summarized 
in Figure 6.

Female color morphs did not vary in the number of males en-
countered in reproductive interactions, eggs produced, or fer-
tilization success (p > .11; Table S11). Body mass and ILL (but not 
color morph, p = .71) were significantly related to laying date, with 
heavier and longer females laying their clutches sooner than the rest 
(p = .014; Table S11). Although we found high levels of multiple pa-
ternity within the experimental enclosures (81% of clutches), female 
color morphs did not differ in the number of sires fathering offspring 

F I G U R E  3   Distribution of the lizards 
among high- and low-quality sites in the 
experimental enclosures. (a) Position of 
the peak density of resightings for each 
male and female (filled circles), plotted 
on a background schematic diagram of 
an experimental enclosure obtained by 
pooling together every resighting of a 
lizard collected during the experiment 
(gray squares). The orange, white, or 
yellow fill of the circles represents color 
morph. (b) Barplots showing the relative 
frequency of males and females of each 
color morph that settled in high- or low-
quality sites

(a)

(b)
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in their clutches (LMM: χ2 = 2.84, p = .24), nor in the number of viable 
juveniles conceived (LMM: χ2 = 4.31, p = .12). Relative measures of 
fitness yielded similar results (p > .16; Table S11). We found a sig-
nificant effect of habitat quality on some aspects of female social 
behavior and reproductive parameters: Females established in LQ 
sites interacted with a higher number of males showed higher levels 
of multiple paternity, and their clutches contained a smaller fraction 
of unfertilized eggs (p < .05; Table S11).

Parentage was significantly predicted across enclosures by both 
of the association networks based on social behavior during male–
female interactions (coperchings: χ2 = 51.91, p < .001; copulation 
attempts: χ2 = 45.40, p < .001). However, neither of the behavioral 
association networks nor the resulting parentage network were 
found to be affected by morph combination (coperchings: χ2 = 0.69, 
p = .69; copulation attempts: χ2 = 0.83, p = .83; parentage: χ2 = 0.32, 
p = .32; Figure 7). We found a significant interaction of the paren-
tal morph combination over juvenile body mass (LMM: χ2 = 12.91, 
p = .012). Splitting the dataset by female morph, we found that this 
result was exclusively driven by a nonsignificant tendency of yellow 
males to sire heavier offspring than orange males when coupled with 
white females (LMM: χ2 = 6.28, p = .09). We found no effect of male 
or female morph alone on juvenile mass (LMM: χ2 < 1, p > .5).

3.2.5 | Power analysis

The sensitivity analysis in G*Power estimated a minimum detectable 
effect size of Cohen's d = 0.46 (N = 181) and Cohen's d = 0.88 (N = 52) 
for activity and space use differences (respectively) between male color 
morphs in the free-ranging population. For the mesocosm experiment, 
we estimated that a sample size of 90 males and females would allow 
us to detect medium-sized (Cohen's d = 0.66) intrasexual differences 
in behavior and fitness among color morphs with a standard statistical 
power of 0.80. These effect sizes are at the lower end of the range 

of effect sizes (Cohen's d = 0.49–2.32), which we calculated from the 
literature (Table S1), suggesting that we had enough statistical power 
to detect even subtle but biologically meaningful differences among 
morphs. Accordingly, results from the two simulation-based analyses 
of power showed that our sample sizes were high enough to detect 
biologically relevant differences among color morphs (power > 0.80 to 
detect medium-sized and large effect sizes). In fact, introducing the ob-
served coefficients for the fixed and random factors in the simulations 
and plotting the expected increment in power at different sample sizes 
revealed a higher statistical power for the data presented here than the 
more conservative estimates obtained in G*Power (Figure S5).

4  | DISCUSSION

Overall, our results from both a longitudinal field study and an en-
closure experiment argue against the hypothesis that P. muralis color 
morphs reflect alternative reproductive strategies (ARS) involving 
differential sociosexual behavior and space use. In territorial spe-
cies such as Podarcis lizards, resource-holding potential, spatial be-
havior, and activity are expected to vary across males employing 
alternative strategies (Calsbeek & Sinervo, 2002a, 2002b; Molnár, 
Bajer, Szövényi, Török, & Herczeg, 2016; Noble, Wechmann, Keogh, 
& Whiting, 2013; Sinervo et al., 2000; Sinervo & Svensson, 2002; 
Sinervo & Zamudio, 2001; Zamudio & Sinervo, 2000). In this study, 
we did not find any evidence that color morphs differ in resource-
holding potential (i.e., social dominance, agonistic behavior, terri-
toriality), space use (i.e., site fidelity, home range size, overlap with 
conspecifics), or activity (i.e., frequency of resightings, distance be-
tween consecutive resightings).

No color morph was overrepresented among resident or transient 
lizards in the field, and we did not observe differences in either inter-
morph resighting propensity, distance between consecutive resight-
ings, or interannual site fidelity. Furthermore, color morphs showed 

F I G U R E  4   Male–male competitive interactions. (a) Boxplot of social dominance by color morph. Boxes indicate the interquartile range 
(IQR, 50% of data). Horizontal lines represent the median, and bars extend to 1.5 times the IQR. A jittered dot cloud shows the value of the 
variable of interest for each lizard in our dataset. (b) Mean plot showing the probability of winning for each morph combination according to 
the predicted values of the logistic mixed models. Bars extend to the CI95%. The horizontal dotted line marks 50% probability
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similar home range size and male–female overlap both in natural 
conditions and in experimental enclosures. In both sexes, alternative 
color morphs obtained similar relative fitness within the enclosures 
(which would be necessary for their maintenance over time), but cru-
cially, this was not associated with different behavioral strategies. 
In line with previous evidence on the behavioral ecology of territo-
rial lizards (Baird, 2013; Baird, Timanus, & Sloan, 2003), males com-
peted fiercely to settle in high-quality sites irrespective of their color 
morph, and the subset of successful dominant males (23%) engaged 

in coperching with a higher number of females, experienced signifi-
cantly lower levels of sperm competition, and ultimately achieved 
higher reproductive success. In sum, while lizards were strongly at-
tracted to high-quality sites (both in the field and in the mesocosm 
experiment), we did not find any evidence that color morph played 
a role in securing access to them or in the ability to exclude other 
conspecifics from its use. In fact, we did not find an effect of color 
morph on the outcome of male–male competitive interactions. These 
results contrast previous evidence suggesting lower fighting ability 

F I G U R E  5   Variation in the number of different females with which males engaged in either coperching (a) or copulatory behavior (b, 
copulation and tail grabs). Males settled in high-quality pallets interacted with a significantly higher number of individual females, while male 
color morphs did not differ in sociosexual behavior. Bars extend to the CI95%

F I G U R E  6   Variation in male individual fitness among alternative color morphs (up) and between sites of different quality (below). Bars 
extend to the CI95%. Significant differences are marked with an asterisk (p < .001)



     |  10997ABALOS et AL.

in orange morph males during laboratory-staged encounters (Abalos 
et al., 2016), likely because any differences between size-matched 
morphs meeting at a neutral arena are overridden by the effect of size 
asymmetries and residency status when confrontations occur under 
more natural conditions (Stuart-Fox & Johnston, 2005). Similarly, 
Sacchi et al. (2009) reported no effect of color morph on aggressive 
behavior during laboratory-staged contests when the experimental 
design allowed for size and residency asymmetries. Previous studies 
have reported larger body sizes in orange morph lizards with respect 
to white (Calsbeek et al., 2010; Sacchi et al., 2007), with some au-
thors suggesting an advantage of orange morph lizards in male–male 
competition for preferred territories and hence reproductive success 
(Calsbeek et al., 2010). The size difference, however, may result from 
miscategorizing subadult lizards as pertaining to the white morph 
(i.e., the lizards' ventral surface appears white to the human eye be-
fore achieving sexual maturity), leading to the conflation of any pos-
sible morph difference with the expected size asymmetry between 
younger and older lizards. For instance, orange morph lizards from 
our study population in Angoustrine are only 1.7 ± 0.3 mm larger than 
white morph lizards in the free-ranging population of Angoustrine 
(1942 adult SVL > 56 mm lizards), which represents a 2.6% of the 
average SVL in adult lizards. There is, in fact, no evidence for bio-
logically relevant differences among male P. muralis morphs neither 
in morphology or sex-specific coloration (i.e., UV-blue ventrolateral 
spots; Pérez i de Lanuza et al., 2014), and in this study, we did not 
observe differential use of agonistic behaviors during intrasexual 
competitive interactions.

The existence of ARS in a polymorphic territorial species does 
not necessarily imply that color morphs must differ in territoriality 

or aggressive behavior (Shuster & Wade, 2003). ARS in males of 
polygynandrous species are often expressed as differential sex-
ual behaviors (e.g., mate-guarding) or physiological adaptations 
(e.g., increased testis size) representing alternative solutions to the 
trade-off between securing fertilizations and acquiring new mates 
(Formica et al., 2004; Shuster, 2008; Taborsky, 2001; Taborsky & 
Brockmann, 2010). For example, in the Australian painted dragon 
(Ctenophorus pictus), yellow morph males have larger testis and 
strongly outperform orange males in laboratory-staged sperm com-
petition trials, despite the absence of differential territory-acquisi-
tion abilities between both morphs (Healey & Olsson, 2008; Olsson, 
Schwartz, Uller, & Healey, 2009). In contrast, P. muralis male morphs 
within experimental enclosures showed similar time allocation be-
tween guarding females and acquiring new mates, and no difference 
in the number of mates sired, and experienced similar levels of sperm 
competition. In U. stansburiana, the interplay between the usurper, 
guarding, and sneaker strategies leads to morph-biased patterns of 
shared paternity, with yellow sneaker males obtaining almost all of 
their reproductive success from cosiring clutches with orange males, 
while blue guarding males show low overall levels of cosiring (es-
pecially with yellow males; Sinervo & Zamudio, 2001; Zamudio & 
Sinervo, 2000). Here, we found no evidence of a similar bias, with 
no morph combination in cosired clutches being more prevalent 
than expected by random association. In fact, given the absence of 
differences in precopulatory behavior, the similar reproductive suc-
cess achieved by males of the three color morphs indirectly argues 
against the existence of physiological adaptations in the context of 
postcopulatory sexual selection (e.g., larger testis and ejaculates, 
which would have biased paternity in the absence of differential 

F I G U R E  7   Example network diagrams from one of our experimental enclosures based on (a) coperching pairs, (b) copulatory behavior 
(i.e., interactions involving tail grabs and/or matings), and (c) the resulting parentage network. Each node represents an individual lizard, 
with shape and color denoting sex and color morph, respectively. Alphanumeric codes within the nodes correspond to the unique ID of each 
lizard within the enclosure. The thickness of the lines connecting nodes characterizes the number of social interactions (a, b) or offspring 
(c) between each dyad of lizards. Unconnected nodes represent lizards that we did not observe to engage in coperching or copulatory 
behaviors (a, b), or did not reproduce (c)
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social behavior). Further research could directly address this ques-
tion by studying reproductive physiology in P. muralis color morphs 
and staging realistic sperm competition trials across morphs.

While most research on color polymorphism and ARS concerns 
males, females are also often polymorphic. Differential female 
breeding strategies, such as the different solutions to the trade-
off between egg size and number described in the female color 
morphs of U. stansburiana (Alonzo & Sinervo, 2001), have also been 
suggested to occur in P. muralis. One study of an Italian population 
found that, in captivity, yellow females laid relatively larger clutches 
of smaller eggs than white morph females (Galeotti et al., 2013). Our 
results also contradict this hypothesis, as we found no difference 
among female morphs in clutch size or juvenile mass. Unexpectedly, 
white morph females roamed across larger areas than females from 
the other morphs. Rather than alternative strategies in space use, 
we think this difference may result from white morph females being 
heavier (and likely more advanced in their ovarian cycle) when re-
leased into the enclosures. This could have prompted exploratory 
behavior in the search for suitable egg-laying sites earlier in this 
morph. Whether this unexpected result is artefactual or derives 
from differences in the timing of reproduction among female morphs 
should be examined in future studies. Overall, our results constitute 
strong evidence against the existence of ARS concerning male–male 
aggression, spatial dominance, sexual behavior, or breeding strategy 
in P. muralis color morphs.

Even if color morphs do not reflect ARS, nonrandom mating with 
respect to color can contribute to the stability of polymorphic sys-
tems over time (Galeotti et al., 2003; Roulin, 2004; Wellenreuther 
et al., 2014). Mate preferences may vary among individuals if the 
expected benefits derived from mating with differently colored indi-
viduals are a function of the chooser's morph (e.g., genetic compat-
ibility) or vary relative to other factors (e.g., time, space, population 
density; Mckinnon & Pierotti, 2010; Roulin, 2004; Wellenreuther 
et al., 2014). In polymorphic Pyrenean populations of P. muralis, ho-
momorphic pairs of males and females occur more frequently than 
heteromorphic pairs, irrespective of local morph diversity (Pérez i de 
Lanuza et al., 2013; Pérez i de Lanuza, Font, & Carretero, 2016). This 
assortative pairing suggests a role of color morph in mate choice, but 
is not sufficient to demonstrate its existence (Roulin & Bize, 2007; 
Roulin, 2004; Wellenreuther et al., 2014). In fact, color-assortative 
pairing can also occur in the absence of mate choice, for example, if 
phenotypically similar lizards tend to cluster together within popula-
tions as a consequence of similar environmental constraints or pop-
ulation viscosity (Roulin, 2004; Wellenreuther et al., 2014). Here, we 
did not find evidence of morph assortativity in the male–female so-
cial interactions observed within the enclosures. Previous research 
using laboratory-staged mate choice trials has already reported the 
absence of color-assortative preferences toward differently colored 
males in P. muralis females (Sacchi et al., 2015). However, we think 
that our results constitute a more realistic perspective of male–fe-
male dynamics in nature, since mounting evidence suggests that the 
initiation and outcome of precopulatory male–female interactions in 
lizards are almost completely under male control (Andrews, 1985; 

Heathcote et al., 2016; Noble & Bradley, 1933; Olsson, 2001; Olsson 
& Madsen, 1995; Olsson et al., 2013; Tokarz, 1995). Following our re-
sults, we deem unlikely that the color-assortative pattern observed 
in the wild (>60% of pairings at our study site; see Pérez i de Lanuza 
et al., 2013) results from the lizards actively choosing to pair with 
similarly colored partners. Rather, assortative pairing could result 
indirectly from some form of clustering in the spatial distribution of 
color morphs in natural populations, due to population viscosity or 
ecophysiological constraints (Lindsay et al., 2019; Pérez i de Lanuza, 
Sillero, et al., 2018; Svensson, 2017; Svensson, Abbott, Gosden, & 
Coreau, 2009; Wellenreuther et al., 2014).

Our results also offer evidence against the existence of strong 
frequency-dependent effects on morph fitness. As stated before, 
by introducing the color morphs in equal frequencies within the 
enclosures we simulated a situation that is rarely observed in any 
of the different P. muralis lineages showing color polymorphism. 
Such balanced morph frequencies were never observed in natural 
populations from eastern Pyrenees (examined in Pérez i de Lanuza 
et al., 2017, Pérez i de Lanuza, Sillero, et al., 2018, N = 116 localities), 
where white morph lizards usually predomínate (e.g., morph fre-
quency ranges: orange = 0%–60%; white = 27%–92%; yellow = 0%–
25%; orange-white = 0%–27%; yellow-orange = 0%–13%), and only 
3.45% of the localities show a morph other than white as the most 
common. Additionally, morph frequencies do not seem to expe-
rience substantial interannual variation, with the same rank order 
being maintained in the study population of Angoustrine for the last 
6 years (Figure S1). If color morphs are, in fact, under some form of 
frequency-dependent selection, the frequencies observed in natural 
populations may reflect a selective equilibrium where each morph 
obtains equal average fitness. By using a 1:1:1 morph ratio in our 
experimental setup, we simulated a displacement from such equilib-
rium frequencies, which should have resulted in a selective pullback, 
and hence higher fitness in white morph lizards (Roulin, 2004; San-
Jose et al., 2014; Sinervo et al., 2007; Svensson, 2017). In contrast, 
we did not find significant differences in fitness among color morphs, 
suggesting that strong frequency-dependent effects on morph 
fitness are unlikely to be the prime determinant of morph relative 
frequencies in P. muralis natural populations. This study is primarily 
aimed at detecting differences in sociosexual behavior among male 
morphs, and we acknowledge that our experimental design is not 
tailored to test for frequency-dependent effects on fitness. In fact, 
testing for a rare (NFDS) or a common morph advantage with a me-
socosm design would require to introduce each morph consistently 
in lower or higher frequency across the enclosures (Roulin, 2004; 
Svensson, 2017; Wellenreuther et al., 2014). Additionally, selection 
on color morphs is often dependent on both biotic (demography, 
sex ratio) and abiotic factors (environmental conditions), as well 
as on the population morph composition and relative morph fre-
quencies (Forsman, Ahnesjö, Caesar, & Karlsson, 2008; Gosden & 
Svensson, 2008, 2009; McLean & Stuart-Fox, 2014; McLean, Stuart-
fox, & Moussalli, 2015; Svensson, 2017; Svensson et al., 2020; Willink 
et al., 2019). Future studies should examine the environmental de-
pendence of morph fitness in populations characterized by extreme 



     |  10999ABALOS et AL.

morph compositions and socioecological contexts (i.e., varying sex 
ratio, density, and environmental conditions), for example, by com-
bining field observations with the experimental alteration of these 
same parameters in enclosure experiments.

The maintenance of color polymorphism may be possible through 
genetic mechanisms entirely independent of sociosexual behavior. 
For instance, if heterozygosity at genes coding for color polymor-
phism provides fitness benefits (i.e., overdominance), and the advan-
tages of heterozygosity only concern viability selection (e.g., survival 
to adulthood), color morphs would be maintained in the population 
even if morphs mated at random (Krüger, Lindström, & Amos, 2001; 
Roulin & Bize, 2007; Roulin, 2004; Wellenreuther et al., 2014). In 
a breeding experiment conducted on captive P. muralis lizards from 
Italian polymorphic populations, morph pair combination was found 
to affect fertilization success, hatching success and newborn qual-
ity (i.e., juvenile mass; Galeotti et al., 2013). Here, we found a weak 
effect of color morph combination on juvenile mass, but the low 
sample size (N = 44) is insufficient to draw firm conclusions. To ex-
amine the role of genetic compatibility and overdominance on sta-
bilizing color polymorphism in future research, we would need to 
estimate juvenile fitness and interannual survival at the genotypic 
(rather than the phenotypic) level, as the fitter heterozygotes could 
be phenotypically indistinguishable from other genotypes (Gratten 
et al., 2008; Johnston et al., 2013; Tregenza & Wedell, 2000).

Despite drawing substantial interest from evolutionary biolo-
gists, the evolutionary causes and consequences of lacertid color 
polymorphisms are still poorly understood. Alternative reproductive 
strategies have been suggested to occur in the Dalmatian wall liz-
ard (Podarcis melisellensis), where orange males have been found to 
present larger body size, disproportionately large heads, and higher 
fighting ability in size-matched contests staged in the laboratory 
(Huyghe et al., 2007, 2009; Huyghe, Vanhooydonck, Herrel, Tadić, 
& Van Damme, 2012). In contrast, in the European common lizard 
(Zootoca vivipara), interpopulation differences in morph composi-
tion and rapid morph cycles have been explained by the cumulative 
effect of two frequency-dependent mechanisms starkly different 
from ARS (morph-biased female mate choice and offspring survival; 
San-Jose et al., 2014; Sinervo et al., 2007). Meanwhile, differences 
in morph composition among island populations of the Skyros wall 
lizard (Podarcis gaigeae) have been found to be fall within that ex-
pected under neutral genetic divergence, and genetic drift could 
thus not be rejected as an explanation of the pattern (Runemark 
et al., 2010). Lastly, most of the evidence suggesting the existence 
of physiological or behavioral morph differences in P. muralis comes 
from studies conducted on the southern Alps sublineage (Galeotti, 
2013; Sacchi, Mangiacotti, et al., 2017; Sacchi, Scali, et al., 2017; 
Galeotti et al., 2007; Scali et al., 2016), which is only distantly re-
lated to the western European lineage found in Pyrenees (Gassert 
et al., 2013; Giovannotti, Nisi-Cerioni, & Caputo, 2010; Schulte, 
Gassert, Geniez, Veith, & Hochkirch, 2012). These observations, 
together with the high prevalence and ancient origin of color poly-
morphisms in wall lizards (Andrade et al., 2019; Arnold, Arribas, 
& Carranza, 2007; Jamie & Meier, 2020), suggest the intriguing 

possibility that genes coding for the expression of the alternative 
color morphs might become linked to genes that influence other 
functionally relevant traits (i.e., physiology, behavior, life history, de-
velopment) only at times, and hence be under selection only in some 
environments or in some lineages (i.e., Podarcis species). Linkage 
disequilibria are expected to decay rapidly if not counteracted by 
strong and chronic correlational selection, and genetic drift is very 
effective in leading to the loss of polymorphism (especially in small 
populations; Gray & McKinnon, 2007; Mckinnon & Pierotti, 2010; 
Sinervo & Svensson, 2002; Svensson, 2017). Hence, this evolution-
ary scenario would cause correlations between color and other 
phenotypic traits to vary either in space or in time, and even lead 
to morph loss in some populations or lineages. Polymorphism loss 
has likely occurred in wall lizards. Despite their putative ancestral 
origin (Andrade et al., 2019), color morphs are apparently absent in 
some Podarcis species (Speybroeck et al., 2016), and the polymor-
phic species that have been examined often show marked geograph-
ical variation in morph diversity (Jamie & Meier, 2020; MacGregor, 
Lewandowsky, et al., 2017; Pérez i de Lanuza, Sillero, et al., 2018; 
Runemark et al., 2010). However, due to its high genetic diversity, 
effective population sizes in P. muralis (and likely in other wall liz-
ards) have been estimated to be sufficiently large (Ne > 4 × 106; 
Yang et al., 2020) to allow for the long-term persistence of a largely 
neutral trait under intermittent selection contingent on the envi-
ronment. Local morph extinctions could thus be counteracted by 
immigration from larger populations where selectively neutral color 
expression could resist the eroding effect of genetic drift for lon-
ger periods, and interpopulation differences in morph composition 
would be mainly driven by the environmental and genetic con-
straints of color expression (Gray & McKinnon, 2007; Mckinnon & 
Pierotti, 2010; Roulin et al., 2004). Recent results showing the re-
cessive genetic basis of orange and yellow ventral coloration in P. 
muralis with respect to white (Andrade et al., 2019) could provide 
a simple explanation for the marked bias toward the white morph 
observed in natural populations (Pérez i de Lanuza et al., 2017, Pérez 
i de Lanuza, Ábalos, et al., 2018, Pérez i de Lanuza et al., 2019; Figure 
S1). Future research should investigate the possibility of spatially or 
temporally varying correlations between polymorphic color expres-
sion and other phenotypic differences in Podarcis lizards, as well as 
evaluate the relative importance of selection and genetic drift in 
shaping interpopulation differences in morph composition and rel-
ative frequencies (Runemark et al., 2010).

In conclusion, our results do not warrant the frequent assump-
tion that behavioral ARS underlie the maintenance of ventral color 
morphs in the European common wall lizard. In the wake of the U. 
stansburiana model, much effort has been devoted to detect inter-
morph differences suggestive of behavioral ARS in polymorphic 
lizards (Calsbeek et al., 2010; Fernández et al., 2018; Healey, Uller, 
& Olsson, 2007; Yewers et al., 2016). However, these studies have 
often painted a much more complex picture involving several evo-
lutionary processes, of which ARS may represent but one in many 
mechanisms explaining the vast diversity of lizard color polymor-
phisms (Carpenter, 1995; Huyghe et al., 2012; McLean et al., 2015; 
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San-Jose et al., 2014). We should therefore reassess the allegedly 
central role of ARS in explaining the maintenance of phenotypic vari-
ability in nature, and broaden the perspective to incorporate other 
hitherto overlooked processes.
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