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A B S T R A C T

Species distribution modelling is a powerful tool that can gives us ecological insights about species distributions,
and potential effects of environmental factors, in poorly known habitats. For the first time the distribution of
terrestrial reptiles in Saudi Arabia was modelled, and environmental factors that affect their current distribution
and richness investigated. Reptiles are a major vertebrate group in Saudi Arabia and protecting them should be a
priority for conservation in such an arid environment. Temperature was the most important of eleven predictors.
Maximum species richness of reptiles was predicted in the central plateau, north-western borders, and in coastal
areas of Saudi Arabia. Overall, the predicted and the observed patterns of species richness followed a similar
pattern. Our analysis revealed that large scattered parts of Saudi Arabia are considered under-sampled in terms
of sampling efforts of terrestrial reptile species. Our results represent the most comprehensive description of
terrestrial reptile diversity distributions and habitat suitability in Saudi Arabia to date.

1. Introduction

How and why species are distributed in space and time is considered
a fundamental scientific question, especially in ecology (Rushton et al.,
2004; Guisan and Thuiller, 2005; Brotons, 2014). Humans have ob-
served the unique relationship that connects living organisms with their
surrounding environment (Guisan and Thuiller, 2005; Elith and
Leathwick, 2009), and for more than a century scientists have tried to
come up with theoretical or experimental explanations for spatial and
temporal patterns of presence/absence and abundance (Elton, 1927;
MacArthur and Wilson, 1967). Today, many important scientific ap-
plications depend on understanding this relationship, such as natural
resource management, predicting the impacts of climate change and
invasive species, and conservation planning more generally (Guisan and
Zimmermann, 2000; Guisan and Thuiller, 2005; Peterson et al., 2011).
However, despite considerable progress in methods for understanding
spatial and temporal patterns, our knowledge of contemporary levels of
biodiversity and the distribution of species richness in many parts of the
world remains poor (Mora et al., 2011; Ficetola et al., 2013).

Species richness is a key measure of biodiversity and its study can
illuminate important ecological phenomena, such as the species-area
relationship, and rules for community assembly (Brown et al., 2007).
Species richness is connected with the quality and quantity of available
habitat, and habitat degradation can adversely affect species richness

(Yi et al., 2016). The distribution of species richness is influenced by
many biotic and abiotic factors; understanding and measuring these
factors and how they influence the distribution of species is critical for
proper conservation planning (Brown et al., 2007). However, it is not
an easy task to model the spatial distribution of the richness of species,
especially across large-scale areas (Pineda and Lobo, 2009). The gap in
current knowledge about the distribution of species richness and the
suitability of habitats could be fixed with enough biological data ob-
tained from surveys, and accurate evidence of spatial patterns in en-
vironmental variables; these can be combined to produce predictive
maps of species richness (Lobo et al., 2002; Graham and Hijmans,
2006). These descriptive maps of species richness are considered a basic
tool in conservation decision-making (Lobo et al., 2002; Graham and
Hijmans, 2006).

Techniques for modelling species distributions have developed ra-
pidly in the last two decades (Guisan and Zimmermann, 2000; Guisan
and Thuiller, 2005; Elith and Leathwick, 2009). Correlative species
distribution models (SDMs) (also called ecological niche modelling,
more details in Sillero, 2011) usually work by combining known species
occurrence records with spatial layers of digital environmental data,
and using statistical techniques to estimate geographical distribution
and habitat suitability for species over an area of interest (Guisan and
Zimmermann, 2000; Guisan and Thuiller, 2005; Sillero, 2011). The
main objective is to generate new predicted distribution maps that
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capture and explain the species-environment association (Guisan and
Zimmermann, 2000; Guisan and Thuiller, 2005) which, if presence-only
models are used, effectively represents habitat suitability for the target
species (see Sillero, 2011). These maps show how habitat suitability
varies through space and time, by identifying locations in the study area
that have environmental conditions similar to those where the species
has been found (Pearson, 2008; Sillero, 2011). However, despite con-
siderable progress in the development of these techniques, predicting
species distributions is still a complex and challenging process (Merow
et al., 2014).

Many advanced modelling techniques/tools and quantitative
methods have been developed and applied in distribution modelling,
including various forms of regression analysis (generalized linear
models [GLMs], generalized additive models [GAMs], and machine-
learning methods Maximum Entropy [Maxent], and artificial neural
networks [ANN]) (Peterson et al., 2011). All of these methods can be
used to model potential species richness, but each uses a different
process to generate the final distribution map. Some modelling tech-
niques require presence-absence data (e.g., GLM) while others require
only presence data as they can generate background points during
modelling (e.g., Maxent) (Phillips et al., 2006). Choosing which method
to apply depends on the available data and the purpose of the study
(Elith and Leathwick, 2009).

Reptiles are widely distributed around the world and are considered
important components of local ecosystems and biodiversity (AbuZinada
et al., 2004; Carranza et al., 2018). Due to their ectothermy, reptiles are
sensitive to the thermal characteristics of their environment (Wilms
et al., 2011; Carranza et al., 2018), and they demonstrate various
special adaptations as a result (Metallinou et al., 2015). Because their
response to temperature variation is relatively well understood, they
can be used as indicators to assess the impact of global warming on the
environment (Wilms et al., 2011). Today, many reptiles are seriously
threatened by many factors, such as habitat loss and conversion, in-
vasive species and collection for the pet trade (Cox et al., 2012), all of
which can negatively affect their spatial distribution.

The spatial distribution of reptiles is affected by various climate and
topographical factors. Different studies have reported a variety of fac-
tors contributing to the explanation of reptile distributions, including
precipitation (Fattahi et al., 2014; Sanchooli, 2017), temperature
(Sillero and Carretero, 2013; Javed et al., 2017), altitude (El-Gabbas
et al., 2016) and vegetation cover (Fattahi et al., 2014). However,
among all these factors, temperature appears to dominate (directly
and/or indirectly), which is not surprising since it is well known in
affecting daily activities and reptile biology (Huey, 1982; Wilms et al.,
2011). The extinction risk of most reptiles has not been evaluated
properly yet (Carranza et al., 2018).

Reptiles are a major group of vertebrates in Saudi Arabia, with a list
of 103 species having been recorded (AbuZinada et al., 2004). Reptiles
are the second most diverse terrestrial vertebrate group in Saudi Arabia
after birds (432 spp.), with 25% more species than the mammals (79
spp.) (AbuZinada et al., 2004). General knowledge about reptile
ecology in Saudi Arabia is poor, and much work is required to under-
stand fully their distribution in space and time (AbuZinada et al., 2004).
Saudi Arabia occupies most of the Arabian Peninsula, encompassing a
wide range of topographic and climatic conditions (AbuZinada et al.,
2004; Vincent, 2008; Gosling et al., 2011). The richness and occurrence
of reptiles in Saudi Arabia are expected to vary from one location to
another in response to this variation. Unfortunately, published data and
museum records for Saudi reptiles are scarce. The few surveys of Saudi
reptiles conducted thus far have typically been biased towards easily
accessible areas, near major cities, and have focussed on certain taxa of
interest to particular researchers. Such bias may mean that the com-
munity is under-sampled, and species new to the science may have been
entirely missed. Therefore, mapping and modelling of reptile distribu-
tions, and studies of the factors that may affect them, are urgently re-
quired before relevant conservation measures can be enacted.

Thus far, there have only been two attempts (to our knowledge) to
estimate the distribution of reptile diversity in Saudi Arabia. Cox et al.
(2012) performed a regional assessment for IUCN Red-listing of the
majority of the reptiles of the Arabian Peninsula. By overlaying simple
range-distribution polygons for each species, they predicted that high
species-richness locations in Saudi Arabia would include the long chain
of south-western mountains, the coast of the Eastern Province and a few
locations in northern areas. Locations expected to have the lowest
species richness were in the Empty Quarter (the Rub’ al Khali), and
central southern areas. A more detailed species distribution model was
developed by Wilms et al. (2011) for just one species in Saudi Arabia -
Uromastyx aegyptia microlepis - as part of their studies on its thermal
biology and activity patterns.

Our objective in this paper is to model the distribution of reptiles in
general, using presence-only data, and map their potential richness, and
their habitat suitability in Saudi Arabia using Maxent. Maxent is cap-
able of capturing complex non-linear response curves using a set of
“features” (e.g. linear, quadratic, product, threshold; see Merow et al.,
2013; Phillips et al., 2017). The distribution predictions made by
Maxent are known to perform well, its regularization procedure ob-
viating over-fitting (Merow et al., 2013). We built models of the spatial
distribution of individual reptile species as a function of environmental
variables in order to understand the magnitude of the impact of these
variables on the species concerned. We then combined these models to
produce two maps to describe predicted patterns of diversity across
Saudi Arabia. One map shows the summed probability of species oc-
currence, and the other shows the expected species richness assuming a
threshold rule to convert continuous habitat suitability values into a
binary prediction of suitable/not suitable. The predictions that we
produce represents the most comprehensive attempt to understand the
current distribution of terrestrial reptiles in Saudi Arabia to date.

2. Methods and materials

2.1. Study area and presence records

Saudi Arabia is a large [2,149,690 km2] hyper-arid country (Fig. 1)
(Vincent, 2008) with a list of 103 reptiles (at least 85 of them being
terrestrial lizards and snakes) that have been recorded, comprising 60
lizards, 34 snakes, and 9 turtles (AbuZinada et al., 2004). For this study,
we obtained records of occurrences of all terrestrial reptiles (lizards and
snakes only) from museums, and relevant literature. An extensive geo-
referencing of locations was carried out. Hence, results are presented
for a total of 62 reptile species (41 lizards and 21 snakes) with 3943
point records. The currently accepted names of the reptiles were
checked using The Reptiles Database (The Reptiles Data-Base, 2017),
and Catalogue of Life (Catalogue of Life, 2018). Overall, the geo-
graphical coverage of the sample points is satisfactory (Fig. 1). How-
ever, as is expected with museum data and non-systematic surveys
(Newbold, 2010), the data show an unavoidable bias toward cities, road
networks, and easily accessible areas. To minimise the impact of bias in
our model predictions, we employed a target-group bias file (Phillips
et al., 2009). This uses the sum of all the records of the taxon of interest
as an estimate of sampling effort, smoothed using a Gaussian kernel
estimation function (using the SDMtoolbox in ArcGIS: Brown et al.,
2017). The bias file is used in Maxent to promote the selection of more
background points from biased locations. It is a common approach to
correct sampling bias used in distribution modelling and is known to
improve model accuracy (Phillips et al., 2009).

2.2. Environmental variables

The environmental variables used in this study were downloaded
from WorldClim Version 2.0 (19 bio-layers and 12 indices of solar ra-
diation), and Version 1.4 (altitude) (www.worldclim.org) (Hijmans
et al., 2005; Fick and Hijmans, 2017). Because of the massive extent of
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the study area and relatively low number of records, environmental
variables were downloaded at 30-sec resolution (~1 km2). Stepwise
selection of environmental variables was performed by calculating the
Variance Inflation Factor (VIF) using the library usdm in R (Naimi et al.,
2014; R Development Core Team, 2018), in order to reduce multi-
collinearity among variables. Among the 32 original variables, only 11
with a VIF less than 10 were retained for modelling (Table 1). Vege-
tation cover was also ignored because it is very sparse in such an en-
vironment, and has been shown to be a poor predictor of reptile dis-
tributions in similar studies (see El Gabbas et al., 2016 for Egypt). All

the environmental variables were prepared by clipping them to the size
of the study area and converting them to ascii files using ArcGIS soft-
ware (Version 10.3.1).

2.3. Species richness distribution modelling and evaluation

We created distribution models using Maxent Version 3.4.1,
downloaded from https://biodiversityinformatics.amnh.org/open_
source/maxent/(Phillips et al., 2006). Maxent identifies areas that
have similar values on environmental variables to those at the locations
of recorded occurrences. By default, Maxent uses 10000 background
points chosen randomly from the study area. It is the most popular
software to model species distribution with presence-only data (Merow
et al., 2013). We chose Maxent to run the distribution modelling be-
cause: i) it is very robust, producing reliable models from presence-only
data; ii) it works with low numbers of records; and iii) it appears to be
relatively insensitive to sample bias (see Baldwin, 2009). Maxent has
been shown to perform very well in comparisons with other modelling
approaches (Baldwin, 2009; Merow et al., 2013).

We chose features and settings in Maxent that maximized the area
under curve (AUC), on the basis of extensive testing. We therefore used:
product and hinge features; ten subsampled replicates; 1000 iterations;
and the new default cloglog output (for more details about cloglog, see
Phillips et al., 2017). The replicates were produced by partitioning the
data into 90% training and 10% testing subsets; and we used the ‘10%
training presence’ as the threshold rule to convert continuous habitat
suitability into dichotomous suitable/unsuitable values (see Liu et al.,
2005). The permutation importance table was used to determine the
importance of each variable and the degree it contributed to the model.
We also considered other approaches to test the model, including

Fig. 1. The locations in Saudi Arabia of the observations of 62 terrestrial reptile species (n = 3943 observations in total) that were used to build distribution models.

Table 1
Bioclimatic variables with a Variance Inflation Factor (VIF) of less than 10
which were used to build the reptile distribution models using Maxent. The last
column shows the averaged percent contribution of each environmental vari-
able to the final distribution models of all the species.

Variable Meaning % contribution in the
models

Alt Altitude 4.8
Bio_02 Mean Diurnal Range (mean monthly (max

temp - min temp))
32.2

Bio_03 Isothermality (BIO2/BIO7) (* 100) 14.5
Bio_08 Mean Temperature of Wettest Quarter 3.2
Bio_09 Mean Temperature of Driest Quarter 1.6
Bio_14 Precipitation of Driest Month 4.8
Bio_15 Precipitation Seasonality (Coefficient of

Variation)
12.9

Bio_19 Precipitation of Coldest Quarter 12.9
Srad_04 Solar radiation in April 3.2
Srad_06 Solar radiation in June 9.7
Srad_09 Solar radiation in September 0
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partitioning data into 70% training and 30% testing subsets, and cross-
validation with ten replications (see supplementary materials) to in-
vestigate the final patterns of habitat suitability distribution.

2.4. Model evaluation

To evaluate the accuracy of each model, we used the threshold-in-
dependent Area Under the Curve (“AUC”) calculated from the “Receiver
Operating Curve” (ROC) (Fielding and Bell, 1997; Pearce and Ferrier,
2000). The ROC curve plots sensitivity against 1-specificity for all
possible values of the threshold habitat suitability above which the
habitat is assumed to be suitable (Fielding and Bell, 1997). The AUC can
be interpreted as the probability that a randomly chosen presence site
will be more highly ranked than a randomly chosen absence one
(Pearce and Ferrier, 2000; Merow et al., 2013).

The ten subsampled replicate maps for each species were reduced to
a single average map by taking the arithmetic mean, or by creating a
consensus binary map (see below). Then we combined the species
distribution predictions for each modelled species, creating two maps
summarising the distribution of terrestrial reptile diversity in Saudi
Arabia: i) a probability map which shows the sum of the predicted
habitat suitabilities for all species in each grid cell; and ii) a binary map
which shows the “predicted potential species richness” based on the
conversion of the continuous surface of habitat suitability for each
species into a dichotomous surface (suitable = 1 and not suitable = 0).
Both maps were created in ArcGIS (10.3.1) using the Raster Calculator
and the Reclassify Tool. To create the probability map, all the averaged
ascii maps for each species were added together to produce a final map
of potential species richness. To create a consensus binary map from the
10 replicate maps for each species, the average of ten ascii thresholds
for each species were added together, and a species was considered to
be present in a pixel if more than five replicates of the model predicted
its presence. Then, all the species binary maps were added together to
create a final consensus species-richness map.

2.5. Identifying areas of low sampling effort

We measured the degree of sampling in areas that probably have
been under-sampled, and areas with low/moderate to high sampling
effort in relation to the predicted habitat suitabilities, by calculating the
difference between predicted and observed species richness at each grid
square cell. To do so, 50 × 50-km grid cells were created across the
study area and the observed species richness calculated for each grid
cell. Next, each individual thresholded species map (i.e., the consensus
binary map at a resolution of ~ 1 km) was checked and if any suitable
cell was detected. Then 50 × 50 cell was marked as positive. The
species maps at the large cell size were then added together to generate
a new thresholded species richness map that matches the observed
richness resolution.

3. Results

3.1. Model performance and variables contribution

The distribution models provided good predictions for most reptile
species, with AUCs ranging from 0.68 to 0.99 (Fig. 2). For 22 reptile
species, models had excellent performance, with mean AUC>0.90.
The number of records used to create the best performing models varied
considerably in size (10–79), and there was a significant negative re-
lationship between the number of observations and mean AUC (Pear-
son's correlation: n = 62, r = −0.326, P = 0.01). The species with
highest mean AUC was Scincus hemprichii (0.998), and the species with
lowest was Stenodactylus doriae (0.679).

The contribution of each environmental predictor to models for all
62 reptile species modelled is shown in Fig. 3. Temperature variables
were the most frequently retained as significant predictors of the spatial

distribution of terrestrial Saudi reptiles. Overall, bio2 (mean diurnal
temperature range) was most frequently the highest contributor to the
models (20 species). The frequency of other predictors contributing to
the models was moderate (see Fig. 3 & Table 1). Altitude had a low
contribution to the models, while solar radiation in September never
contributed significantly (Fig. 3 & Table 1). Full details about variable
contributions and relevant information are provided in the supple-
mentary material.

3.2. Current patterns of species richness

The current range of spatial distribution of potential species richness
and habitat suitability (Figs. 4 and 5) shows that large areas of Saudi
Arabia are expected to have moderate to high species richness of rep-
tiles. Overall, the two maps show a broadly similar range pattern. The
central plateau of Saudi Arabia has high predicted species richness. This
area covers from south of Riyadh Province up to Al-Qaseem Province.
There is moderate to high predicted species richness in the area be-
tween the central plateau and the Eastern Province (eastern coast and
surrounding areas). There are some fragmented locations in other parts
of Saudi Arabia that have high predicted species richness, including the
extreme north-west, particularly in Tabuk Province. Finally, the dis-
tribution models also predict that western areas surrounding Jeddah
city, the long Asir mountain chain, and the south (Jizan and Najran)

Fig. 2. The frequencies of mean AUC values for reptile distributions models in
Saudi Arabia.

Fig. 3. The frequencies with which each environmental predictor was the most
important contributor to the models of 62 Saudi reptile species. The variable
contributions were assessed using permutation importance in the MaxEnt
output. Abbreviations are explained in Table 1.
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have moderate species richness. The predicted pattern declines from the
northern edge of the Empty Quarter to the border with Oman, and is
low between the central region and the western coast, apart from a few
scattered locations. The northern border of Al-Jawf Province along the
Jordanian border also has low predicted diversity except in a few
fragmented locations. Interestingly, the other two partitioning ap-
proaches generated similar potential species richness and habitat suit-
ability distributional patterns (see Figs. S1 and S2).

For the individual species, Maxent predicted distributions very well
despite variable sample sizes. Several groups of reptile species had si-
milar distribution patterns (see Supplementary Material Fig. S3). For
example, Bosk's Fringe-fingered Lizard (Acanthodactylus boskianus)

(n = 222 records), and Arabian horned viper (Cerastes gasperettii)
(n = 155) were predicted to have high habitat suitability in the central
plateau, along the coastlines, and in fragmented locations in the north
and south. Other species such as Sandfish skink (Scincus scincus)
(n = 62) and Small-spotted Lizard (Mesalina guttulata) (n = 42) had
medium to high habitat suitability across most of the country. Even
though in general the Empty Quarter had low habitat suitability, for
some species it was predicted to be very suitable; for example, Arabian
sand skink (Scincus mitranus) (n = 172) and Arabian sand boa (Eryx
jayakari) (n = 96).

Fig. 4. Predicted terrestrial reptile species
richness for Saudi Arabia, based on summed
habitat suitabilities from individual dis-
tribution models for 62 species. The map
was generated by summing all averaged
asciimaps for each species, and then colours
rescaled to match the range of Fig. 5. (For
interpretation of the references to colour in
this figure legend, the reader is referred to
the Web version of this article.)

Fig. 5. Predicted terrestrial reptile species
richness for Saudi Arabia, based on summed
binary predictions of suitable habitats from
individual distribution models for 62 spe-
cies. The map was generated by averaging
the threshold maps for each reptile species,
and then summing the number of species
predicted to be present in each pixel.
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3.3. Sampling effort across Saudi Arabia

Overall, the predicted and the observed species richness broadly
followed similar patterns. The map of their differences (Fig. 6) shows
that a large portion of the extreme north-west, the west coast to south-
western areas, the majority of the central areas, and the east coast and
its surroundings appear to have been greatly under-sampled because
the predicted species richness recorded species richness was noticeably
higher than the observed value. In contrast, areas corresponding to
small differences between the predicted and the observed species
richness were identified as above the central areas toward the borders
with Kuwait, Iraq, and Jordan, with scattered locations in the mid-west,
and the whole of the south-west.

4. Discussion

Our distribution models appear to predict the distribution of reptiles
in Saudi Arabia well, since 35% of species had excellent performance
(AUC > 0.90) and only 4% were poor (AUC < 0.70). Diurnal tem-
perature range was the most effective environmental predictor in ex-
plaining the current distribution of reptiles. The models suggest that
terrestrial reptile habitat suitability and their potential richness is
highest in the eastern part of the central plateau of Saudi Arabia, in the
mountain chains of the southern border, and around the coasts, espe-
cially in north-western and eastern areas. The degree of under-sampling
was identified in relatively large parts of Saudi Arabia from large dif-
ferences between the observed and the predicted species richness.

Knowing which environmental variables contribute most to dis-
tribution models for reptiles in Saudi Arabia is important in such an
extreme environment, where diurnal temperature ranges are large, and
drought is prevalent most of the year. Ecologically, it is unsurprising
that diurnal temperature range contributed most to the models, given
the ectothermy of reptiles (Huey, 1982; Wilms et al., 2011) and the
nature of the environment (AbuZinada et al., 2004; Vincent, 2008).
Temperature is expected to be a limiting factor in reptile distribution
because of their behavioural and physiological characteristics (Huey,
1982; Wilms et al., 2011). Our maps predict that reptile species richness
in Saudi Arabia is expected to be high in areas with moderate diurnal
temperature ranges, but lower in areas which experience very high
temperatures.

Other studies of reptiles have found similar results to ours in

different parts of the world, even where typical environmental char-
acteristics are very different from those in Saudi Arabia. For example,
Javed et al. (2017) found that mean diurnal temperature range (bio2)
was one of best predictors of the distribution of the Indian Golden
Gecko (Calodactylodes aureus) in India. In Eastern Asia and Taiwan,
Ananjeva et al. (2015) found that temperature variables were amongst
the most effective predictors of the distribution of Square-headed Cat
Snake (Boiga kraepelini). In Europe, Sillero and Carretero (2013) found
that temperature was an important predictor variable in their model of
the distribution Carbonell's wall lizard (Podarcis carbonelli) on the
Iberian Peninsula.

The predicted current distribution of reptiles generated by Maxent
suggests that large areas of Saudi Arabia have habitats that are rea-
sonably suitable for reptiles, even though they have not been surveyed.
However, the predicted areas with highest potential species richness
tend to be concentrated around locations with many known species
occurrences. Sillero and Carretero (2013) reported similar results be-
cause their model predicted larger suitable areas over the Iberian Pe-
ninsula than currently known for P. carbonelli, but relatively con-
centrated around observed occurrences. In our model, predicted reptile
species richness is highest in the centre and around the coast of Saudi
Arabia. A similar coastal pattern was reported in North Africa by
Kaliontzopoulou et al. (2008), and around the coastline of the Arabian
Peninsula by Cox et al. (2012). Along these coastal areas in Saudi
Arabia there are major cities (e.g., Jeddah, Jizan, Al-Khoabr, Al-Jubil),
near which there are a lot of occurrence records.

The predicted pattern of high reptile diversity and habitat suitability
around the coast of Saudi Arabia is in-line with the findings of El-
Gabbas et al. (2016), who modelled reptile species richness and habitat
suitability in Egypt. The authors found that some coastal areas of Egypt
had high predicted species richness, especially around the Sinai Gulf
and Mediterranean Sea. Our model predicted that some habitats in
Saudi Arabia would be suitable for at least 50 out of 62 species, which is
similar to the findings of El-Gabbas et al. (2016), who found that some
locations in Egypt would be suitable for at least 52 out of 75 modelled
species.

As well as predicting high potential species richness in coastal areas,
our models predicted high potential species richness in the central areas
of the Riyadh and Al-Qassem areas. The areas with high predicted po-
tential species richness are often near centres of human population.
This is a pattern seen in other studies of terrestrial reptiles in arid

Fig. 6. Map of Saudi Arabia (50 × 50 km grid cells)
representing the difference between the predicted
thresholded species richness and the actual ob-
servations from the records. Negative values mean
that the observed species richness was higher than
the predicted. High values mean that the predicted
number of species richness at these cells was larger
than the observed.
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environments (e.g. in Oman by Carranza et al., 2018), and could an
artefact of sampling bias. However, we have attempted to control for
sampling bias by using a bias file. Alternatively, the association be-
tween centres of human habitation and predicted reptile species rich-
ness may reflect the fact that human activity is associated with more
food-rich or otherwise suitable environments, either because humans
choose to live in areas which are benign or productive, or because
humans influence reptile distributions positively by acting as a source
of suitable habitat or resources (e.g. farmland, which can be exploited
by reptiles) (Tytar et al., 2015; Carranza et al., 2018). A study by Tytar
et al. (2015) modelled reptile distributions in the Western Podillya
(Ukraine), and found that the human “footprint” contributed sig-
nificantly (positively) as a predictor in the distribution model. Carranza
et al. (2018) in Oman found some areas with high predicted species
richness around the capital Muscat; having sampled thoroughly, they
concluded that reptiles are not badly affected by the presence of human
settlements and may actually benefit. Finally, the combination of low to
moderate altitude and suitable temperatures most of the year along the
coasts (AbuZinada et al., 2004; Vincent, 2008), which are relatively
densely populated by humans, may provide good conditions for ter-
restrial reptiles in Saudi Arabia, including both generalist and specialist
species.

The analysis of under-sampling suggests that even areas that are
easily accessible and not isolated have received low sampling effort in
terms of terrestrial reptile detection, which unfortunately represents
large parts of the Saudi Arabian landscape (Fig. 6). This is a very im-
portant result that can help direct future sampling effort to provide
better systematic conservation planning. A study by Sillero et al. (2009)
used a similar approach to identify potential under-sampled areas in the
Iberian Peninsula (see also Sillero et al., 2014).

We found that altitude in Saudi Arabia was not an important pre-
dictor of reptile distributions, which contradicts the findings of a si-
milar study in Egypt (El-Gabbas et al., 2016). However, climate-related
variables are generally known to influence reptiles more than topo-
graphical variables (Guisan and Hofer, 2003). According to Chettri
et al. (2010), species richness of reptiles typically gradually declines
with elevation (no species were recorded above 3000 m in their study),
but the distribution of reptiles in Saudi Arabia may be restricted by
factors other than climate and topography, such as interspecific com-
petition (Chettri et al., 2010). Locations at high altitude in Saudi Arabia
are not well sampled, and this makes it difficult to speculate about the
reason why altitude is not an important predictor in this study. This
underlines the need for more ground-truthing surveys in less sampled
areas.

Since most of Saudi Arabia lacks systemic surveys for reptiles, and
most of the available records were gathered from opportunistic ob-
servations (e.g., museum records), some species may have been com-
pletely overlooked, including perhaps species that are new to science.
Our model predictions cover large areas that have not been surveyed at
all (to our knowledge), emphasising the need for more ground-truthing
surveys to test predictions and reveal the true extent of Saudi reptile
diversity. For example, we have found that the Empty Quarter is not
very suitable for terrestrial reptiles, in line with Cox et al. (2012), who
reported similar patterns about the Empty Quarter. However, more
sampling and ground-truthing is required to establish if diversity is
really that low.

We have used a target-group bias file in Maxent to minimise the
effect of the usual biases in museum data (Phillips et al., 2009). Biased
observations are known to have an effect on the predictive quality of
the model (Phillips et al., 2009; Fourcade et al., 2014). Corrections for
any bias depend on the type and intensity of bias (Fourcade et al., 2014)
in addition to species characteristics (Hernandez et al., 2006), and the
best methods are still being actively researched (Phillips et al., 2009;
Fourcade et al., 2014).

The resources that we used to collect information about Saudi
reptile distributions did not contain records of species absences. Using

presence-only data to calibrate distribution models has some known
drawbacks (see Zaniewski et al., 2002; Brotons et al., 2004) which may
limit model performance (Brotons et al., 2004). Importantly, presence-
only methods probably over-estimate species occurrence, because lo-
cations predicted to be suitable may not in fact be occupied, as a result
of limited species dispersal. As a result, using presence-absence data is
strongly recommended whenever available (Brotons et al., 2004).
However, presence-only records often the only available information
about species occurrences, and these are still informative about the true
underlying distribution (Zaniewski et al., 2002). Despite using pre-
sence-only data, Maxent has been shown to perform well, generating
predictive models even with biased data and small sample sizes (see
Hernandez et al., 2006; Pearson et al., 2007; Wisz et al., 2008). In the
absence of systematic surveys of the reptile fauna across the country,
the Saudi data that we collected represent valuable information, and
presence-only distribution modelling provides the current best option
for describing and understanding patterns of species richness. Because
of the tendency for this approach to over-estimate actual species oc-
currence, we must treat our predictions as likely upper-estimates of
actual species richness. Only extensive systematic field sampling will
prove whether these estimates are correct.

It is important to note that large portions of Saudi Arabia lack
surveys, and the total number of observations upon which our model
predictions are based is rather small. This is well known to limit the
performance of models (Hernandez et al., 2006). The majority of our
records were obtained from museums and the literature, and show signs
of bias towards easily accessible locations and species that are easy to
identify and catch. Although we have attempted to minimise the effect
of sampling bias, it is unlikely that our predictions are unaffected by
these issues.

Even though there is a general lack of detailed information about
reptiles in Saudi Arabia (AbuZinada et al., 2004), they do represent a
good case study because: i) they are very diverse and represent a large
portion of vertebrate diversity; ii) they include endemic, vulnerable and
unusual species; and iii) they are relatively well known and easy to
sample, compared with many other taxa. It is important to encourage
local environmental agencies and Saudi herpetologists to fill the
knowledge gaps by establishing more reliable and more accurate da-
tasets that are updated regularly. In particular, there should be sys-
tematic surveys of the different areas of the country, including locations
have not been surveyed before. We consider our modelling exercise as
the first step towards a more detailed understanding of the spatial
distribution of reptile diversity, and biodiversity more generally, in this
understudied part of the world.

5. Conclusion

Because efforts to study species distributions and patterns of species
richness are unevenly distributed in many parts of the world, some
locations are expected to have more species richness and uniqueness
than currently reported (e.g., the south-western Arabian Peninsula;
Ficetola et al., 2013). Reptiles are the major vertebrate taxon in the
desert ecosystem in Saudi Arabia. Ensuring their conservation and long-
term persistence should be a priority. In our case, even with unevenly
distributed occurrence data, we were able to build informative spatial
models to describe the likely current distribution of reptiles in Saudi
Arabia. Distribution modelling studies such ours can provide important
insights into patterns of diversity, in Saudi Arabia and elsewhere. We
hope that this study will stimulate detailed future studies, including
ground-truthing, to fill the gap in our knowledge about local terrestrial
reptile distributions. Species distribution modelling has proven useful
in many different subject areas, facilitating fieldwork and conservation
planning, and helping us to understand the likely consequences of cli-
mate change and the threat of invasive species (Guisan and Thuiller,
2005; Pearson, 2008; Peterson et al., 2011). Distribution modelling has
potential to contribute to these goals in Saudi Arabia, and may be vital
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in future studies such as those testing the value of networks of protected
areas or seeking to ameliorate the impact of global environmental
change.
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