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ai será que a vida quer ser vivida, 
será que não, 

será que o sexo é só pra procriar 
ou é só para armar confusão 
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ABSTRACT 

 

Considering all costs associated to sex, sexual reproduction could be expected to be 

rare. However, we find sexual reproduction to be pervasive in nature, and only a 

reduced number of taxa are completely asexual. In fact, the variety of sex reproductive 

systems, mating techniques and traits, reveals that the organisms’ reproduction has 

been an expressive target of selection and adaptation throughout evolution. 

Sex is selected because it facilitates adaptation in complex and changing environments 

(Weismann, 1889), and this has been already shown empirically in several models. 

However, studies and theories developed concerning the paradox of sex will not be 

able to clarify the current distribution and abundance of asexual lineages in nature. The 

understanding of rates of origin and extinction of asexual lineages, together with the 

putative differential evolution rates in organisms with sexual or asexual reproduction, 

should be considered in the main “origin of sex” question. 

The model used here, the genus Darevskia, is the first true parthenogenetic vertebrate 

described. It is a highly speciose genus, currently including 27 species, of which seven 

are parthenogenetic and of hybrid origin. Only a few of the sexual species contributed 

for the hybridization events which originated the parthenogens clonal lineages, and 

these were directional: the maternal species were always Darevskia raddei or D. mixta, 

and the paternal always D. valentini or D. portshinskii. 

Using a set of microsatellite and mtDNA markers, we first start to study the role of 

hybridization in the origin of vertebrate parthenogens, the extent of gene flow with 

sexual relatives and the relation between hybridization, asexuality and polyploidy, in 

the context of the main theories of asexual evolution proposed to date. We focus on the 

D. unisexualis, D. uzzelli and D. armeniaca parthenogens and polyploid backcrosses 

found in sympatric locations between the parthenogens and its sexual parentals. We 

find that only specific parental pairs are responsible for the origin of vertebrate 

parthenogenesis, regardless of their phylogenetic distance. Despite the recurrent 

hybridization presently reported in Darevskia, asexuality originated multiple times but 

only in a single temporal event the past. Parthenogenetic females are capable of 

backcrossing with sexual males, but can only produce polyploid individuals with 

reduced fertility that do not contribute for gene flow between parthenogens and 

sexuals. The sexual reproduction machinery can be lost with time in the 
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parthenogenetic hybrids, which are most likely the result of a post-zygotic reproductive 

barrier to gene flow in the speciation continuum of Darevskia sexual species. 

In order to reconstruct the phylogenetic inference of this group, a set of capture 

sequence probes were designed from a transcriptome de novo assembly. Phylogenetic 

inference reconstruction has been extensively used to ask several evolutionary biology 

questions. However, despite the exponential use of high-throughput sequencing 

technologies and its promising applications in phylogenetics, next generation 

sequencing (NGS) techniques are still far from being as widely used in this field as in 

other areas of evolutionary genetics. The workflow developed in this thesis has proved 

to be not only cost-effective, but also to produce a very high number of cross genome 

phylogenetically informative markers in this non-model species. 

Finally, taking advantage of the hundreds of cross genome markers developed, a 

species tree was constructed and within genus relationships evaluated. Introgression 

tests showed a widespread pattern of gene flow across the genus, not only recent 

between recently diverged clades, but also both recent and ancient gene flow between 

early diverging Darevskia clades. Several evidences of hybridization with gene flow 

between diverging clades have been found in other systems. However, such 

widespread patterns where introgression has happened between all major clades, and 

in a very high number of species pairs, are not frequently found. It is also found that 

gene flow is completely absent between parthenogens sexual parental pairs. In groups 

with sexual-parthenogenetic reproducing species, pre- or post-zygotic reproductive 

barriers could be more difficult to attain and hybrid asexuality can, thus, effectively 

create reproductive barriers between diverging sexual taxa, that were likely faced with 

recurrent secondary contact. 

The work presented in this thesis shows that only a few sexual species pairs were 

responsible for the origin of the parthenogens, that some species acted always as the 

maternal species and others always as the paternal, that the phylogenetic distances 

between each pair are included in a wide range interval, and that introgression is found 

widespread across the genus but absent between the parental pairs. 

Regardless of the reproduction type, this study also shows the relevance and depth of 

hybridization during divergence. As has been shown intensively, gene flow is common 

during speciation and clades divergence. However, it would be interesting to analyse 

other groups together and test if deep branch gene flow is found only in some exclusive 

groups (such as sexual-asexual genera) or if it is something more widespread. 
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This work presented here moves Darevskia towards providing a model that can be 

used to understand the origin of asexuality in vertebrates. Here the basis for future 

studies about sex and asexuality is provided, so that a focus on the differential 

evolution rates genomes of both reproduction mode can be analysed. 

 

Key words 

Sex, parthenogenesis, Darevskia, hybridization, gene flow, introgression, incomplete 

lineage sorting, phylogenomics, transcriptome, capture sequence 
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RESUMO 

 

Tendo em conta todas as desvantagens associadas à reprodução sexuada, podíamos 

esperar que esta fosse improvável. No entanto, não só é altamente abrangente na 

natureza, como a reprodução assexuada, apesar da sua capacidade mais elevada de 

produção de descendência, apenas se encontra num reduzido número de organismos. 

A variedade dos sistemas reprodutores sexuados, e das técnicas e comportamentos 

associados à copulação, revela que a reprodução sexual tem sido alvo de selecção e 

adaptação ao longo dos tempos. 

Vários estudos empíricos demostraram que o sexo é seleccionado já que facilita a 

adaptação em ambientes complexos e instáveis. No entanto, os estudos e teorias 

sobre o paradoxo do sexo não explicam a distribuição e frequência de organismos que 

se reproduzem na ausência de sexo, mas estes não podem ser separados de estudos 

sobre a frequência de origem e extinção de linhagens assexuadas, bem como de 

estudos sobre potenciais diferenças nas taxas de evolução de organismos com os 

diferentes tipos reproductivos. 

O modelo usado aqui, o género Darevskia, foi o primeiro vertebrado onde a 

partenogénese verdadeira foi descrita. É um género com um elevado número de 

espécies, cerca de 27, das quais sete são espécies híbridas com reprodução 

exclusivamente partenogenética. Estas foram originadas pelo cruzamento de 

Darevskia sexuadas, e apenas algumas contribuíram para estes cruzamentos: 

Darevskia raddei e D. mixta actuaram sempre como espécies maternais, e D. valentini 

e D. portschinskii como espécies paternais. 

Recorrendo a um conjunto de microssatélites e ADN mitocondrial, analisou-se a 

importância da hibridação na origem destas espécies de vertebrados 

partenogenéticos, da dimensão do fluxo génico com as espécies sexuadas e a relação 

entre hibridação, assexualidade e poliploidia, no contexto das teorias conhecidas 

sobre a evolução da partenogénese usando as espécies partenogenéticas D. 

unisexualis, D. uzzelli e D. armeniaca, e híbridos poliplóides resultantes do cruzamento 

entre fêmeas partenogenéticas e machos de espécies sexuadas quando se encontram 

em simpatria. Com isto, confirmou-se a especificidade das combinações de espécies 

sexuadas parentais, que a distância filogenética entre elas não parecia ser relevante e 

que apesar da origem da partenogénese nas Darevskia ter resultado de múltiplos 
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cruzamentos entre as espécies sexuadas, estes apenas ocorreram num curto intervalo 

de tempo no passado, e não estão a ocorrer no presente. As fêmeas partenogenéticas 

são capazes de se cruzar sexualmente com machos de outras espécies, mas apenas 

dão origem a híbridos poliplóides com fertilidade quase negligente, já que não 

contribuem para fluxo génico entre as duas espécies. A maquinaria da reprodução 

sexuada pode ser comprometida ao longo do tempo nas linhagens partenogenéticas, 

que são muito provavelmente o resultado de barreiras reproductivas pós-zigóticas que 

surgiram durante a especiação das Darevskia sexuadas. 

De forma a estudar as relações filogenéticas deste grupo, foi desenhado um conjunto 

de sondas capazes de capturar determinadas regiões do genoma, a partir da 

reconstrução do transcriptoma. Apesar do aparecimento e rápida propagação de 

técnicas de sequenciação em massa em várias áreas da genética evolutiva, estas não 

têm sido frequentemente usadas em estudos filogenéticos. Isto deve-se ao facto 

destas técnicas estarem mais adaptadas à detecção de polimorfismos sem muita 

homologia nos diferentes indivíduos, e não à sequenciação de segmentos do genoma 

que podem ser então usados em análises filogenéticas mais comuns. Aqui apresenta-

se um método economicamente viável, rápido e eficaz para a detecção de sondas e 

posterior sequenciação de várias centenas de loci variáveis e espalhados pelo 

genoma, num grupo de organismos pouco estudado. 

Finalmente, recorrendo a estes novos marcadores, foi construída uma árvore 

filogenética para o género e as relações entre espécies sexuadas foram avaliadas. 

Testes de introgressão detectaram níveis muito elevados de fluxo génico distribuído 

por todo o grupo, com a excepção dos pares das espécies parentais dos híbridos 

partenogenéticos. O fluxo génico foi detectado não só em espécies que se separaram 

há pouco tempo, mas também entre clados que divergiram há mais tempo. Vários 

estudos demonstraram já indícios de fluxo génico entre diferentes organismos do 

mesmo grupo, apesar da frequência deste fluxo não ser normalmente tão abrangente. 

Para além disso, a ausência de fluxo génico entre os pares de espécies parentais das 

partenogenéticas demonstra que em grupos com espécies sexuadas e assexuadas, as 

barreiras reproductivas pre- e pós-zigóticas podem não ser atingidas facilmente e a 

assexualidade híbrida surgir como uma barreira reproductiva altamente eficaz entre 

espécies sexuais em diferentes estádios de divergência, e que possivelmente 

sofreram vários episódios de contacto secundário no passado. 

Os resultados apresentados nesta tese demonstram que apenas algumas espécies 

sexuadas fizeram parte dos cruzamentos que originaram os híbridos partenogenéticos, 
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que algumas dessas espécies actuaram sempre como a espécie maternal, e outras 

sempre como a espécie paternal, que as suas distâncias filogenéticas não parecem 

seguir nenhum padrão e que houve fluxo génico entre várias espécies deste género, 

tanto recente como mais antigo. Independentemente do tipo de reprodução destes 

organismos, aqui também é demonstrada a importância e extensão da hibridação e 

fluxo génico durante a separação dos diferentes taxa. Seria interessante fazer este 

tipo de estudo noutros grupos de organismos, e não só centrando o estudo em 

algumas espécies, para testar se este padrão se encontra em grupos que apresentam 

diferentes tipos de reprodução, ou se, pelo contrário, é mais prevalente. 

O trabalho desenvolvido nesta tese apresenta o género Darevskia como um modelo 

que poderá ser usado para estudar a origem da assexualidade nos vertebrados. Aqui 

foram criadas as bases para mais estudos sobre o paradoxo do sexo, para que se 

possa centrar esses estudos nas consequências evolutivas da 

sexualidade/assexualidade e na genómica evolutiva do sexo. 

 

Palavras chave 

Reprodução sexuada, partenogénese, Darevskia, hibridação, introgressão, fluxo 

génico, polimorfismo ancestral, filogenómica, transcriptoma 
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REPRODUCTION IN NATURE 

Sex 

Sex has been fascinating humans since the beginning of times. The variety of sexual 

reproductive systems, mating techniques and traits, reveal this fascination is not restricted 

to the human species, and we can largely assume sex has been an expressive target of 

selection and adaptation since it first was originated. 

The word sex comes from the latin sectus, which means cut/divide, and derives from the 

verb sectare (cut, split, divide). Going further back, the proto indo european sek, which 

means cut, is thought to have been a primitive form of the latin form. Sex alludes to the 

separation of the human species into two groups, female and male. 

Sex as is scientifically defined is the formation of a new individual by the union of two cells. 

However, and as the concept of species, the scientific concept of sex has still not arrived 

to a generally accepted agreement and there is still interchangeable use of the term sex 

with concepts such as automixis or meiosis (Archetti, 2010; Beukeboom and Perrin, 2014; 

Mogie, 1986). Here, sex (or sexual reproduction) is defined as the genetic exchange and 

the formation of a new individual by the union of two cells originally formed by meiosis. 

Following this definition, bacterial conjugation is thus not considered sex since it does not 

show any evolved process to randomize chromosomal alleles between different individuals 

(Redfield, 2001). Processes like conjugation, transduction and transformation, despite 

being responsible for the movement of alleles between individuals, did not evolve for sex 

but instead as mechanisms of infectious transfer (like plasmids and phages)(Redfield, 

2001). The absence of a clear evidence of selection for the ability to cause homologous 

recombination shows 'sex', or  'non-canonical sex' (Schwander, 2016) is only a secondary 

trait resultant from adaptation of evolutionary tools not related with exchange of 

chromosomes and production of fused cell (Redfield, 2001). 

If sex involves the fusion of reproductive specialized cells (gametes), they can either be 

morphologically similar (isogamy) or differentiated, one carrying most of the reserves for 

the future zygote (anisogamy). In the latter, female and male gametes, ovule and sperm, 

respectively, can be produced by the same individual (hermaphrodite) or by individuals 

with reproductive systems specialised in producing either ovules (females) or sperm 

(males), a gonochorist system. So, as is defined here, sex has to include two processes, 

1) the fusion of two germinal cells (syngamy) which will double the genome, and 2) 

meiosis, which will reduce the genome and ensure recombination. It is the most common 
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mode of reproduction in eukaryotes.

Figure 1.1 - Summary of different types of asexual reproduction concerning meiosis found in animals
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been subject of scientific research through time (Bell, 1982; Maynard Smith, 1978; Otto, 
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produce daughters asexually it will double in frequency each generation, giving this 
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mode is the most common mode of reproduction in Nature and that the existence of these 

mutations does not extinguish sexual individuals/populations are the basis of what 

Maynard Smith coined as the paradox of the “cost of sex” (Maynard Smith, 1971). 

 

At what cost does sex come? 

As we know it today, sexual reproduction can be very costly for the females, and in some 

cases also for the males. The most immediate cost of sex consists on the twofold 

disadvantage of producing males (Maynard Smith, 1971). 

Figure 1.2: Adapted from "The Evolution of Sex", by J. Maynard Smith,1978, Cambridge University Press, 

Alden Press, Oxford 

 

In a sexual population with equal number of females and males, n, if a mutation arises and 

causes females to produce asexually, the number of reproductive individuals in the 

following generation (considering non-overlapping generations) will be n. However, if that 

mutation does not occur the number of reproductive individuals in the next generation will 

be n/2. The number of offspring each female will bring, k, will not depend on the fact she 

reproduces sexually or asexually, but on the amount of resources she will be able to get. 

Also, the probability of an offspring to survive into adulthood, S, will also not depend on 

their reproductive mode. Thus, in the population where the mutation occurs, the population 

can double its number each generation. This gives asexual populations an immediate 

short-term advantage, and once it is established it can outcompete and replace the sexual 

ancestors. Several empirical evidences of asexual species outcompeting their sexual 

relatives have been found repeatedly in Nature (Barron et al., 2016; Lavanchy et al., 2016; 

Tarkhnishvili et al., 2010). 

Other costs may affect the physiological level, since meiosis is highly more costly to the 
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cell than mitosis, it takes longer to achieve and produces fewer cells in the same amount 

of time and resources used (Lehtonen and Kokko, 2012). Mating can

effects on female fitness, such as sexual harassment by males (Fig. 1.3), attraction of 

predators to the female (Han and Jablonski, 2010; Rowe, 1994), introduction of the risk of 

sexually transmitted diseases and parasitic genetic element

and reduction of fitness and life expectancy (Huyghe et al., 2012). Finding and securing a 

mate can also represent a huge effort of resources allocation, such as for instance floral 

display and nectar rewards to ensure pollina

 

Figure 1.3: Examples of sexual harassment on females caused by males during copulation
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(Otto, 2009). Regarding all costs sex might bring to the individual, this is the most perverse 

since these breaking and re-shuffling of alleles is also put forward as an advantage sex 

brings to populations (Weismann, 1889). However, this is more likely to be advantageous 

in changing environments, since when in stable conditions organisms profit from 

maintaining favourable combinations of genes that worked well in the parent, and do not 

get re-shuffled in the offspring. 

Taking into account all the costs sex might bring to the individual, we could expect sexual 

reproduction might be rare. However, we find sexual reproduction to be pervasive in 

nature, and only a reduced number of taxa are completely parthenogenetic (0.1% in 

vertebrates (Vrijenhoek, 1989) and despite being more common in plants, only ~1% in 

angiosperms (Whitton et al., 2008)). We also find asexual taxa mainly at the tips of the tree 

of life (Janko, 2014). 

Therefore, if sex has so many costs and asexual species are known to outcompete 

asexual relatives, why do parthenogenetic varieties not replace sexual ones? What 

selective forces maintain sexual reproduction and genetic recombination in nature? 

(Maynard Smith, 1978). 

 

What does sex bring? 

To understand how sex is maintained in Nature and how it originated, we need to 

recognise what are the consequences of being sexual, and which are the possible 

advantages it might bring. We also need to distinguish between the origin of sex and the 

maintenance of sex, since forces that shape both events are likely to be different 

(Beukeboom and Perrin, 2014). 

Early theoretical models on the evolution of sex studying the dynamics of modifier genes 

analysed the fate of any mutant modifier allele that would affect recombination in a 

population (Kimura, 1956; Nei, 1967). These modifier models allowed testing the evolution 

of two separate groups of individuals allowing for the variation of recombination and/or sex 

levels between them. They found that in populations at equilibrium under selection with 

heterozygote advantage, genetic mixing never evolved and only modifiers that reduced the 

amount of recombination spread (Kimura, 1956; Nei, 1967). These models only accounted 

for individual level selection, ignoring drift, mutation variation, inbreeding, sexual selection, 

and considered infinite populations. They also showed that, at equilibrium, there is no 

benefit to variation. If an individual (or population) have a genetic combination fit for a 
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specific set of environmental conditions, genetic admixture will tend to produce less fit 

offspring. Consequently, these mixed individuals will be negatively selected and take along 

the genetic modifiers that promote that genetic mixing (and recombination). This was later 

identified as the “reduction principle”, the tendency for sex and recombination to decline at 

equilibria under selection (Otto and Feldman, 1997). 

More recent models tried to include more variables to better simulate real world conditions. 

So, more complex models including variation of selection over time and space, different 

rates of sex among individuals and selection in finite populations which necessarily include 

drift. When considering drift in the presence of selection, after a period of time the linkage 

between beneficial alleles with deleterious alleles tends to accumulate. Consequently, 

modifiers that increase the frequency of recombination and sex tend to spread together 

with the beneficial combination of alleles they were responsible for (Otto and Barton, 

1997). These drift-based approach could then explain the evolution of sex even 

considering different variables, such as direction of epistasis (negative, positive or neutral), 

infinite (with many loci under selection and/or highly structured) or finite populations, and 

different forms of selection (directional selection, selection against deleterious mutations, 

Red Queen dynamics) (Otto, 2009). Sex, or higher recombination, spreads when drift and 

selection use up all variation in a population, leaving individuals with a mixture of high- and 

low-fitness genes. Sex and recombination allow the re-shuffling of these genes, bringing 

together beneficial combinations, and purging unfavourable ones. Only in models that 

simulate the complex and changing environments, sex and recombination are allowed to 

spread. In populations where sex is absent, selection is less effective due to Hill-

Robertson effects and sex, even if only at some extent and costly, is selected for (Otto, 

2009). Empirical evidence from studies with sexual/asexual systems has identified some of 

the situations sex can be selected for (Luijckx et al., 2017; McDonald et al., 2016). 

 

The maintenance of sex 

Muller's ratchet proposes that the accumulation of deleterious mutations over time in the 

genome of asexual organisms diminishes the fitness of asexual lineages, slowly leading 

them to extinction (Bachtrog and Gordo, 2004). Recombination can bring together mildly 

deleterious mutations, increasing the negative selective pressure and purging them out of 

the population, rescuing beneficial mutations from deleterious backgrounds and avoiding 

the Muller's ratchet. 
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In Red Queen dynamics the arms race between organisms and their 

parasites/predators/competitors increases selective pressure creating an unpredictably 

changing environment favouring the genetic shuffling and the genetic variation brought by 

sexual reproduction (Morran et al., 2011). Recombination can bring together beneficial 

mutations that arise on different genetic backgrounds, creating the new genotypes and 

accelerating co-evolution, relieving clonal interference and avoiding competition between 

equally favourable mutations. 

Despite the different hypothesis put forward to explain the evolution of sexual 

reproduction, it all comes down to the potential of recombination in speeding adaptation by 

the generational re-shuffling of variation and the production of individuals with different 

combination of alleles, either favourable under a given environment (that are likely to be 

selected) or deleterious (that are likely to have decreased reproductive fitness and those 

alleles not be passed on to the following generations) (Cloney, 2016; McDonald et al., 

2016).  

The idea that sex evolves because it facilitates adaptation (Weismann, 1889) has been 

shown empirically in single cell organisms (McDonald et al., 2016) and macroinvertebrates 

(Luijckx et al., 2017). However, studies and theories developed concerning the paradox of 

sex will not be able to clarify the current distribution and abundance of asexual lineages in 

nature. The understanding of rates of origin and extinction of asexual lineages, together 

with the understanding of putative differential evolution rates in organisms with sexual or 

asexual reproduction, should be considered in the main “origin of sex” question. 

 

THE MODEL SYSTEM: Darevskia 

Ecology and distribution 

The genus studied here is the first true parthenogenetic vertebrate described (Darevsky, 

1967), Darevskia Arribas, 1997 (Lacertidae). This is a highly speciose genus, currently 

including 27 species (Ahmadzadeh et al., 2013; Tarkhnishvili et al., 2012; Uetz and 

Hošek), of which seven are parthenogenetic. On the basis of allozymes and Cyt-b, sexual 

Darevskia analysed so far are included in three genetically distinct clades (Murphy et al., 

2000) and parthenogenetic species are hybrids resultant from inter-clade hybridization 

events (Fig. 1.4). Only some of the sexual species contributed for these events, which 

were directional: the maternal species were always from the Caucasica clade and the 

paternal species always from the Rudis clade (Freitas et al., 2016a; Murphy et al., 1996, 
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2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4: Phylogenetic inference of the genus Darevskia using Cyt-b and allozyme markers. On the right are 

the parthenogenetic species and arrows indicate the putative parental sexual Darevskia. Adapted from "A 

fine line between sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards." 

by R. Murphy, 2000, Zool. J. Linn. Soc. 

 

This genus mainly ranges in the Caucasus but also extends to the adjacent regions, 

including northern Turkey and the Balkans (Arnold, 2006; Darevsky, 1967). The clades 

Rudis and Caucasica are saxicolous lizards, with characteristically flat head and body 

(Arnold et al., 2007) distributed in the Caucasus (except its northwestern part) and parts of 

Anatolia. On the other hand, the clade Saxicola has only ground dwelling, lizards with 

characteristic higher head than the other species of the genus. This clade has a peculiar 

distribution, since most of its species are restricted to the western part of the Greater 

Caucasus and southern Crimea (Murphy et al., 2000; Tarkhnishvili et al., 2012), except D. 

praticola which has a allopatric distribution and can be found in the western part of the 

Greater Caucasus and in the Balkans. Questions have been raised about the species 

status of the Balkan meadow lizards (Tuniyev et al., 2011), since it is the westernmost 

Darevskia species and its distribution is not connected to the remaining Darevskia. 

 

Asexuality in Darevskia 

Most of the vertebrate parthenogenesis recorded is thought to have been originated via 
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interspecific hybridization (Avise, 2008). The Balance Hypothesis (Moritz et al., 1989) was 

put forward trying to explain how these events might trigger asexuality in hybrids, and it 

states that parthenogenetic vertebrates will only arise by the hybridization of two sexual 

species divergent enough to disrupt meiosis in the hybrids, yet not so divergent as to 

seriously compromise hybrid viability or fertility (Kearney et al., 2009). This hypothesis 

grounds on easily applicable premises and has been generally used as an explanation for 

the origin of vertebrate parthenogenesis. 

However, another theory was put forward, the Phylogenetic Constraint hypothesis 

(Darevsky, 1967), which states that parthenogenetic lineages are originated by the 

hybridization between sexual species which present exclusive genetic peculiarities that 

allow them to interbreed and produce asexual viable reproducing hybrids, and that these 

hybridization events are directional, with species from different phylogenetic clades 

contributing either to the maternal or paternal ancestry. Darevskia, which underpinned the 

development of this hypothesis, fits its premises. However, the Phylogenetic Constraint 

Hypothesis has been found to fit not only Darevskia but also other parthenogenetic 

vertebrate systems, such as Leiolepis sp. (butterfly lizards), The parental species for these 

parthenogens are always the same, L. reevesii as the paternal and L. guttata as the 

maternal, and also belong to two different phylogenetic clades within the genus (Grismer 

et al., 2014). On the other hand, directional hybridizations are not always responsible for 

parthenogenetic hybrids, with other evidence showing otherwise: some parthenogenetic 

vertebrates, such as fish genus Cobitis, can even present both parthenogenetic hybrid 

lineages resultant from the cross between species from the same clade (hybrids between 

C. elongatoides and C. tanaica) or different clades (hybrids between C. elongatoides and 

C. taenia) (Janko et al., 2003). This study, however, reinforces the idea that only a few 

sexual species contributed to the hybridization events that originated the parthenogenetic 

vertebrates (either from Leiolepis or Cobitis genera mentioned, or Darevskia), and that the 

distance between them or the directionality of the hybridization was not as relevant as the 

specificity of the sexual ancestors, as the Phylogenetic Constraint Hypothesis states. 

As already pointed out, only two species are thought to have contributed maternally to the 

hybridization events which originated the parthenogenetic hybrids, D. raddei and D. mixta.  

D. raddei is thought to be the maternal species for D. unisexualis, D. uzzelli, D. 

bendimahiensis, D. sapphirina and D. rostombekowi (Conflitti et al., 2014; Freitas et al., 

2016b; Fu et al., 2000a; Murphy et al., 2000) while D. mixta is thought to be the maternal 
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species for the remaining two, D. dahli and D. armeniaca (Fu et al., 2000b; Murphy et al., 

2000). On the other hand, the known paternal species are D. portschinskii (D. 

rostombekowi and D. dahli) and D. valentini (D. uzzelli: Freitas et al., 2016- paper II, paper 

III ; D. armeniaca: paper III; D. unisexualis: Freitas et al., 2016- paper II, paper III), even 

though the contribution of D. rudis for the parental ancestry is still not completely clear. 

Parthenogenetic species are expected to be young in age (Freitas et al., 2016-paper II; 

Moritz et al., 1992), despite at least some of them presenting a considerable wide 

distribution range. 

Darevskia parthenogenetic species can be found in sympatry with their sexual parentals, 

even though not commonly. Not only they have been shown to share the same habitat 

requirements of their parentals, specifically of their maternal species (D. dahli: Tarkhnishvili 

et al., 2010; and D. unisexualis: Freitas et al., 2016 – paper II), but in some situations they 

have even been found they are able to outcompete them (D. dahli: Tarkhnishvili et al. 

(2010)). When sympatry is between parthenogens and their putative paternal sexual 

species, polyploid backcrosses have been described (Arakelyan, 2013; Danielyan et al., 

2008). These individuals are backcross hybrids between female parthenogens and males 

of the sexual species, and a reduced number of tetraploids have also been found, which 

together with the accounts of some polyploids with normally developed reproductive 

systems, reinforces the presumption of their fertility, albeit reduced. 

 

PHYLOGENETICS IN THE AGE OF GENOMICS 

Phylogenetic inference reconstruction has been extensively used to ask several 

evolutionary biology questions, and we have recently witnessed a steep change of 

analyses methods in phylogenetics (McCormack et al., 2012). Sanger DNA sequencing 

techniques had been used for decades given its easiness in the generation of sequences 

in a highly targeted way and with the possibility of application in several individuals, 

frequently cross species. However, this technique only allows for the sequencing of one 

locus per individual at a time, which can result in a limited and often biased estimation of 

the evolutionary history of the taxa studied. When studying groups with high levels of 

hybridization, and strong potential for introgression events, this bias can be particularly 

strong, with different genomic regions providing different ecolutionary histories. The rapid 

development of high-throughput sequencing technologies seen in the last years has 

facilitated the study of groups of species for which we lacked previous genetic data. These 
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techniques allowed the study of several markers across the genome for several individuals 

with a low cost-benefit ratio. The great amount of markers together with phylogenomic 

analyses that account for the discordance between loci allow us to study the divergence 

within a group considering also the amount of gene flow and introgression present during 

its evolutionary history. 

However, phylogenetic inference analyses are constructed on the use of long homologous 

sequences across different individuals, but with many next generation sequencing (NGS) 

methods there is less control over which regions of the genome are sequenced, and over 

whether those regions are either homologous across the whole range of individuals 

analysed or phylogenetically informative (Carstens et al., 2012). NGS allows the 

sequencing of several individuals and markers simultaneously and very cost-effectively, 

exponentially increasing the amount of data gathered per run in terms of the number of 

markers and number of individuals assessed (Carstens et al., 2012; Metzker, 2010). NGS 

allows for the understanding of cases such as introgression, incomplete lineage sorting 

(ILS), fast radiations, hybridization and gene flow, that can only be resolved with 

sequences from many loci. In order to update phylogenetics to the use of NGS techniques 

we need to find a strategy that is not only cost-effective in terms of the number of 

orthologous sequences available across the individuals analysed, but which could also 

provide a wide range of long and phylogenetically informative sequences. 

Most common NGS approaches use restriction digest and manual size selection to reduce 

the genome analysed, and thus “select” cross genome markers (Baird et al., 2008; Elshire 

et al., 2011). These methods are very cost effective (Stapley et al., 2010), and allow the 

sequencing of a large number of short markers distributed more or less randomly across 

the genome, many individuals at a time, contrary to Sanger techniques. However, these 

approaches have been widely used for population genomic studies at intra-specific level 

(McCormack et al., 2013), and not so much for phylogenetic inferences. That is because 

they produce short reads best suited for generating SNPs and often have low repeatability. 

Given they amplify sequences next to restriction sites they also often fail to sequence 

orthologous regions among the individuals analysed. 

The best NGS approach to be applied in phylogenomic studies has to be capable of 

generating orthologous sequences in multiple individuals, such as targeting specific 

genomic regions (like target enrichment or sequence capture, (Brandley et al., 2015)). 

Sequence capture methods use probes targeted to specific regions of the genome and 
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can sequence hundreds of markers simultaneously in several cross-species individuals. 

Probe design can be performed from several sources (Bragg et al., 2015; Faircloth, 2016; 

Lemmon et al., 2012), but in the case of non-model taxa that do not have a genome 

assembly available, transcriptome can present as a good and accessible way of finding 

variable regions of the genome that are long and phylogenetically informative. 
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OBJECTIVES AND THESIS STRUCTURE 

The main aim of this thesis is to understand how vertebrate asexuality originates and 

evolves in nature, identifying the rates of origin and extinction of parthenogenetic 

vertebrates together with the phylogenetic signal of sexual and asexual species, and the 

influence of asexual species on hybridization, gene flow and polyploidy. More specifically, 

the goals of the work are: 

1) Recover the rates of origin and significance of asexuality in vertebrates using Darevskia 

lizards as a model. Here we will test the application of two general hypothesis put forward 

in relation to the hybrid origin of parthenogenesis in vertebrates. 

2) Understand the role of backcrossing and polyploidization in Darevskia 

3) Infer the extent of hybridization with gene flow between sexual clades and sexual-

asexual individuals. 

 

The research presented here is in the format of five original scientific articles, which have 

been already published (papers I and II) or are in the process of being submitted (papers 

III – IV). 

 

The remaining chapters are structured as follows: 

 

Chapter 2 – Phylogeographic patterns of selected Darevskia sp. 

Chapter 2.1)  The species status of D. praticola – paper I 

- Freitas, S., Vavakou, A., Arakelyan, M., Drovetski, S.V., Crnobrnja-isailović, J., Kidov, 

A.A., Cogălniceanu, D., Corti, C., Lymberakis, P., Harris, D.J., et al. (2016). Cryptic 

diversity and unexpected evolutionary patterns in the meadow lizard, Darevskia praticola 

(Eversmann, 1834). Systematics and Biodiversity 14, 184–197. 

This paper uses a three marker set for a phylogeographic analysis on a selected sexual 

Darevskia. This species, D. praticola, is not related to the parthenogenetic hybrids,  

however, given its disjunct distribution range, its evolutionary history provides an important 

insight on Darevskia's biogeography. 

 

Chapter 2.2) Age and hybrid origin of parthenogenetic Darevskia – paper II 

- Freitas, S., Rocha, S., Campos, J., Ahmadzadeh, F., Corti, C., Sillero, N., Ilgaz, Ç., 



FCUP 
Why Sex? Darevskia answers. 

15 
 

Kumlutaş, Y., Arakelyan, M., Harris, D.J., et al. (2016). Parthenogenesis through the ice 

ages: A biogeographic analysis of Caucasian rock lizards (genus Darevskia). Molecular 

Phylogenetics and Evolution 102, 117–127. 

This paper uses mtDNA and nuclear markers to analyse the phylogeography of D. raddei, 

which is the sexual maternal species for most of the parthenogenetic Darevskia species. 

Three parthenogens are included in the analysis, and both maternal (mtDNA and nuclear) 

and paternal (nuclear) inferences of parentage are tested. Finally, niche modelling is used 

to compare the potential distribution range for D. raddei and one of the parthenogens with 

the widest distribution range, D. unisexualis. 

 

Chapter 3 - Origin of Vertebrate Asexuality 

- Freitas, S., Harris, D. J., Silero, N., Arakelyan, M., Butlin, R., Carretero, MA. (in prep) The 

origin of parthenogenesis and the roles of hybridization and polyploidy in a lizard model 

This paper uses a set of microsatellite markers to try to interpret the origin of vertebrate 

parthenogenesis in the light of two hypotheses, the balance hypothesis and the 

phylogenetic constraint hypothesis. For that, the number of hybridization events that lead 

to the three parthenogenetic species included in this study, as well as the extent of recent 

hybridization between parthenogens and sexual species, are analysed. 

 

Chapter 4 - Phylogenomics in non-model organisms 

Freitas, S., Westram, A., Soria-Carrasco, V., Harris, D.J., Carretero, M.A., Butlin, R. (in 

prep). Development of cross-species, genome-wide capture sequence probes from the 

transcriptome of non-model species for phylogenetic analyses 

This paper describes one approach used to design capture sequence probes from the 

transcriptome of two individuals, one sexual and one parthenogen. Three types of tissues 

are used and the transcriptome is assembled and annotated. Capture sequence probes 

are then tested for downstream phylogenetic inference. 

 

Chapter 5 - Deep Branch Gene Flow 

Freitas, S., Westram, A., Carretero, M.A., Harris, D.J., Butlin, R. (in prep). Deep branch 

gene flow in a hybridization rich diversification process 

This paper uses capture sequence probes to sequence hundreds of cross genome 

markers in several individuals in order to assess the phylogenetic relationships within the 
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genus Darevskia. Past events of hybridization, introgression and incomplete lineage 

sorting is also tested among the sexual species of the genus. 

 

Chapter 6 – General Discussion 

This chapter includes a general discussion of the main results obtained during the course 

of this thesis and its significance for recent research. 

 

The supplementary materials for all papers in this thesis are aggregated in the Appendix. 
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CHAPTER 2.1 

The species status of D. praticola – paper I 
 

 

 

 

Figure 2.1.0: Darevskia praticola from Turkey in its natural environment. 
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ABSTRACT 

Darevskia praticola is the only species in the genus with a wide but disjoint distribution, 

found within the Balkan Peninsula and the Caucasus. Whereas most Darevskia species 

occupy saxicolous habits, D. praticola is found in meadows and forest environments. Our 

study explores the phylogeographic and phylogenetic relationships of Darevskia praticola 

sensu lato, assessing the identity of the taxa described within its range that have thus far 

been solely based on morphology. Analysing the evolutionary patterns of this group we 

also test the conspecificity of different populations and whether the shift to forest habitats 

happened only once (if this species is monophyletic), or multiple times. We sequenced 

samples collected across the entire range for two mtDNA markers (Cyt-b and ND4) and 

two nuclear markers (MC1R and ReLN). Our results support three main clades. The most 

divergent included all samples from the Balkans. The other two, more closely related, 

group samples from western Greater Caucasus and Transcaucasia respectively. D. 

praticola sensu lato appears to be monophyletic, but our findings are discordant with the 

taxonomic arrangement developed so far. Both mitochondrial and nuclear data show a 

deep divergence of the Balkans and two sister clades from the Caucasus region that was 

dated to the Late Pliocene approximately 2.5 Ma. Within the Caucasus, the incomplete 

sub-clade divergence is likely due to subsequent differentiation during the Pleistocene 

glaciations. Given its disjointed distribution, the geographic separation is likely due to a 

vicariance event associated with multiple climatic and vegetation shifts. 

 

Keywords 

Balkans, Caucasus, Darevskia praticola, phylogeny, mtDNA, nDNA 

 

 

INTRODUCTION 

Several geological and climate changes throughout times have given the Caucasus and 

the Balkans an irregular landscape and a wide scope of different habitats. During the 
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Pleistocene, both the Caucasus and the Balkans acted as a glacial refugia (Popov et al., 

2006), and the post glacial contact between different biogeographic regions helped 

increasing their biodiversity. This lead to a high level of species richness and endemisms, 

such as both are currently considered hotspots of biodiversity (Myers et al., 2000). 

Phylogeographic studies of the herpetofauna of the Black Sea region are scarce, 

compared to those available for other glacial refugia. Neverthless, the studies undercome 

so far already revealed considerable complexity (e.g. Fritz et al., 2009; García-Porta et al., 

2009; Gvoždík et al., 2010; Lymberakis et al., 2007; Marosi et al., 2012; Mashkaryan et al., 

2013; Recuero et al., 2011; Stöck et al., 2006, 2012; Tarkhnishvilli et al., 2013; 

Ursenbacher et al., 2008; Wielstra et al., 2010). Different phylogeographic patterns have 

been observed, suggesting a dual role for the Black Sea. While for some species the Black 

Sea was shown to act as a geographic barrier, dividing the distribution range into different 

clades, for others it seemed to have provided a corridor, linking the Balkans and the 

Caucasus (Fritz et al., 2009; Garcia-Porta et al., 2012; Gvoždík et al., 2010). 

Darevskia is a genus of small lizards, present in a wide variety of environments, from rocks 

to meadows (Tarkhnishvilli 2012). The most widespread species is Darevskia praticola 

(Eversmann, 1834), which is found across the Caucasus from the Black Sea to 

northwestern Iran but also in the Balkans where it is the sole representative of the genus.  

Contrary to most Darevskia species, D. praticola is mainly a ground dweller, found across 

its wide range restricted to clearings with lush vegetation, meadows and glades within 

open broad-leaf woodland (Agasyan et al., 2009).  

So far, the relationships beween the different forms of D. praticola were constructed with a 

single mitochondrial DNA marker (Cyt-b). Based on this, Murphy et al. (1996), and later 

Tarkhnishvilli (2012) and Ahmadzadeh et al. (2013), have placed D. praticola  within the 

saxicola species group, as a sister taxa to D. saxicola and D. brauneri. Using 

morphological data, Roitberg (1999) inferred the phenetic relationships between Darevskia 

caucasica, D. daghestanica, and D. praticola (Caucasus), and proposed that D. praticola 

should have undergone a recent niche shift from rocky and stony habitats (where this 

genus is most frequently found), to forest habitat. 

The taxonomy of D. praticola sensu lato is extremely complex and there were several 

taxonomic revisions addressing the Caucasian populations conducted during the last 

century (Tuniyev et al., 2011, 2013 and references therein). These studies were based 

solely on scalation and identified four forms with non-overlapping distributions (Ilgaz and 
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Kumlutaş 2005; Ljubisavljevic et al., 2006; Tuniyev et al., 2011). The nominotypical 

subspecies (D. p. praticola) is found in the northeastern Caucasus and Transcaucasia. D. 

p. pontica occupies the northwestern Caucasus and the Balkans (southeastern Romania, 

Serbia, Greece, Bulgaria and Turkish Thrace) (Ilgaz and Kumlutaş 2005; Ljubisavljevic et 

al., 2005; 2008; Tuniyev et al., 2011). D. p. hyrcanica is restricted to the Talysh mountains, 

Western Elburz mountains and Enzeli Bay of the Caspian Sea (Tuniyev et al., 2011). 

Finally, the fourth form was recently described in Armenia, D. praticola loriensis (Tuniyev et 

al., 2013). 

Some authors argue that D. praticola pontica should be recognized as a different species. 

However, this taxonomic change is still poorly supported, since no genetic studies of the 

whole group have been conducted so far (Ljubisavljevic et al., 2006; Tuniyev et al., 2011). 

Apart from the four recognised subspecies, D. praticola hungarica (Sobolevsky 1930) was 

also described. This form originates from the Transylvanian Alps in Romania and is 

currently synonymised with D. praticola pontica. As with most of the taxonomical 

assignments in the Darevskia praticola sensu lato, this was also based solely on 

morphological characters, lacking a genetic validation. 

Tuniyev et al. (2011) helped reorganise the published data on Darevskia praticola sensu 

lato, with a major revision of all published data. In their work they assigned a lectotype and 

paralectotypes from the northwestern Caucasus for D. pontica and described the 

subspecies D. praticola hyrcanica. Also, a key for the identification of the species and 

subspecies was presented, exclusively based on a limited set of morphological characters, 

such as the number of pairs of chin shields and dorsoventral colouration. 

Although the hypothesis of two different taxa in the Balkans and the Caucasus had been 

previously proposed (Stugren 1961; Bischoff 1976), later it was replaced by an 

arrangement with up to four lineages in the Caucasus with the westernmost of them also 

being present in the Balkans (Ljubisavljevic et al., 2006; Tuniyev et al., 2011, 2012). 

Although there are some morphological characters common to both Balkanic and 

northwestern Caucasian populations (Tuniyev et al., 2011, 2012), the lack of geographic 

correspondence (distant and unconnected populations are more similar than those in close 

proximity), the high risk of homoplasy in lacertid scalation and the absence of genetic data 

from the entire species range question any evolutionary hypothesis raised to date for this 

species complex. Therefore, following a multilocus approach and with a wide range 

sampling, this work aims to shed some light upon the phylogeographic structure within D. 
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praticola and its phylogenetic relationships with other Darevskia sp. Both levels of 

relationships are dated to allow the inference of the putative paleogeographic scenarios. 

 

 

MATERIAL AND METHODS 

A total of 31 samples of D. praticola were used in this study, collected between 1996 and 

2012 across the distribution range of this species (Table 2.1.1, Figure 2.1.1). Tail tips of the 

lizards were taken and preserved in ethanol, while all animals were immediately released 

at their collection sites. 

 

Table 2.1.1: Codes of the individuals sequenced, and corresponding nuclear haplotypes for MC1R and ReLN nuclear markers.1 

Ascription according to Tuniyev et al. (2011, 2013) and Ljubisavljevic et al. (2006).  

 

Total genomic DNA was extracted from approximately 30 mg of each tail-tip following 
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standard high-salt protocols (Sambrook et al., 2000).  DNA was eluted with Elution buffer 

(Qiagen). For older samples, DNeasy Blood and Tissue kit (Qiagen) was used, follow

the manufacturer’s protocol. 

 

Figure 2.1.1: Distribution of Darevskia praticola 

dark grey. Population numbers correspond to table I. Distribution is based on 

 

For phylogenetic analyses two mtDNA genes Cytochrome

NADH dehydrogenase subunit 4 gene and adjacent tRNAs (ND4) and two nDNA genes 

(MC1R, ReLN) were selected. Primers for the

al. (1989), Arevalo et al. (1994) and Pinho et al. (2009).  Amplifications were performed in 

25 µL of 5x reaction buffer, 3.2 mM MgCl2, 1.6 mM each dNTP, 4.0 M each primer, 1U of 

Promega GoTaq DNA polymerase. PCRs

min, followed by 40 cycles that included a denaturation step at 92 ºC for 30’’, annealing at 

57-65 ºC for 30’’ and extension at 72 ºC for 1’. A final extension was conducted at 72 ºC for 

5 min. Minor adjustments to conditions were required in some reactions. Sequencing was 

performed by an external facility (Macrogen® Europe).

Sequences were edited with Chromas Pro v1.7.6 (Technelysium Pty, Ltd) and aligned with 

the algorithms implemented in Mafft version 

all the alignments except for RelN, for which was used the iterative refinement method E

INS-i. This algorithm is better suited for sequences with multiple conserved domains and 

long gaps, as we are expecti

were separated using PHASE 2.1.1 (Stephens et al., 2001; Stephens and Scheet 2005) 

salt protocols (Sambrook et al., 2000).  DNA was eluted with Elution buffer 

(Qiagen). For older samples, DNeasy Blood and Tissue kit (Qiagen) was used, follow

Darevskia praticola sensu lato. The Balkan lineage is shown in light grey and the two Caucasus lineages in 

dark grey. Population numbers correspond to table I. Distribution is based on Valakos et al. (2008) and Agasyan et al. (2009).

For phylogenetic analyses two mtDNA genes Cytochrome-b (Cyt-b) and the 3

NADH dehydrogenase subunit 4 gene and adjacent tRNAs (ND4) and two nDNA genes 

(MC1R, ReLN) were selected. Primers for these genes were those described in Kocher et 

al. (1989), Arevalo et al. (1994) and Pinho et al. (2009).  Amplifications were performed in 

25 µL of 5x reaction buffer, 3.2 mM MgCl2, 1.6 mM each dNTP, 4.0 M each primer, 1U of 

Promega GoTaq DNA polymerase. PCRs consisted of an initial denaturation at 94 ºC for 2 

min, followed by 40 cycles that included a denaturation step at 92 ºC for 30’’, annealing at 

65 ºC for 30’’ and extension at 72 ºC for 1’. A final extension was conducted at 72 ºC for 

ustments to conditions were required in some reactions. Sequencing was 

performed by an external facility (Macrogen® Europe). 

Sequences were edited with Chromas Pro v1.7.6 (Technelysium Pty, Ltd) and aligned with 

the algorithms implemented in Mafft version 7 (Katoh et al., 2005), using default options for 

all the alignments except for RelN, for which was used the iterative refinement method E

i. This algorithm is better suited for sequences with multiple conserved domains and 

long gaps, as we are expecting for the ReLN dataset. Heterozygous MC1R sequences 

were separated using PHASE 2.1.1 (Stephens et al., 2001; Stephens and Scheet 2005) 
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salt protocols (Sambrook et al., 2000).  DNA was eluted with Elution buffer 

(Qiagen). For older samples, DNeasy Blood and Tissue kit (Qiagen) was used, following 

The Balkan lineage is shown in light grey and the two Caucasus lineages in 

Valakos et al. (2008) and Agasyan et al. (2009). 

) and the 3′ end of the 

NADH dehydrogenase subunit 4 gene and adjacent tRNAs (ND4) and two nDNA genes 

se genes were those described in Kocher et 

al. (1989), Arevalo et al. (1994) and Pinho et al. (2009).  Amplifications were performed in 

25 µL of 5x reaction buffer, 3.2 mM MgCl2, 1.6 mM each dNTP, 4.0 M each primer, 1U of 

consisted of an initial denaturation at 94 ºC for 2 

min, followed by 40 cycles that included a denaturation step at 92 ºC for 30’’, annealing at 

65 ºC for 30’’ and extension at 72 ºC for 1’. A final extension was conducted at 72 ºC for 

ustments to conditions were required in some reactions. Sequencing was 

Sequences were edited with Chromas Pro v1.7.6 (Technelysium Pty, Ltd) and aligned with 

7 (Katoh et al., 2005), using default options for 

all the alignments except for RelN, for which was used the iterative refinement method E-

i. This algorithm is better suited for sequences with multiple conserved domains and 

ng for the ReLN dataset. Heterozygous MC1R sequences 

were separated using PHASE 2.1.1 (Stephens et al., 2001; Stephens and Scheet 2005) 
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with the web tool SeqPhase (Flot 2010). Probability for every haplotype chosen was 

between 0.978 and 1.00. All new sequences were submitted to GenBank (accession 

numbers pending), and the alignments are available on Dryad (reference number 

pending). 

Nucleotide diversity parameters were calculated with DNAsp (Librado and Rozas 2009). 

Genetic distances were calculated using MEGA5 (Tamura et al., 2011). 

To reconstruct the phylogenetic relationships among groups, we performed a Bayesian 

analysis with each of the mitochondrial markers (Cyt-b and ND4) separately. Sequences 

from other Darevskia sp. were added and analysed together with those of D. praticola 

generated here. Such sequences were taken from our database, Ahmadzadeh et al. 

(2013) and available from GenBank (Table II), and chosen according to phylogenetic 

proximity to ingroup and availability. The best-fit evolutionary model for each gene was 

selected using the corrected Akaike information criterion in JMODELTEST v0.1.1 (Posada 

2008) and PartitionFinder, for the partitioned loci Cyt-b and ND4 (Cyt-b/position 1: 

TVMef+I+G; ND4/position 3, Cyt-b/position 2: K81uf+I+G; ND4/position 1, Cyt-b/position 3: 

TIM+G; ND4/RNA subset, ND4/position 2: GTR+G; MC1R: TPM3uf+G). 

Bayesian posterior probabilities were calculated with MrBayes v3.2 (Ronquist et al. 2011), 

using four heated Markov chains (default heating values) sampled every 1000 generations 

and run for 20 million generations. Each run was performed twice, to avoid being trapped 

in a local optimum, and these two sets were later combined. The first 6000 trees were 

discarded as burnin after analysing the convergence parameters for both runs in Tracer 

v1.4 (Rambaut and Drummond 2007). Maximum Likelihood analyses were performed 

using MEGA6 (Tamura et al, 2013) and node support was estimated using the bootstrap 

technique with 500 replicates (Felsenstein, 1985). 
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Table 2 (cont.) 

Table 2.1.2 - Samples analysed for MC1R and Cyt-b analyses for other Darevskia species. Taxonomy according to Tuniyev et al. (2011, 

2013) and Ljubisavljevic et al. (2006). 

 

A multispecies coalescent model (Heled & Drummond 2010) as implemented in *BEAST 

was used to infer the species tree from multiple gene trees for all the lineages in D. 

praticola, In the multispecies coalescent model all model parameters are unlinked across 

loci, including the topology parameter, which allows the gene trees to differ in topology, 

even though being constrained by the species tree. Therefore, this approach allows for 

gene tree heterogeneity that can be due to incomplete lineage sorting, different 

evolutionary rates or even introgression. The dataset consisted of all the D.praticola 

individuals used in previous analyses. 

Since the Cyt-b could possibly be a mix of mtDNA and nuclear pseudogene sequences 

(see results) it was discarded from the analyses and only the loci ND4 (mtDNA), MC1R 

(nuclear) and ReLN (nuclear) were used in our *BEAST analysis. The time of the most 
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recent common ancestor (tMRCA) was estimated with *BEAST (Drummond et al., 2012). 

This was set to run for 108 generations, sampling every 105 generation, and repeated 8 

independent times. An uncorrelated lognormal relaxed clock was used for the mtDNA and 

nuclear markers. Individuals were constrained (traits option in *BEAST) as their taxonomy 

and geographical origin, meaning the D. praticola individuals were allocated to their 

lineages within the species and according to the previous ND4 Bayesian phylogenetic 

analysis in this study. 

 The prior for the ucld.mean parameter for the ND4 dataset was set as a normal 

distribution with a mean of 0.0226 and a standard deviation of 0.0031, so that mutation 

rate would be able to vary between 0.0278 and 0.0174 mutation/site/million years. This 

mutation rate interval was estimated for the same segment of the ND4 gene in genus 

Podarcis (Pinho et al., 2007). LogCombiner (Drummond et al., 2012) was used to compile 

the log and tree files of the eight cloned runs. 10% of the trees were discarded as burnin, 

following an analysis of convergence of individual run parameters in Tracer v1.4 (Rambaut 

and Drummond 2007). Evolutionary models applied were the most approximate to the 

Modeltest selected models available in BEAST (ND4: HKY+G; MC1R: GTR+GI; ReLN : 

HKY+I). The Yule process of speciation was selected as a tree prior with a random starting 

tree. High effective sample sizes were observed for all parameters in *BEAST analysis 

(posterior ESS values >  200 for the joined analyses). Convergence for all model 

parameters was determined in Tracer when sample size (ESS) > 200. Maximum clade 

credibility trees with divergence time means and 95% highest probability densities (HPDs) 

were produced using Tree Annotator (Drummond et al., 2012).  

After phasing all haplotypes, a statistical parsimony network was built in TCS v1.21 

(Clement et al., 2000) for the MC1R marker, with D. praticola and other Darevskia species 

for which data was available on GenBank. For the ReLN gene, a median joining approach 

was used to visualise the relationship among haplotypes using the software Network, 

considering gaps as a 5th state (Bandelt et al., 1999). 

 

 

RESULTS 

Phylogenetic analysis 

Bayesian algorithms produced different topologies for the mtDNA markers (Figure 2.1.2 

and 2.1.3). In the Cyt-b tree (Figure 2.1.2), D. praticola is divided into two highly divergent 
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clades that are not sisters.  Therefore, 

the Caucasus occupies a basal position in the tree, with ver

divergence between the D. praticola

It is noteworthy that in the Cyt

Russia, vicinity of Sochi (43º35’N, 39º46’E) 

the other Caucasian individuals as expected. However, the distance between this 

individual and the Balkanic D. praticola 

 

Figure 2.1.2 – Bayesian and ML phylogeny based on the mtDNA gene Cyt
dataset of the genus Darevskia. The Balkan lineage includes all the samples from the Balkans and is 
sister to the sample U88612 from the Caucasus. The other 
lineage of the basal trichotomy. 

clades that are not sisters.  Therefore, D. praticola appears paraphyletic. The lineage from 

the Caucasus occupies a basal position in the tree, with very low intralineal variation. The 

D. praticola clades is approximately 12%. 

It is noteworthy that in the Cyt-b tree (Figure 2.1.2) a published sequence (U88612) from 

Russia, vicinity of Sochi (43º35’N, 39º46’E) was placed in the Balkanic clade and not with 

the other Caucasian individuals as expected. However, the distance between this 

D. praticola is 5%. 

Bayesian and ML phylogeny based on the mtDNA gene Cyt-b for an enlarged species 
. The Balkan lineage includes all the samples from the Balkans and is 

sister to the sample U88612 from the Caucasus. The other samples from the Caucasus belong to a single 
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The topology of the ND4 tree (Figure 2.1.3) differs from that of the Cyt

three clades within D. praticola that are monophyletic and less divergent than the Cyt

clades. The ND4 tree recovered divergence not only between the Balkans

Caucasus, but also between samples from the Greater Caucasus and from Transcaucasia 

(Armenia and Azerbaijan). The divergence between the Caucasian and the Balkanic 

lineage corresponds to 5.1-5.7%.

 

 

Given the topology of the Cyt-

the lineages being a basal clade in the main tree, 

suggests we may have amplified a pseudo

The divergence between clades in the ND4 tree is much lower than the same parameter 

for the Cyt-b tree (~5% vs 12%), even though the ND4 is a faster evolving gene. Still, the

ND4 divergence between the Caucasian and Balkanic value (~5%) is concordant with the 

distance between the Genbank sequence (U88612) and the Balkanic sequences in the 

Cyt-b tree (5%). 

 

 

Figure 2.1.3 - Bayesian and ML phylogeny based on the mtDNA gene ND4 for 

The topology of the ND4 tree (Figure 2.1.3) differs from that of the Cyt

three clades within D. praticola that are monophyletic and less divergent than the Cyt

clades. The ND4 tree recovered divergence not only between the Balkans

Caucasus, but also between samples from the Greater Caucasus and from Transcaucasia 

(Armenia and Azerbaijan). The divergence between the Caucasian and the Balkanic 

5.7%. 

-b tree, with a paraphyletic structure of the genus, with one of 

the lineages being a basal clade in the main tree, with very low differentiation, this 

suggests we may have amplified a pseudo-gene. 

The divergence between clades in the ND4 tree is much lower than the same parameter 

tree (~5% vs 12%), even though the ND4 is a faster evolving gene. Still, the

ND4 divergence between the Caucasian and Balkanic value (~5%) is concordant with the 

distance between the Genbank sequence (U88612) and the Balkanic sequences in the 

Bayesian and ML phylogeny based on the mtDNA gene ND4 for D.praticola and outgroup species
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The topology of the ND4 tree (Figure 2.1.3) differs from that of the Cyt-b tree.  It shows 

three clades within D. praticola that are monophyletic and less divergent than the Cyt-b 

clades. The ND4 tree recovered divergence not only between the Balkans and the 

Caucasus, but also between samples from the Greater Caucasus and from Transcaucasia 

(Armenia and Azerbaijan). The divergence between the Caucasian and the Balkanic 

tree, with a paraphyletic structure of the genus, with one of 

with very low differentiation, this 

The divergence between clades in the ND4 tree is much lower than the same parameter 

tree (~5% vs 12%), even though the ND4 is a faster evolving gene. Still, the 

ND4 divergence between the Caucasian and Balkanic value (~5%) is concordant with the 

distance between the Genbank sequence (U88612) and the Balkanic sequences in the 

and outgroup species. 
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Finally, the MC1R phylogenetic tree showed a monophyletic D.praticola group, concordant 

with the ND4 tree topology (data not shown). 

Figure 2.1.4 - Median-joining network for the nuclear gene RELN, based on the 
sequencing of 23 individuals of D. praticola. Number of substitutions is shown 
along the network branches. If branches are not noted, the corresponding 
haplotypes are separated by a single step. Small black circles correspond to 
the median vectors. Light grey represents the Balkan lineage and dark grey the 
Caucasian lineage. Circles correspond to haplotypes, numbered as in table I, 
with size reflecting the number of individuals per haplotype. 
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Although we did not detect unusual amino

conflict with ND4 and MC1R and 

conservative and not include this marker in the further analyses with the nuclear loci.

 

2.1.6 – Species tree recovered from *BEAST analysis of three genes (ND4, RELN and MC1R). The traits used (“Caucasus”, 

“Armenia and Iran” and “Russian Caucasus”) were selected according to the ND4 tree lineages.

 

The species tree (Figure 2.1.6) recovers two sister clades within the Caucasus. One of 

these includes 12 individuals from the western Greater Caucasus 

Russian Federation). Individuals from that area are classified as 

(numbers 6, 7 and 8 in Figure 2.1.1)

individuals from the Talysh Mountains (Astara District, Azerbaijan)

Figure 2.1.5 - MC1R statistical parsimony network of this nuclear gene for 
including outgroup species. Light grey represents the Balkan lineage and dark grey the Caucasian 
lineage. The circles in white correspond to Darevskia species that 
group. Numbered circles correspond to unique h
number of individuals per haplotype. Small black dots represent the median vectors.

Although we did not detect unusual amino-acid changes (results not shown), the strong 

conflict with ND4 and MC1R and the unexpected levels of variation led us to be 

conservative and not include this marker in the further analyses with the nuclear loci.

Species tree recovered from *BEAST analysis of three genes (ND4, RELN and MC1R). The traits used (“Caucasus”, 

“Armenia and Iran” and “Russian Caucasus”) were selected according to the ND4 tree lineages. 

The species tree (Figure 2.1.6) recovers two sister clades within the Caucasus. One of 

these includes 12 individuals from the western Greater Caucasus (Krasnodarskiy Krai, 

Russian Federation). Individuals from that area are classified as D. praticola pontica 

(numbers 6, 7 and 8 in Figure 2.1.1). The other, Transcaucasian clade includes 3 

individuals from the Talysh Mountains (Astara District, Azerbaijan) classified as 

MC1R statistical parsimony network of this nuclear gene for D. praticola sensu lato 
including outgroup species. Light grey represents the Balkan lineage and dark grey the Caucasian 
lineage. The circles in white correspond to Darevskia species that do not belong to the D. 
group. Numbered circles correspond to unique haplotypes, as in table II, their size reflecting the 
number of individuals per haplotype. Small black dots represent the median vectors. 
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acid changes (results not shown), the strong 

the unexpected levels of variation led us to be 

conservative and not include this marker in the further analyses with the nuclear loci. 

Species tree recovered from *BEAST analysis of three genes (ND4, RELN and MC1R). The traits used (“Caucasus”, “Balkans”, 

The species tree (Figure 2.1.6) recovers two sister clades within the Caucasus. One of 

(Krasnodarskiy Krai, 

D. praticola pontica 

The other, Transcaucasian clade includes 3 

classified as D. praticola 

sensu lato 
including outgroup species. Light grey represents the Balkan lineage and dark grey the Caucasian 

D. praticola-
aplotypes, as in table II, their size reflecting the 
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hyrcanica (number 10 in Figure I) and 3 individuals from the Lesser Caucasus (Tavush 

Marz, Armenia) classified as D. praticola loriensis (number 9 in Figure I).  

These two clades are much more distantly related to the Balkans clade that grouped all 

samples from the Balkans: including 7 individuals from two localities in Serbia 

(approximately 200-250 Km apart), 3 from one locality in Romania, 1 from Greece and 1 

from Turkish Thrace (in Figure 2.1.1, numbers 1 and 2, 3, 4 and 5, respectively). 

Populations from these areas are currently assigned to D. praticola pontica. The sister 

relationship of the two Caucasian clades and their monophyly with the Balkanic clade were 

strongly supported (both posterior probability values > 0.96). In the species tree 

reconstruction, the group assignment of individuals followed the ND4 tree topology. 

Individual gene trees from the *BEAST analysis overall show the same pattern as the 

species tree. The ReLN gene tree from *BEAST, however, groups some individuals of the 

Caucasus and the Balkans in the same lineage: haplotype 3 from the Caucasus is closer 

to the Balkanic haplotypes than to the remaining Caucasian haplotypes, as in figure 2.1.4. 

This could be due to incomplete lineage sorting, which is common with nuclear markers 

even across species, or an incorrect value given to the gaps in the analysis. 

MC1R statistical parsimony network (Figure V) identified five haplotypes in D. praticola 

base on 6 polymorphic and 6 parsimony informative sites in a total of 629 bp. Haplotypes 1 

was shared by individuals from the Russian Caucasus, Armenia, and Iran. Haplotype 4 

was found only in the Russian Caucasus and differed from Haplotype 1 by two 

substitutions. Haplotypes 2, 3 and 5 were found only in the Balkans and differed from each 

other by one or two substitutions. The distance between Caucasian and Balkanic 

haplotypes varied from three to five substitutions. Therefore, overall geographic structure 

of MC1R haplotypes was concordant with that of the ND4 haplotypes and the species tree. 

The median joining analysis on the ReLN gene recovered a network of nine haplotypes 

based on 37 polymorphic and 36 parsimony informative sites of 774 bp (Figure 2.1.4). 

Three haplotypes (5-7) were found only in the Balkans and differed by 2-4 substitutions 

from each other.  Haplotypes 1-2 and 8, were found in Armenia and Iran and formed 

another closely related group of haplotyes that differed by one or two mutations from each 

other.  Haplotypes 3-4 and 9 were found in the Russian Caucasus, even though they were 

a bit apart from each other.  

The divergence time between the Balkanic and the common ancestor of the two 

Caucasian clades was estimated between 0.75 and 5.12 Ma with the mean of 2.5 Ma 
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(Table 2.1.3). The divergence between the Caucasus and Transcaucasia clades was 

estimated approximately 0.6 Ma (95% HPD interval 0.073 - 1.56 Ma. This split gave rise to 

a North-Caucasian lineage in the north (identified as “Caucasus_RU” in the tree) and 

another to the South of Caucasus, with the individuals from Armenia and Azerbaijan 

(identified as “Caucasus_ArmIran” in the tree). 

 

 

 

DISCUSSION 

(Dis)agreement of the phylogeographic signal across loci 

Our results constitute the first phylogeographic analysis of D. praticola across its 

fragmented range. Both mitochondrial (ND4) and nuclear loci (MC1R and ReLN) identified 

the presence of a strong phylogeographic structuring concordant across them. On the 

contrary, they disagree with the current intraspecific taxonomy based on morphological 

characters of scalation and colouration (Ilgaz and Kumlutaş 2005; Ljubisavljevic et al., 

2006; Tuniyev et al., 2011). 

In our analysis, not all markers were concordant. The Cyt-b tree yielded unexpected 

results, discordant from the trees of other loci analysed. D. praticola Cyt-b haplotypes 

divided themselves into two very divergent clades. One of the clades had all samples from 

the Balkans and a previously published sequence from the northwestern Caucasus 

(U88612). The other clade included our samples from the northwestern Caucasus and 

represented a short branched basal clade in the tree. 

ND4 and MC1R gene trees showed a different topology regarding the Cyt-b tree, but 

consistent with between them, with a monophyletic D.praticola. All these suggestions 

made us supect our Cyt-b sequences from the Caucasus could be of nuclear origin. 

Finally, the divergence between the Balkanic and Caucasian lineages in the ND4 tree is 

much lower than in the Cyt-b tree (~5% vs 12%), even though  ND4 is a faster evolving 

gene. However, an equivalent divergence (5%) was depicted between a Genbank 

sequence (U88612), originary from the Caucasus, and the Balkanic lineage. This could be 

an indication we were not amplifying the correct sequence, as there was a similar pattern 

between the previous published sequence and our Balkanic sequence data in comparison 

with the other loci (ND4 and MC1R). 

Given all of this information, although no stop codons or double peaks were found in these 
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sequences, due to the similarity of this pattern with other pseudo-gene cases in lacertids 

(e.g. Podnar et al., 2007 we suspected that our Cyt-b sequences from Caucasus could be 

of nuclear origin, or a pseudo-gene. Thus, we removed Cyt-b from the multilocus analysis. 

Our results provide a novel perspective on relationships within Darevskia. Most of the 

phylogenetic analyses of the genus published to date are based on Cyt-b data (Murphy et 

al., 1996; Tarkhnishvilli 2012). Since our data indicate  commonly used, universal primers 

for Cyt-b may amplify nuclear copies in some taxa and lead to erroneous tree 

reconstruction, it highlights the limitations of approaches based on single molecular 

markers. The evolutionary history of Darevskia is complex. It is characterized by frequent 

hybridisation events between different species (Darevsky, 1967, Danielyan et al., 2008). 

Some of these hybridisations are responsible for the origin of parthenogenetic taxa 

(Murphy et al., 1996; Tarkhnishvilli 2012). Therefore, a more rigorous, multilocus analysis 

of the relationships within Darevskia is needed to better understand the complexity of its 

evolutionary history. 

 

Phylogeographic patterns within D. praticola sensu lato 

The molecular markers analysed support a division of the currently recognized D. praticola 

into two main clades concordant with the disjoint parts of the range - the Balkans and the 

Caucasus. The Balkanic clade includes the individuals from Serbia, Romania, Greece, and 

Turkish Thrace. The Caucasian clade includes individuals from Russian Caucasus, 

Armenia, Azerbaijan, and Iran. Even though the sample size is relatively small, the 

individuals included in this study reasonably cover the whole distribution range of D. 

praticola sensu lato. While regions such as Bulgaria, Central Isthmus or Georgia would 

deserve further analysis, this sampling is likely to provide a robust prediction of the whole 

group. The divergence between these clades is approximately 5% in the ND4 dataset.  

Nuclear loci had no shared haplotypes between the Balkans and Caucasus.  Furthermore, 

in both loci, Balkanic haplotypes were more closely related to each other than to 

Caucasian haplotypes. Therefore, our data suggests the lack of gene flow and, as follows, 

an evolutionary independence of D. praticola populations inhabiting Balkanic and 

Caucasian parts of the species range. In other words, Balkanic and Caucasian parts of the 

species range represent independent “evolutionary significant units” (Moritz 1994), or even 

different species. 

This study recovered divergence not only between Balkans and Caucasus, but also 
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divergence between samples within the Caucasus. The localtions from the Greater 

Caucasus and from Transcaucasia (Armenia and Azerbaijan) represent two closely related 

clades, a pattern first depicted in the ND4 tree (Figure 2.1.3), and further analysed in the 

species tree (Figure 2.1.6). One of these clades included all individuals from the western 

part of the Greater Caucasus range (Krasnodarskyi Kray, Russsian Federation). The other 

included individuals sampled in Transcaucasia (Armenia, Azerbaijan, Iran), here the two 

subspecies found in the area also  possible to distinguish. This is partially consistent with 

phenotypic assignment of the Caucasian individuals to D. praticola pontica and the group 

formed by D. praticola loriensis (Armenia) and D. praticola hyrcanica (Talysh Mountains) 

(Figure 2.1.3). Unfortunately, our sampling is both geographically and sample size wise 

insufficient to reach firm conclusion about evolutionary independence of these clades. 

However, our data clearly indicates the presence of some geographic structuring of 

genetic variation within the Caucasus region that needs to be studied in a greater detail. 

 

 

Evolutionary history 

The divergence between the Balkans and the Caucasus has been estimated at 

approximately 2.50 Ma (95% HPD interval 0.75-5.12 Ma). Although the 95% HPD interval 

is large and covers all of Pliocene and half of Pleistocene, the divergence time estimate is 

concordant with other species that have similar distribution and is likely to be associated 

with the Pliocene-Pleistocene transition. This transition is characterized by a switch from a 

dry and warm period of moderate stability to a period with multiple abrupt glacial 

advances. Pleistocene glaciations facilitated genetic divergence in a variety of organisms 

(Hewitt 2000). South European peninsulas and mountains, such as the Iberian Peninsula 

and the Balkans (Salvi et al., 2013) as well as the Caucasus (Ursenbacher et al., 2006) 

played an important role in the maintenance and increase of regional biodiversity. These 

southern refugia acted as cradels of divergence and speciation and provided the pioners 

for interglacial expansion and colonisation of new habitats (Knowles 2001). 

At the end of the Pliocene, the Balkans and Asia Minor were connected and the Black Sea 

was isolated from the Mediterranean (Popov et al., 2004). In the beginning of the 

Pleistocene, the sea level dropped even more due to the increase of the ice caps. 

However, the aridification of the climate apparently facilitated the vicariance between the 

Balkanic and Caucasian forests, despite the land connections along northern and southern 
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Black Sea coasts. Only during the late Pleistocene did forests expand, and the Black Sea 

level gradually rose due to the melting of glaciers. At that time, the Bosphorus strait was a 

narrow canyon not allowing a large flow of water from the Black Sea to the Marmara Sea, 

which led to the water accumulation and Black Sea level rise (Esin et al., 2014). These 

vicariant events likely shaped the phylogeography of D. praticola. Similar paleoclimatic 

scenarios have been proposed to give rise to similar lineage diversification in other reptile 

species in this region (Ahmadzadeh et al., 2013a, 2013b, 2013c). 

Some authors had already suggested the existence of two different species within D. 

praticola. However, they grouped the Balkans with the northwestern Caucasus in one and 

the remaining range in the Caucasus into another (Tuniyev et al., 2011). This hypothesis 

requires a recent dispersal between the Balkans and northwestern Caucasus. Our data 

rejects this hypothesis suggesting instead that the divergence between the Balkans and 

the Caucasus is the deepest in the D. praticola tree.  

 

Using morphological characters, Tuniyev et al. (2011) suggested the species status for D. 

praticola sensu stricto and D. pontica assigning the lectotype for the latter from the 

northwestern Caucasus. Balkanic and northwestern Caucasus individuals, treated as D. 

pontica, were distinguished from D. praticola individuals by the presence of a 3/3 

arrangement of chin shields, longer head, distinct upper positioned masseteric plate in the 

temporal region (approaching toward tympanic plate and supratemporals), and tympanic 

plate separated from the supratemporals (Ljubisavljevic et al., 2006; Tuniyev et al., 2011). 

However, these authors conceded a degree of uncertainty regarding the characters in both 

taxa, especially due to a putative overlap in these characters in the Stravropol Plateau, 

where individuals with 3/3 (“D. pontica”) and with 2/2 (“D. praticola”) chin shields are found 

sympatrically. Although we did not have access to samples from this region, the fact that 

our samples west and east from this area all fell within the Caucasian clade suggests that, 

if there is any contact there, it should be between its subclades, and not between the 

Caucasian and the Balkanic clades. Ryabinina et al. (2011) had already proposed this 

hypothesis, although the limited sampling and the type of markers used (RAPD and inter-

MIR-PCR) do now allow a full comparison with our results. 

 

Taxonomical implications 

Our results clearly disagree with the current intraspecific taxonomy of D. praticola. 
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Morphological data indicate that D. p. pontica inhabits both the Balkans and northwestern 

Caucasus, and differs from D. p. praticola, D. p. hyrcanica and D. p. loriensis in 

Transcaucasia (Tuniyev et al., 2011). However, our multilocus molecular data indicate the 

presence of a deep divergence between the Balkanic and the Caucasus clades, possible 

dating back to the Late Pliocene, and that the northwestern Caucasus clade is much more 

closely related to the Transcaucasia clade. The northwestern Caucasus clade includes 

eastern populations of D. p. praticola and populations classified as D. p. pontica, 

suggesting that these subspecies are synonymous. Our data also suggest that D. p. 

hyrcanica and D. p. loriensis represent two less divergent mtDNA lineages, even though 

they share the nuclear loci haplotypes. This is concordant with the subspecies 

differentiation. The paraphyly of D. p. pontica and the deep divergence between its 

Balkanic and Caucasian populations renders applications of this subspecies to both parts 

of the range inappropriate. Populations from northwestern Caucasus should retain this 

name because a lectotype for D. praticola has been designated from Gagry, northwestern 

Caucasus (Tuniyev et al., 2011). As suggested by Ljubisavljevic et al. (2006), the name D. 

p. hungarica first described by Sobolevsky in 1930 (see Stugren 1961) with the type 

locality in the Transylvanian Alps would be available for the Balkanic clade. 

In conclusion, and given the deep split found between the Caucasian and the Balkanic 

clades, it would be more objective to elevate them to a species level. Given this, D. 

hungarica would then include all individuals from the Balkans, and D. praticola the 

Caucasian indiduals. Here, nested structure would still discriminate the subspecies 

D.p.pontica, for the western Caucasus individuals, D. p. loriensis (for the Armenian 

individuals) and D. p. hyrcanica (for the Iranian individuals present in the Talysh 

mountains). 
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CHAPTER 2.2 

Age and hybrid origin of parthenogenetic Darevskia - 

Paper II 

 

 

Figure 2.2.0: Graphical abstract 
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ABSTRACT 

Darevskia rock lizards include both sexual and parthenogenetic species, mostly distributed 

in the heterogeneous and ecologically diverse Caucasus. The parthenogenetic species 

originated via directional hybridogenesis, with only some of the sexual species known to 

serve as parentals. However, it remains unclear when and where these events happened 

and how many parental lineages were involved. A multilocus phylogeographic analysis 

was performed on the parthenogens D. unisexualis, D. bendimahiensis and D. uzzeli, and 

their putative maternal species D. raddei. Results show the parthenogenetic species all 

have relatively recent origins, approximately 200 - 70 kyr ago, and at least three 

hybridization events were involved in their formation. Ecological niche models identify the 

region where hybridization events leading to the formation of D. unisexualis took place, 

namely in the northeast of the current distribution. Models also suggest that the sexual D. 

raddei might have undergone a habitat shift between the Last Interglacial and the Last 

Glacial Maximum. 

 

Keywords 

Darevskia, parthenogenesis, mtDNA, phylogeny, ecological niche models, Glaciations. 

 

 

INTRODUCTION 

The study of parthenogenetic organisms, which reproduce in the absence of sex, provides 

an opportunity to understand the significance of sexual reproduction and the evolution of 

sex. In particular, taxa that present both sexual and parthenogenetic reproduction within 

the same clade, provide an opportunity to compare both reproductive forms and analyse 

their eventual ecological interactions (Gilabert et al., 2014; Otto and Nuismer, 2004). 

Reptiles are good model organisms for such studies due to the wide variety of 

reproductive modes and life history strategies, and lizards in particular are recurrent 

models used in studies of speciation, phylogeography and adaptation (Camargo et al., 

2010). Several lizard families include parthenogenetic and sexual species, making them 

especially interesting for studying the evolution and function of sexual reproduction (Avise, 

2008). Indeed, parthenogenesis was first described in vertebrates in the lizard genus 

Darevskia (Darevsky, 1967). Since then, at least 43 other cases of parthenogenetic 
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reproduction have been described in the Squamata (Kearney, 2003; Vrijenhoek, 1989). It 

is estimated that 0.6% of squamates (which comprise around 7000 species) can 

reproduce parthenogenetically, either obligatorily or facultatively (Kearney et al., 2009). 

Parthenogenesis is found across the squamate phylogeny and through a wide 

geographical range and ecological conditions. Most, but not all, parthenogenetic forms 

arose after hybridization between two related species, but the scenario for the origin of the 

parthenogenesis varies with the group and it is highly complex (Avise, 2008). Given this 

widespread distribution and the fact that parthenogenetic reproduction is frequently 

considered an “evolutionary dead-end” (Bell, 1982), it is still not fully understood whether 

new parthenogenetic lineages regularly appear and how they compete with sexual forms. 

 

In this study, we focus on lizards of the genus Darevskia Arribas, 1997 of the family 

Lacertidae. This is a group of small lizards found across the Caucasus and adjacent 

regions, including Turkey, Iran and the Balkans (Arnold et al., 2007). Currently 32 species 

are recognised (Ahmadzadeh et al., 2013b; Uetz, 2015) which occupy a wide diversity of 

habitats, from forest and meadows to rocky habitat. Initial estimates of phylogenetic 

relationships based on partial Cytochrome-b (Cyt-b) mitochondrial DNA sequences and 

protein electrophoretic data suggest parthenogenetic lineages result from successful 

directional hybridization events between sexual Darevskia species. Only four parent 

species are thought to have been involved, D. raddei (Boettger, 1892) and D. mixta 

(Méhely, 1909) as the maternal donors and D. valentini (Boettger, 1892) and D. 

portschinskii (Kessler, 1878) as the paternal donors (Fu et al., 1997; Murphy et al., 2000). 

The sexual Darevskia species that most commonly contributes as a parental for the 

parthenogenetic lineages is D. raddei, being the proposed maternal species for at least 

five of them: D. unisexualis (Darevsky, 1966) (Armenia, northeastern Turkey and southern 

Georgia), D. uzzelli (Darevsky & Danielyan, 1977) (northeastern Turkey), D. 

bendimahiensis (Schmidtler, Eiselt & Darevsky, 1994) (northeast of Lake Van), D. 

sapphirina (Schmidtler, Eiselt & Darevsky, 1994) (north of Lake Van in the vicinity of Erciş) 

and D. rostombekowi (Darevsky, 1957) (northern Armenia and western Azerbaijan) (Fu et 

al., 1997; Baran et al., 2012). Nevertheless, D. raddei itself has been suggested to be a 

species-complex containing the forms “raddei”, “nairensis” and “vanensis” whose status 

and phylogenetic relationships are still a matter of debate (Grechko et al., 2007). As a 

consequence, it remains unclear if different D. raddei lineages may have been involved in 
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the hybridization events that led to the parthenogenetic lineages. The form “raddei” is 

distributed throughout the south and northeast of Armenia and Nagorno-Karabakh 

(Arakelyan et al., 2011), Azerbaijan and the northern part of the east Azerbaijan and 

Ardabil provinces of Iran (Anderson, 1999). The form “vanensis” is found in easternmost 

Anatolia, east of Lake Van and the west Azerbaijan Province of Iran (Baran et al., 2012). 

The differences between them are based on quantitative morphological traits that are not 

fully diagnostic (Anderson, 1999). The third form “nairensis” is restricted to the 

northeastern part of Armenia, along the western margin of the Sevan Lake. It is noteworthy 

that sympatry of D. raddei “nairensis” with one of the parthenogenetic forms (D. 

unisexualis) has been described for a single locality: Lchap (Gegharkunik province), on the 

west margin of the Sevan Lake in Armenia (Arakelyan et al., 2011; M. Arakelyan and F. 

Danielyan, unpubl. com.). Examining the diversity of Cyt-b sequences within the D. raddei 

complex (except “vanensis”), MacCulloch et al. (2000) concluded that the forms “raddei” 

and “nairensis” were conspecific due to the paraphyletic relationships found. A fourth form, 

D. raddei “chaldoranensis“ has been recently described based on scalation and coloration 

characters, from a single locality of northern Zagros, western Azerbaijan Province of Iran 

(Rastegar-Pouyani et al., 2011, 2012), falling within the putative range of the form 

“vanensis”. 

The region where these forms occur, the Caucasus, includes a remarkable habitat and 

topographical heterogeneity likely to have promoted the formation of important biological 

barriers, and harbored multiple glacial refugia for sedentary species, including reptiles, 

during the last cold period (Ahmadzadeh et al., 2013a, 2013b; Tarkhnishvili et al., 2000, 

2013). Nevertheless, evolutionary studies reveal heterogeneous biogeographic patterns 

for the biota in this region. While the Caucasus may have acted as a complex secondary 

contact zone for some species (Seddon et al., 2002), for others it appears to have acted 

as a barrier to expansion (Tarkhnishvili et al., 2000). 

 

Here, we aim to infer the biogeographic patterns of parthenogenetic and bisexual rock 

lizards by addressing three questions: 1) Where and when did the parthenogenetic 

Darevskia species appear and could this be related to known biogeographic events? 2) 

How many parental lineages contributed for the parthenogenetic species under study? and 

3) Have parthenogenetic species undergone identifiable periods of range expansion or 

contraction since their origin? We focus on the Darevskia raddei sensu lato sexual species 
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and the hybrid parthenogenetic daughter lineages, D. unisexualis, D. uzzelli and D. 

bendimahiensis. 

To answer the first and second questions, a phylogenetic dating approach was employed. 

The molecular markers were used to determine the specific maternal lineage for each of 

the parthenogenetic forms analysed and, specifically, whether the parthenogenetic 

lineages come from single or multiple hybridization events. To try to infer the location of 

those events ecological niche modelling was performed based on the current environment 

and on projections to two different paleoscenarios, the Last Interglacial (LIG – 130 to 115 

kyr ago) and the Last Glacial Maximum (LGM – 22 kyr ago), taking into account the age 

estimates for each species. If the origin of the parthenogenetic species occurred after the 

LIG, then comparisons of the potential distributions during the paleoscenarios analysed 

(LIG and LGM) with the present distribution model would allow inference regarding where 

these lineages could have been during the hybridization events. Regarding the last 

question, tests on population expansion/contraction were performed.  

Furthermore, the current distribution ranges of the sexual species and of the parthenogen 

D. unisexualis were compared to the present habitat suitability model and to the 

projections for the estimated paleoscenarios as inferred by ecological niche modelling. 

With this we intend to infer how competition may influence the distribution of both 

parthenogenetic species and the sexual parentals. Due to their extremely restricted 

distribution, insufficient to infer ecological models, the other two parthenogenetic species, 

D. uzzelli and D. bendimahinesis, could not be included in this analysis. 

 

 

MATERIAL AND METHODS 

Study area and datasets 

A total of 235 samples collected across the whole species ranges were used for the 

molecular analyses (Supplementary Table 1). D. raddei sensu lato individuals were 

selected from 90 localities covering the whole distribution range of the complex, D. 

unisexualis from 15 localities (N = 32), and D. uzzelli (N = 5) and D. bendimahiensis (N = 

3) from one locality each, due to their locally restricted distribution (Figure 2.2.1, 

Supplementary Table 1). Presence records for 165 individuals (see Supplementary Table 

1) were used to construct the ecological niche models (ENMs). In all cases, only records 

confirmed by molecular data were used. Geographic coordinates of sampling localities 
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were geo-referenced with a Global Positioning System (GPS) receptor on the WGS84 

datum. The study area is a polygon which includes the global distribution of both species 

(D. raddei and D. unisexualis) as provided by IUCN, defined by the coordinates xMin,yMin 

37.8275,34.8814:xMax,yMax 53.126,45.1208. This area was chosen in order to detect 

suitable habitats outside the distribution ranges of both species and to analyse the overlap 

between both ENMs, but taking into account their limited dispersal rate. Outgroup species 

used were sampled (D. portchinskii, D. rudis (Bedriaga, 1886) and D. valentini) or their 

sequences downloaded from Genbank (Iranolacerta). From all individuals sampled in the 

field, tail tips, photographs and basic measurements were also collected to associate to 

morphological descriptions of the species (Arakelyan et al., 2011). 

 

Figure 2.2.1: Map with all individuals used in the study (for both Maxent model construction and genetic analyses) identified by species-

specific colour codes. Ecotypes of sexual species D. raddei are in different tones of grey (light grey, “nairensis”; medium grey, “raddei”; 

dark grey, “vanensis”). Parthenogenetic species are represented in purple (D. unisexualis), dark pink (D. uzzelli) and orange (D. 

bendimahiensis).  

 

Molecular data 

Total genomic DNA was extracted from approximately 30 mg of each tail-tip following 
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standard high-salt protocols (Sambrook and Russell, 2001). For phylogenetic analyses two 

partial mitochondrial genes; Cytochrome-b (Cyt-b) and NADH dehydrogenase-4 (ND4), 

and two partial nuclear genes; Melanocortin 1 receptor (MC1R) and oocyte maturation 

factor Mos (C-mos) were selected. Primers and PCR protocols are described elsewhere 

(Arévalo et al., 1994; Barata et al., 2012; Kocher et al., 1989; Pinho et al., 2007). 

Sequencing was conducted by a commercial facility (Macrogen Inc). Chromatograms were 

edited by eye in ChromasPro v1.7.4 (Technelysium), using ambiguity codes to represent 

heterozygous positions. 

 

 

 

Phylogenetic analyses and divergence-time estimates 

Sequence alignment was performed in MAFFT v6 (Katoh and Standley, 2013) using the 

automatic settings for the algorithm choice. For nuclear fragments, haplotypes phase was 

inferred with Phase version 2.1 (Stephens et al., 2001), and to reduce potential biases in 

downstream analyses only haplotype pairs with total posterior probabilities values above 

0.6 were included in the analysis (Garrick et al., 2010) – this resulted in the exclusion of 

less than 1% of the sequences. Input files were prepared with SeqPHASE (Flot, 2010), 

which was also used to produce bi-allelic fasta files from PHASE outputs. 

For the phylogenetic analyses, mtDNA fragments were concatenated but nuclear genes 

were analysed independently. Departing from an a-priori partitioning per coding position on 

each gene, PartitionFinder (Lanfear et al., 2012) was used to select the best-fit partitioning 

scheme and DNA substitution model(s). Phylogenetic analyses were performed using 

Bayesian (MrBayes v. 3.2, Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 

2003) and Maximum Likelihood (PhyML 3.0, Guindon and Gascuel, 2003) inferences (BI 

and ML, respectively). In ML, nodal support was estimated through 1000 bootstrap 

replicates (Felsenstein, 1985). In BI, all analyses started with randomly generated trees 

and ran for 30x106, with sampling at intervals of 1000 generations, producing 30,000 trees. 

Two independent runs were performed on each dataset. Burn-in was determined upon 

stabilisation of log likelihood using TRACER v1.5 (Drummond and Rambaut, 2007) and of 

the clades posterior probabilities with AWTY (Nylander et al., 2008). Individual mtDNA 

gene trees were also estimated with MrBayes, using the same strategy as with the 

concatenated mtDNA dataset. These gene trees were then compared to test for possible 
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incongruences (data not shown). 

The age of the most recent common ancestor (tMRCA) was estimated for all lineages of 

the mitochondrial DNA dataset on a “species-tree” analysis using *BEAST 2.3.1 

(Bouckaert et al., 2014) with the mtDNA dataset. This approach was preferred since 

“species-tree” analysis can provide accurate gene-tree estimates (Drummond et al, 2012) 

and more realistic assessments of posterior clade supports (Drummond and Bouckaert 

2015). Even though only mtDNA markers were used the term “species-tree” analysis is 

used to identify the method in question. Both markers (ND4 and Cyt-b) were run with 

unlinked trees, sites and clock models so that each marker and respective priors used 

would not constrain the calculation of the parameters for the other marker, such as 

mutation rate, tree topology or branch length. DNA substitution models for both markers 

were searched again with PartitionFinder (Lanfear et al., 2012), but this time unpartitioned 

schemes per marker were selected since mutation rates used (Pinho et al., 2007) were 

developed for a non-partitioned marker (ND4). The models selected for each marker are 

GTR+I+G (Cyt-b) and HKY+G (ND4). Individuals were assigned to “species” based on 

their mtDNA lineages. Four independent searches were run for 107 generations. A 

lognormal relaxed molecular clock was assumed, using the mutation rate for ND4 

estimated for the lacertid lizard genus Podarcis Wagler, 1830 (Pinho et al., 2007) and co-

estimated for Cyt-b. Nuclear markers were not included in the tMRCA estimations given 

the hybrid origin of the parthenogens and respective uncertainty associated with phased 

haplotypes. The clock rate prior for the ucld.mean parameter for the ND4 dataset was set 

as a normal distribution with a mean of 0.0226 and a standard deviation of 0.0031, so that 

mutation rate varied between 0.0278 and 0.0174 mutation/site/million years. A uniform 

Yule prior was selected for the tree, with a random starting one. For the remaining 

parameters the default options were chosen. Convergence for all model parameters was 

determined in Tracer v.1.5. (Drummond and Rambaut, 2007) where high effective sample 

sizes (ESS) were observed for all parameters (> 200 for the combined analyses). 

LogCombiner 2.3.0 (Bouckaert et al., 2014) was used to combine the log and tree files of 

the four runs, with 20% of the trees of each one discarded as burn-in, following an analysis 

of convergence of individual run parameters in Tracer v1.4  (Drummond and Rambaut, 

2007). A maximum clade credibility (MCC) tree with mean tree heights and 95% highest 

probability densities (HPDs) was produced using Tree Annotator (Bouckaert et al., 2014). 
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Population structure 

Haplotype networks were constructed for both nuclear loci (MC1R and C-mos) using the 

statistical parsimony algorithm in TCS 1.21 (Clement et al., 2000). Analyses were 

performed with phased nuclear data of the species in study and additional sexual species 

expected to have acted as, or be closely related to, the paternal species. These were 

included to compare alleles of the parthenogens to the sexual species from which they 

potentially originated. 

Diversity parameters for each gene were estimated only for the sexual species D. raddei 

and the parthenogen D. unisexualis, since sample sizes for the remaining 

(parthenogenetic) species were insufficient. Estimates of haplotype diversity (Hd), 

nucleotide diversity (π), neutrality tests Tajima’s D and Fu’s Fs, as well as Harpending’s 

raggedness index (r) were calculated, as well as the significance of Tajima’s D and Fu’s Fs 

statistics, tested by generating 1000 random samples under the null hypothesis of 

selective neutrality and population equilibrium, using a coalescent simulation algorithm 

adapted from Hudson (1991) in DNAsp. Significance of r was tested using a parametric 

bootstrap approach (Schneider and Excoffier, 1999). 

 

 

Environmental data 

Climatic variables were retrieved from the WorldClim online data (Hijmans et al., 2005). 

The spatial resolution for current climate variables was 30 arc-seconds (approximately 1 

km2) and for past climate variables 2.5 arc-minutes (approximately 5km2). From the 19 

Bioclim variables, those with a correlation lower than 0.7 and considered biologically 

relevant for both species were selected (supplementary table 3). 

Three past climate scenarios were used: one scenario for the Last Interglacial (LIG: ~120-

140 kyr years BP; Otto-Bliesner et al. 2008); and two scenarios (CCSM - the Community 

Climate System Model, and MIROC - the Model for Interdisciplinary Research on Climate) 

for the Last Glacial Maximum (LGM: ~22 kyr years BP)(Hijmans et al., 2005).  

 

Ecological niche models 

The realised niches (sensu Hutchinson, 1957) of D. raddei sensu lato and D. unisexualis 

were estimated using the Maximum Entropy method implemented in Maxent 3.3.2 
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(Phillips et al., 2004, 2006).  All forms within D. raddei were considered as a single 

group given the low phylogenetic distance between them (“vanensis” vs “raddei”) or the 

lack of differentiation (“nairensis” and “raddei”; see Results). The ecological niche models 

for the present were then projected to the three past climate scenarios selected. 

Maxent runs were performed with autofeatures, selecting randomly 70% (number of 

points) of the presence records as training data and 30% (number of points) as test data 

for D. raddei locations, and all the presence records (number of points) as training data for 

D. unisexualis, due to the limited number of records for this species. Default parameters 

were used in order to compare the different models. 

Models were evaluated with receiver operated characteristics (ROC) plots. The area under 

the curve (AUC) of the ROC plot was taken as a measure of the overall fit of the Maxent 

model (Liu et al., 2005) (random models have an AUC equal to 0.5) AUC was selected 

because it is independent of prevalence (the proportion of presence in relation to the total 

dataset size; see VanDerWal et al. (2009)). The importance of each climate variable for 

explaining the species distribution was determined by: (1) jackknife analysis of the average 

AUC with training and test data; and (2) average percentage contribution of each 

environmental factor to the models. The mean realised niche model and its projections to 

past scenarios were reclassified in presence-absence maps using the average value of the 

10 percentile training presence logistic as the threshold. This would decrease the potential 

error associated to the dataset. So that we defined suitable habitat to include 90% of the 

data used to develop the model. Cells with values higher and lower than the threshold 

were considered either suitable or unsuitable for the presence of the species (in the latter 

case species were considered to be absent from these cells). Identification of areas of 

probable sympatry between species was determined by overlap analysis, multiplying the 

distribution model of each species in the “Raster Calculator” function of QGIS. 

                                                                                                                                                                               

 

RESULTS 

Phylogenetic analyses 

Two mitochondrial DNA markers were analysed in this study comprising 270 concatenated 

sequences and 110 unique haplotypes within the concatenated dataset. In total, mtDNA 

markers correspond to 1753 bp (Cyt-b: 919bp, 143 parsimony informative sites; ND4: 

834bp, 98 parsimony informative sites). 



FCUP 
Why Sex? Darevskia answers. 

67 
 

The mtDNA gene markers do not show any indels or stop codons when translated. Under 

the corrected Akaike information criteria (AICc), the best partition set and models chosen 

by PartitionFinder and applied to the dataset are as follows: Cyt-b/position 1 = TVMef+I+G; 

ND4/position 3, Cyt-b/position 2 = K81uf+I+G; ND4/position 1, Cyt-b/position 3 = TIM+G; 

ND4/RNA subset, ND4/position 2 = GTR+G. The individual gene trees recovered from 

both mtDNA gene regions are topologically concordant with no well supported conflict and 

both Bayesian and Maximum Likelihood analyses result in the same overall tree topology 

(data not shown). A previous study found evidence for a nuclear copy of the Cyt-b in 

another species of Darevskia (Freitas et al, 2016). However, given that both mtDNA 

markers produced concordant individual tree topologies for the major lineages, and the 

lack of stop codons and indels in these sequences, we have no reason to consider this 

issue further here. The mtDNA gene genealogy shows D. raddei sensu lato as 

monophyletic with maximum support (Figure 2.2.2), with the three parthenogens analysed 

being placed within the D. raddei lineage. According to our results, the form “nairensis” 

(Figure 2.2.2, light grey) does not correspond to a monophyletic lineage, and haplotypes 

from individuals morphologically assigned to this form are shared with individuals 

recognized as “raddei” (haplotype number 5 is shared by D. raddei raddei from Gosh and 

Pzorak and D. raddei nairensis from Hovk, all in Armenia). In contrast, the form “vanensis” 

(Figure 2.2.2, dark grey) does corresponded to a single lineage, which appears distinct 

from the rest of the D. raddei individuals analysed (“raddei” and “nairensis”) although still 

nested within D. raddeii sensu lato. Its haplotypes are shared only with the parthenogen D. 

bendimahiensis. 
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Figure 2.2.2 – 50% majority rule consensus of bayesian estimates of mtDNA (Cyt-b and ND4) trees for the D. raddei “complex”, 

parthenogenetic species and outgroups. Lineages correspond to the lineages on the map (on the right) and tMRCA estimates (Table 3). 

Pie charts represent the different taxa clustered within each mtDNA lineage (dark grey: D. raddei “vanensis”, medium grey: D. raddei 

“raddei”, and light grey: D. raddei “nairensis”; orange: D. bendimahiensis, purple: D. unisexualis, dark pink: D. uzzelli). Only posterior 

probability values above 0.8 are presented. 

 

Both Bayesian and ML mtDNA phylogenetic analyses show a Southeast-Northwest 

differentiation within the D. raddei group (Figure 2.2.2): the basal lineages 68 (a single 

haplotype), 5 and 6 contain the individuals from the southernmost part of the distribution, 

in the region of Ardabil and east Azerbaijan provinces of Iran (Figure 2.2.2). Lineages 4.1 

and 4.2 include individuals from South Armenia and Ardabil region in Iran and are found 

South and North of the lineages 5 and 6. Lineage 3 contains the individuals located around 

Lake Van in Turkey and lineages 1.1 and 1.2, and 2 are found Northeast of the Geghama 

Mountains. Even though there is a clear Southeast-Northwest differentiation, most mtDNA 

lineages are in contact and geographical structure is only detected in some cases, such as 

lineage 3 whose samples are geographically isolated and genetically differentiated from 

the rest. 
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The “species-tree” inference (Figure 2.2.3) largely matches the Bayesian concatenated 

“gene-trees” except for the position of lineage 3. However, given the low posterior 

probability values, the position of this lineage relative to the other 

remains unclear. The estimated 95% HPD intervals of node heights show the 

differentiation in the D. raddei

from D. clarkorum (the closest sexual species included in this study) dates from 3 

Myr. The closest D. raddei lineage to the parthenogens

lineage 2 - splits from these parthenogens 290 

these two parthenogenetic species dated 61 

bendimahiensis, or the split between this 

lineage, dates to 204 – 18 kyr. 

 

 

Figure 2.2.3. Species-tree estimate (MCC) of 

uzzelli (lineage 2.uzz) and D. bendimahiensis

for each split, stars represents posterior probability of 1. Parthenogenetic species are shown in

figures (orange: D. bendimahiensis, purple: D. unisexualis

tree” inference (Figure 2.2.3) largely matches the Bayesian concatenated 

trees” except for the position of lineage 3. However, given the low posterior 

probability values, the position of this lineage relative to the other 

remains unclear. The estimated 95% HPD intervals of node heights show the 

D. raddei group dates back to around 0.7 Myr (1.1 

(the closest sexual species included in this study) dates from 3 

lineage to the parthenogens D. unisexualis

splits from these parthenogens 290 – 7 kyr ago while the differentiation within 

these two parthenogenetic species dated 61 – 2 kyrs ago. The origin of 

, or the split between this parthenogenetic species and its closest 

18 kyr.  

tree estimate (MCC) of D. raddei sensu lato and the parthenogenetic species D. unisexualis

D. bendimahiensis (lineage 3.bendi). Divergence time intervals in Myrs. Posterior probabilities are presented 

for each split, stars represents posterior probability of 1. Parthenogenetic species are shown in different colours, similar as in other 

D. unisexualis, dark pink: D. uzzelli). 
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tree” inference (Figure 2.2.3) largely matches the Bayesian concatenated 

trees” except for the position of lineage 3. However, given the low posterior 

probability values, the position of this lineage relative to the other D. raddei lineages 

remains unclear. The estimated 95% HPD intervals of node heights show the 

group dates back to around 0.7 Myr (1.1 – 0.5) and its split 

(the closest sexual species included in this study) dates from 3 – 1.2 

D. unisexualis and D. uzzelli - 

7 kyr ago while the differentiation within 

2 kyrs ago. The origin of D. 

species and its closest D. raddei 

D. unisexualis (lineage 2.uni), D. 

(lineage 3.bendi). Divergence time intervals in Myrs. Posterior probabilities are presented 

different colours, similar as in other 
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Population structure 

Analyses of nuclear DNA show all parthenogenetic individuals are heterozygous for both 

markers, with each allele shared with a different species. Some sexual individuals are also 

found to be heterozygous but their alleles are never shared between species as it is 

always the case with the parthenogens. To assess the maternal and paternal genomic 

contribution in the parthenogenetic individuals, samples of D. portschinskii, D. valentini 

and D. rudis individuals were incorporated to the analyses and haplotype networks were 

constructed (Figure 2.2.4). Each of the alleles found were expected to group with each 

parental group. Thus, the allele corresponding to the maternal contribution is considered to 

be the allele shared with the D. raddei individuals, the other allele corresponding to the 

paternal contribution (shared or closer to D. portschinskii, D. rudis and D. valentini). The 

expected paternal species for the three parthenogenetic species was D. valentini 

(Darevsky, 1967), although it was still pending confirmation by genetic data. In order to 

include other species closely related to D. valentini (Fu et al., 1997) and the diversity within 

the putative paternal group, we have also added samples of D. portschinskii and D. rudis. 

Within D. raddei sensu lato, networks of nuclear haplotypes show a weak geographic 

structure, even though MC1R (644 bp, 43 variable positions), faster evolving than C-mos 

(550 bp, 14 variable positions) (Figure 2.2.4), shows a higher degree of diversity. However, 

some of the mitochondrial lineages have corresponding haplotype groups in the MC1R 

network: haplotypes 16, 17, 32 and 33 (of MC1R) is a group formed by samples found in 

the southernmost part of the species distribution, in the west Alborz region (Asalem, Hir, 

Khalkhal, Meskin Shahr) which corresponds to mtDNA lineage six. Haplotypes 9, 6, 20, 36, 

39 correspond to individuals from South Armenia and NKR (mtDNA lineage 4.1 in Figure 

2.2.2). Haplotypes 26, 27 and 29 are only found in individuals from the Lake Van area in 

Turkey, and western Azerbaijan (province of Iran) and Gollodja in the adjacent Iranian 

Azerbaijan (near the borderwith Turkey and the Lake Van region), which define mtDNA 

lineage three. The remaining haplotypes correspond to individuals ascribed either to D. 

raddei “nairensis” or to D. raddei “raddei”, distributed North and South of Mount Aragats in 

central Armenia, respectively. 

Regarding the maternal contribution (D. raddei sensu lato), all of the parthenogenetic 

species present two haplotypes only, 1 and 27. Specimens identified as D. unisexualis and 

D. uzzelli share haplotype 1 with individuals from Mount Aragats, specifically Amberd 

Castle and Lchaschen. The only homozygous individuals for this haplotype are D. raddei 
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nairensis found in Amberd Castle, where the frequency of this haplotype is likely higher. 

Haplotype 27 is shared by D. bendimahiensis and individuals identified as D. raddei 

“vanensis”, located around Lake Van in Turkey and Iranian Azerbaijan. Haplotypes 5, 38, 

25, 22, 23 and 24 corresponded to the putative paternal species. Alleles 4, 21 and 25 are 

found in the parthenogenetic species, and were therefore inherited from the paternal 

species that contributed to the original hybridization event. Regarding the paternal 

contribution, D. unisexualis presents two different haplotypes, and D. bendimahiensis and 

D. uzzelli only one each. While D. unisexualis and D. uzzelli share the same maternal 

haplotype, for the paternal contribution D. unisexualis shares its most common haplotype 

with D. bendimahiensis, while D. uzzelli shares its haplotype with individuals of D. 

valentini. 
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Figure 2.2.4 – Statistical parsimony networks for MC1R and C

individuals of the putative paternal species of those parthenogens. Small black circles represent missing or unsampled haplot

colours correspond to the D. raddei sensu lato (dark grey: 

raddei “nairensis”; orange: D. bendimahiensis

white with light green outline: D. rudis; green: D. parvula; wh

identified with the position on the network of the parental species: 

valentini/D. portschinskii group as the paternal contribution. Circles correspond to haplotypes, numbered as in Supplementary Table 1, 

with size proportional to their frequency. 

 

The C-mos haplotype network (Figure 2.2.4, bottom) shows little variation and most 

raddei sensu lato individuals share haplotype 1 or one derived from it by one or two 

Statistical parsimony networks for MC1R and C-mos in D. raddei group, parthenogenic descendant species and some 

individuals of the putative paternal species of those parthenogens. Small black circles represent missing or unsampled haplot

sensu lato (dark grey: D. raddei “vanensis”, medium grey: D. raddei “raddei”

D. bendimahiensis, purple: D. unisexualis, dark pink: D. uzzelli; white with dark green outline:

: D. rudis; green: D. parvula; white with black outline: D. portschinskii). Different parental contributions were 

identified with the position on the network of the parental species: D. raddei sensu lato as the maternal genomic contribution and 

aternal contribution. Circles correspond to haplotypes, numbered as in Supplementary Table 1, 

haplotype network (Figure 2.2.4, bottom) shows little variation and most 

sensu lato individuals share haplotype 1 or one derived from it by one or two 
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mutation steps. There is no geographic structure reflected in this network. As with MC1R, 

C-mos sequences of the putative paternal species (D. valentini, D. rudis and D. 

portschinskii) were used to allocate the paternal contribution and to differentiate the 

maternal from the paternal alleles. Regarding the maternal contribution, all three 

parthenogenetic lineages analysed share the same allele. This is the most common allele, 

found also in all the individuals ascribed to D. raddei “nairensis” (and all homozygous), but 

also in those identified as D. raddei “vanensis” and most of the D. raddei “raddei”. 

Regarding the paternal contribution, the three parthenogens share the same haplotype, 

which is not found in any of the putative paternal species used. This network shows a 

slight star-like shape. Neutrality tests were calculated for each species (Table 1). Tajima's 

D shows significant negative values for D. raddei (ND4) and D. unisexualis (Cyt-b and 

ND4). Fu's Fs also shows negative values for all markers analysed in both species, even 

though none is significant. Both tests R2 and raggedness r detected significant low positive 

values for all markers. 

 

 

Table 2.2.1 - Summary statistics, tests of neutrality and growth for the sexual species D. raddei sensu lato and the parthenogen D. 

unisexualis. 

 

Ecological niche models 

Maxent models were generated only for species with a sufficient number of geographic 

records, D. raddei sensu lato and D. unisexualis. Given their restricted distribution range, 

D. uzzelli and D. bendimahiensis could not be included in this analysis. 

Both Maxent ensemble models have mean AUC values higher than 0.9, for training data 

(D. raddei: 0.9131; D. unisexualis: 0.9792) and close to 0.9 for test data (D. raddei: 

0.8714; D. unisexualis: 0.9734): thus, training AUC and test AUC are within the same 
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value range meaning the model is dependent on the record data but not on which subset 

of the record data is used. The variables that more strongly contribute to the model of D. 

raddei are BIO18, BIO17, BIO4 and BIO112 (Precipitation of the Warmest Quarter, 

Precipitation of the Driest Quarter, Temperature Seasonality (standard deviation * 100) and 

Mean Temperature of the Coldest Quarter, respectively) and mostly revolve around the 

availability of water in the warmest (and driest) months of the year. The model of D. 

unisexualis is more strongly affected by BIO9 and BIO1 (Annual Mean Temperature and 

Mean Temperature of the Driest Quarter) and similarly to D. raddei's model, BIO17 and 

BIO18 equally affected by similar variables except for the BIO2 and BIO4 (Supplementary 

Figure 2.2.1). These patterns are concordant with the jack-knife analysis of AUC and gain 

values of training and test data, for models calculated with only one variable and models 

calculated without that variable (Supplementary Figure 2.2.1). 

The present area suitable for D. raddei (Figure 2.2.6) mostly overlaps with its current 

distribution range, although some suitable unoccupied areas (Arakelyan et al., 2011) are 

identified as suitable habitat, especially towards the west (Turkey) and northeast (Georgia-

Azerbaijan). D. raddei vanensis individuals (located next to Lake Van in Turkey) fall outside 

the suitable habitat for D. raddei. When projected to the LGM most suitable habitat for D. 

raddei is shifted to the east of its current distribution, does not include mountain tops, and 

tends to be restricted to valleys and plains. Interestingly, no suitable habitat was found 

when projecting the distribution of D. raddei to the LIG. 
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Figure 2.2.5 – Ecological niche models of the present distribution for D. raddei

past (Last Glacial Maximum, LGM). Projections to the past were performed using two scenarios, MIROC and CCSM. Details of the 

individuals used are in Supplementary Table 1. Points of the individuals used are in the maps in grey (

unisexualis). 

 

The D. unisexualis model (Figure 2.2.6) occupies a much more reduced area, 

concentrating within Armenia. 

fall inside the area predicted by the model. When projected to the LGM, both scenarios 

(CCSM and MIROC) produced slightly different results in terms of predicted suitable area, 

even though they both tend to find mo

for D. raddei. No suitable habitat was found when projecting to the LIG. In all cases, when 

comparing the models of distribution for both species, the potential

unisexualis falls within that of D. raddei

 

 

DISCUSSION 

Parthenogenesis is a rare reproductive mode that, despite being found in most animal 

groups, is observed in less than 0.5% of known species (Vrijenhoek, 1989). Given the low 

number of species where it is observe

reproduction is expected to happen only rarely. Also, the twiggy distribution of 

parthenogenetic species in the tree of life suggests independent sexual to asexual events 

(Butlin, 2002), with most appearing to b

measure of longevity - of the parthenogenetic forms.

Our results show multiple origins of parthenogenetic species resulting from recurrent 

Ecological niche models of the present distribution for D. raddei (grey) and D. unisexualis 

past (Last Glacial Maximum, LGM). Projections to the past were performed using two scenarios, MIROC and CCSM. Details of the 

ls used are in Supplementary Table 1. Points of the individuals used are in the maps in grey (

model (Figure 2.2.6) occupies a much more reduced area, 

concentrating within Armenia. D. unisexualis individuals found in Turkey (Horasan) do not 

fall inside the area predicted by the model. When projected to the LGM, both scenarios 

(CCSM and MIROC) produced slightly different results in terms of predicted suitable area, 

even though they both tend to find more suitable habitat to the east, as with the projection 

. No suitable habitat was found when projecting to the LIG. In all cases, when 

comparing the models of distribution for both species, the potential

D. raddei. 

Parthenogenesis is a rare reproductive mode that, despite being found in most animal 

groups, is observed in less than 0.5% of known species (Vrijenhoek, 1989). Given the low 

number of species where it is observed, the switch from sexual to parthenogenetic 

reproduction is expected to happen only rarely. Also, the twiggy distribution of 

parthenogenetic species in the tree of life suggests independent sexual to asexual events 

(Butlin, 2002), with most appearing to be recent species and with few deep branches 

of the parthenogenetic forms. 

Our results show multiple origins of parthenogenetic species resulting from recurrent 

75 

D. unisexualis (pink) and projections to the 

past (Last Glacial Maximum, LGM). Projections to the past were performed using two scenarios, MIROC and CCSM. Details of the 

ls used are in Supplementary Table 1. Points of the individuals used are in the maps in grey (D. raddei) and pink (D. 

model (Figure 2.2.6) occupies a much more reduced area, 

ividuals found in Turkey (Horasan) do not 

fall inside the area predicted by the model. When projected to the LGM, both scenarios 

(CCSM and MIROC) produced slightly different results in terms of predicted suitable area, 

re suitable habitat to the east, as with the projection 

. No suitable habitat was found when projecting to the LIG. In all cases, when 

comparing the models of distribution for both species, the potential habitat of D. 

Parthenogenesis is a rare reproductive mode that, despite being found in most animal 

groups, is observed in less than 0.5% of known species (Vrijenhoek, 1989). Given the low 

d, the switch from sexual to parthenogenetic 

reproduction is expected to happen only rarely. Also, the twiggy distribution of 

parthenogenetic species in the tree of life suggests independent sexual to asexual events 

e recent species and with few deep branches - a 

Our results show multiple origins of parthenogenetic species resulting from recurrent 



FCUP 
Why sex? Darevskia answers. 

76 
 

hybridization events in a very short time interval. Parthenogenetic species are expected to 

be short lived, with severe evolutionary constraints and the change to parthenogenesis is 

expected to happen rarely (Vrijenhoek, 1989). However, parthenogenetic species in 

Darevskia evolved multiple times in a reticulate pattern and different sexual lineages 

participated in the hybridization events that led to their origin. This had already been 

suggested from the limited evidence based on Cyt-b and proteins (Murphy et al., 2000) but 

is now placed in a robust spatiotemporal context by our multilocus analyses for those 

parthenogens that have D. raddei as the maternal species. 

 

Parthenogenetic species origin 

All parthenogenetic species analysed here are young in age (Figure 2.2.3). Despite this 

recent origin, D. unisexualis is distributed across a considerable range (Figure 2.2.1) and 

is rarely found in sympatry with its maternal species, D. raddei (Arakelyan et al., 2011). 

This is even more surprising considering that the suitable area of D. unisexualis predicted 

by the ecological niche modelling widely overlaps with that of D. raddei sensu lato. This 

niche overlap (Figure 2.2.6), together with the wide distribution of D. unisexualis despite its 

recent origin (Figures 2.2.1-2.2.2) and the obtained signals of population expansion (Table 

2.2.1), suggest this parthenogen may even outcompete its maternal species within its 

range. Evidence that parthenogenetic Darevskia can outcompete their sexual parental 

species has already been shown for the parthenogenetic D. dahli (Tarkhnishvili et al., 

2000). 

In this study, the mtDNA was used to analyse the maternal ancestry of the parthenogenetic 

species and nuclear markers to assess their maternal and paternal contributions. For both 

nuclear markers, as expected, all parthenogens presented two different alleles, one 

representing the maternal ancestry (shared with D. raddei) and the other representing the 

paternal contribution (shared or closer to D. portschinskii, D. rudis and D. valentini). The 

parthenogens analysed here are allocated in two different lineages in the mtDNA tree. 

Thus, two different D. raddei lineages were apparently involved in the hybridization events 

that led to the origin of these parthenogens. D. unisexualis and D. uzzelli belong to the 

same mtDNA clade as individuals identified as D. raddei “nairensis” (Figure 2.2.2: mtDNA 

lineage 2), and it is likely that this is the maternal lineage for both D. unisexualis and D. 

uzzelli. On the other hand, D. bendimahiensis shares the same mtDNA haplotype with 

individuals identified as D. raddei “vanensis” found in Turkey east of Lake Van and 
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adjacent Iran (Figure 2.2.2: mtDNA lineage 3), and therefore this lineage is the most likely 

one to have contributed in situ as the maternal parental for this parthenogen. 

Considering the maternal ancestry, two contributing maternal lineages for the three 

parthenogenetic species analysed are confirmed with the nuclear markers. D. unisexualis 

and D. uzzelli share the same MC1R haplotype with individuals from Mount Aragats. This 

haplotype was only found in homozygosity in individuals from Amberd Castle, and it is 

probable that this population reflects the original genetic maternal ancestry of both 

parthenogenetic species (D. unisexualis and D. uzzelli). The inferred maternal ancestry of 

D. bendimahiensis with nuclear markers is concordant with the mtDNA phylogenetic tree. 

D. valentini and D. portschinskii were used to allocate the paternal ancestry in the analysis 

of the nuclear markers. In the MC1R network, D. unisexualis shares its most common 

haplotype with D. bendimahiensis, while D. uzzelli shares its haplotype with individuals of 

D. valentini. This contrasts with the maternal ancestry where D. unisexualis and D. uzzelli 

share the same haplotype, and D. bendimahiensis presents a different maternal allele. 

Therefore, even though the maternal lineage was the same, two different paternal alleles 

are identified and, hence, at least two different hybridization events were responsible for 

the (independent) origin of D. unisexualis and D. uzzelli. It is noteworthy that contrary to 

what had been previously reported by Fu et al. (2000a), we did not find evidence of 

reciprocal hybridization in D. uzzelli. In their work, Fu and collaborators suggested the 

initial hybridization leading to the origin of D. uzzelli was most likely reciprocal, since they 

found mtDNA of both parental species in these parthenogens. However, all individuals 

analysed in this study showed the same combination of haplotypes both for mtDNA and for 

nuclear markers, so it is unlikely that a reciprocal hybridization is at the origin of D. uzzelli. 

Parthenogenetic reproduction can be performed via two ways: apomictic parthenogenesis 

or automictic parthenogenesis (Simon et al., 2003). While in the first the meiosis is 

suppressed and clonal offspring are produced under a mitosis-like cell division, the second 

retains meiosis (and recombination) and ploidy is restored by the duplication or fusion of 

the maternal gametes (Simon et al., 2003). Since all parthenogens analysed are 

heterozygous for the nuclear markers and considering the high number of individuals 

tested, apomictic parthenogenesis is here favoured. However, in some cases of automixis, 

the chromosomes are replicated prior to the normal meiosis, so diploidy and 

heterozygozity are restored in the egg (Simon et al., 2003). In such cases heterozygosity 

will only be lost in some parts of the genome and after some time. Thus, their consistent 
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heterozygosity can also be explained by their recent origin, and it would be interesting to 

perform a genome-wide analysis to clarify this question. 

According to the placement of D. unisexualis and D. uzzelli within the phylogeny of the D. 

raddei complex, we estimate that these parthenogens split from the closest D. raddei 

lineage around 170 kyr (291 – 75 kyr), very close to or even during the LIG (130 – 115 

kyr). Very likely, mild climate conditions may have facilitated population expansions of 

parental species increasing the probability of secondary contacts and opening the 

opportunity for the hybridization between the parental species. For D. bendimahiensis, the 

split with its closest D. raddei lineage (lineage 3) should have happened between 204 – 78 

k yrs ago. This time interval practically overlaps with the split between D. unisexualis + D. 

uzzelli with D. raddei lineage 2. This could suggest the hybridization mediating the origin of 

D. bendimahiensis was concurrent with the hybridization event which led to the D. 

unisexualis + D. uzzelli lineage. The split between D. uzzelli and D. unisexualis, on the 

other hand, appeared to have happened later while the LGM was taking place. Given they 

share the same mitochondrial lineage and maternal alleles and differ only in the paternal 

allele it is not clear whether D. uzzelli and D. unisexualis originated from two different 

hybridization events between D. raddei and D. valentini, or if one was first originated and 

then backcrossed with a D. valentini male giving origin to the other. Since only MC1R 

could differentiate different paternal lineages, nuclear markers across the genome need to 

be analysed in order to understand the complex reticulate evolution history of these 

parthenogens and the relationship between them. 

 

Phylogenetic relationships and historical range shifts 

Even though the maternal contributions for the parthenogenetic species studied here were 

already proposed (Fu et al., 2000b, 2000c), phylogenetic relationships between the 

parental species were obscure. Here, a phylogeographic analysis of D. raddei with mtDNA 

and nuclear markers is performed, and the intraspecific diversity compared to the possible 

biogeographic barriers, either current or past, within the range of this species complex. 

Currently, D. raddei sensu lato is distributed along the mountain ranges in the Central 

Caucasus. Given the interconnectivity of these mountain ranges and the prevalence of 

these species in mountain habitats, mountains are not expected to represent current 

barriers to dispersal, but instead act as bridges facilitating expansion. However, arid 

lowlands and possibly deep river beds may act as geographic barriers to dispersal for 
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these species. 

Under the current climatic conditions, no obvious strong barriers to dispersal are found 

within the occupied range with the possible exception of the Aras River. The Aras valley, 

the political border between Armenia, Azerbaijan, Iran and Turkey, has a temperate arid 

mountain climate and is likely to be a current barrier to dispersal between lineages 1, 2 

and 4 (in Armenia) and 3 (Turkey). This barrier may have caused the lineage formed by 

the individuals morphologically identified as D. raddei “vanensis” to be geographically 

isolated and to have evolved in allopatry. This group is monophyletic in the mtDNA tree 

and also harbours a distinct group of MC1R haplotypes. This indicates at least a certain 

degree of isolation, and provides some support for the subspecies D. raddei vanensis. In 

contrast, D. raddei “raddei” and D. raddei “nairensis” are found to be paraphyletic. Not only 

do they form part of the same mtDNA lineages but they also share haplotypes (both 

nuclear and mitochondrial). Therefore these two taxa lack phylogenetic support. Given the 

divergence time estimates (Figure 2.2.3), D. raddei divergence started no earlier than 1.5 

Myrs ago [1.53-0.0116]. Hence, the semi-isolated pattern found for the mtDNA lineages 

likely originated during the Pleistocenic ice-ages. 

To estimate if D. raddei and D. unisexualis show deviations from neutrality and signals of 

population expansion, diversity parameters were calculated. Both species showed 

significant R2 for all markers while Tajima's D was significantly negative only for ND4 (D. 

raddei and D. unisexualis) and Cyt-b  (D. unisexualis). Negative values of Tajima's D (and 

Fu's Fs) and small positive values of R2 are indicative of population growth (Aris-Brosou 

and Excoffier, 1996; Tajima, 1989). While Tajima's D uses information on mutation 

frequency, Fu’s Fs test relies on haplotype distribution and has been shown under 

simulation to be the more powerful when analysing small populations (Ramos-Onsins and 

Rozas, 2002). Given the high number of samples for each “population”, or in this case, 

species, this could explain why this test did not detect significant departures from neutrality 

while Tajima's D did. 

Considering the recent origin of the parthenogenetic species analysed here (D. 

unisexualis), a recent expansion of this species is to be expected. Currently, D. unisexualis 

has a large distribution area resulting from expansion since its origin. The mtDNA lineages 

with short branches and several closely related mtDNA haplotypes of D. raddei sensu lato 

are indicative of potentially recent expansions which could match the deviations from 

neutrality found. 
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Trends from the past to the present 

In the phylogenetic analysis of D. raddei sensu lato, we found very little geographical 

structure at both nuclear markers and sympatry of the mtDNA lineages. This suggests 

cyclical contact-isolation events, concordant with the complex biogeography of the 

Caucasus. During the Pleistocenic Glacial Periods, contrary to the current situation, the 

mountain ranges, (i.e. Geghama Mountains, a volcanic mountain range west to Lake 

Sevan spanning North to South and attaining 3567 m), may have acted as a barrier 

between the lineage from Northern Armenia and Georgia, and all the others. The mtDNA 

lineage 1 reaches this topographic barrier and is found in Northwest Geghama, while 

lineages 4, 5, 68 and 6 are found Southeast of this Mountain. A similar picture emerges for 

lineages 1 and 2. Mount Aragats, which currently represents a suitable habitat for these 

species, did not do so during the LGM. Therefore, lineage 2 may have been trapped on 

the western side of Aragats, and lineage 1 on the eastern side during this period. 

After the LGM temperatures started to increase and the mountain environments became 

again suitable for these lizards, with lineages that had been previously separated able to 

come into contact, as currently is the case for lineage 1 and lineage 4. This pattern of 

isolation can be observed in the projections of the D. raddei models for the LGM. Here, 

both scenarios (MIROC and CCSM) show there was a decrease of suitable habitat around 

the mountain tops (Aragats and Geghama) and a general increase of potential distribution 

area and a geographical shift of the suitable habitat to the Azerbaijan lowlands, when 

compared with the present distribution model (Figure 2.2.6). 

The cyclical ice ages and subsequent expansion-contraction of organisms in a habitat 

relatively small but with heterogeneous topography must have allowed for the secondary 

contact of sexual Darevskia lineages in incomplete stages of reproductive isolation 

(Vrijenhoek, 1989). This likely allowed repeated hybridization events in separate 

geographical areas that originated hybrids that could not cross-back with the parental 

groups (or species) but instead were able to reproduce parthenogenetically. 

Since its origin, there was a decrease of the potential habitat of D. unisexualis from the 

LGM to the present day, according to both scenarios (Figure 2.2.6). However, considering 

that this parthenogen is likely expanding, and hence, not in equilibrium with the 

environment, the predicted model and its consequent projections will be probably 

underestimations (Wiens et al., 2009). 

Given the present ecological model estimated in this study for D. raddei and D. 
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unisexualis, one may conclude that there was no appropriate habitat available for either of 

them across the whole region in the LIG projections. Since the origin of D. unisexualis was 

estimated to have happened after the LIG, this species simply would not have been 

present. On the other side, and given its present distribution, the lack of suitable habitat for 

D. raddei during the LIG may suggest this species may have suffered a recent niche shift 

or, alternatively, that the scale of the model was inappropriate to detect suitable habitat 

during this period. 

The models for the present cover a much larger area than the known distribution for both 

D. raddei and D. unisexualis. Ecological niche models are estimated based on a dataset of 

presence points collected and have an error rate associated with them. Additionally, given 

the limited dispersal abilities of these species, their absence from the potential habitat 

could be due to a separation by unsuitable habitat or an incomplete expansion process, or 

even because of competitive exclusion by other Darevskia species with similar ecological 

niches. 

 

 

CONCLUSION 

Given the scarcity and distribution of parthenogenetic species in the tree of life, the switch 

from sexual to parthenogenetic reproduction is expected to arise rarely and independently 

(Butlin, 2002). Most parthenogenetic forms appear to have originated recently, as shown 

by the lack of parthenogenetic deep phylogenetic branches. 

Most sexual-parthenogenetic complexes show a polyphyletic origin of parthenogenetic 

lineages (Crease et al., 1989; Grismer et al., 2014; Simon et al., 2003), where 

parthenogenesis has evolved more than once. Our results clearly support a polyphyletic 

origin of parthenogenesis in Darevskia lizards as well, dated back to the Pleistocene, with 

different parental lineages contributing to the hybridization events occurring several times 

in different geographical regions. The origin of the polyphyletic parthenogenetic Darevskia 

has to be interpreted as resulting from repeated secondary contacts between groups that 

did not developed complete reproductive isolation. The distribution of the different 

Darevskia groups (or species) likely underwent repeated contraction-expansion events in 

response to the Pleistocenic climate oscillations, colder periods interspersed with warmer 

interglacials, promoting secondary contacts. Thus, some lineages were divergent enough 

to produce hybrids with disrupted meiosis, yet not so divergent as to compromise hybrid 
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viability and fertility (Vrijenhoek, 1989). 

We also show that even though sexual species and parthenogens overlap in their 

ecological niche, D. unisexualis is not found in sympatry with D. raddei. Since D. 

unisexualis derived from D. raddei and is therefore younger, this suggests that the first is 

outcompeting the second, as has been shown for other parthenogenetic Darevskia 

(Tarkhnishvili et al., 2010). Parthenogenetic species have some advantages over sexual 

species; they avoid the two-fold cost of males (Maynard Smith, 1978), having twice the 

reproductive output if other factors are excluded, they are not affected by the associated 

costs of sex as male-male competition, search and choice of mates (Galoyan, 2013) and 

in some cases the mechanics of meiosis (Lehtonen et al., 2012). In the short term, this 

may provide an advantage when in sympatry with sexual species (Burke et al., 2015; 

Tarkhnishvili et al., 2000). On the other hand, sexual reproduction is known as a driver of 

evolution and speciation. As such, parthenogenetic species, which lack the recombination 

benefits of sexual reproduction, are expected to be at disadvantage when in competition 

with sexual species in changing environments. The different stages of parthenogenetic 

species can help to understand the effect of asexuality (or the absence of sex) on the 

genome. Given the different ages and the polyphyletic and hybrid origin of their 

parthenogenetic species, Darevskia lizards provide a promising model for the study of the 

evolution of asexuality and why sexual reproduction is so widespread in the tree of life. 
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ABSTRACT 

Obligate parthenogenesis is found in only 0.1% of vertebrate species and thought to be 

relatively short lived and typically with a hybrid origin. However, neither the evolutionary 

persistence of asexuality in vertebrates, nor the conditions that allow the generation of new 

parthenogenetic lineages are currently well understood. It has been proposed that in 

vertebrates, parthenogenetic lineages arise from the hybridization between two divergent 

taxa, within a specific phylogenetic distance. Moreover, parthenogenetic species often 

maintain a certain level of hybridization with their closest sexual relatives, potentially 

generating new polyploid hybrid lineages. Here we use a set of microsatellite and mtDNA 

markers to examine the role of hybridization in the origin of vertebrate parthenogens, the 

extent of gene flow with sexual relatives and the relationship between hybridization, 

asexuality and polyploidy, in the context of the main theories regarding the origins of 

asexuality. The model used, Darevskia, is a group of rock lizards from the Caucasus that 

includes at least seven hybrid parthenogenetic species. We focused on the three most 

widespread parthenogens, and their polyploid backcross hybrids. Our results show that the 

recurrent backcrossing between sexual and parthenogenetic Darevskia has not led to 

gene flow, reinforcing the idea that parthenogenesis in vertebrates acts as a reproductive 
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barrier. We also find parthenogens result from the hybridization of lineage-specific species, 

regardless of their phylogenetic distance, and that these hybridization events should have 

happened multiple times in the past, but are not occurring in the present. 

 

INTRODUCTION 

Asexual reproduction is distributed across all major clades of the tree of life. Exclusively 

asexual species are expected to be short lived (Lehtonen and Kokko, 2014), and typically 

have a twiggy phylogenetic distribution (Bell, 1982), while originating from sexual 

ancestors (Avise, 2008). Many studies have focused on the evolution of sex, trying to 

understand how such a costly reproductive mode is so successful in nature (Maynard 

Smith, 1978; Otto, 2009; Weismann, 1889), and this paradox of sex has been tentatively 

explained by the superior potential for adaptation to changing environments of sexual 

species compared to asexual ones (Luijckx et al., 2017; McDonald et al., 2016). Given the 

putative young age of (most) asexual species, we can deduce that sexual species have 

the potential to constantly give rise to new asexual lineages, but the predicted balance 

between generation and extinction of asexual lineages is not frequently empirically 

studied. 

The maintenance of asexual species (which constitute clusters of lineages of similar 

genotype) depends on the balance between the generation of asexual lineages from 

sexual progenitors and their loss, either through accumulation of deleterious mutations 

(Haigh, 1978), failure to adapt (Lively, 2010) or even neutral processes (Janko, 2014; 

Schwander and Crespi, 2009). The proportion of parthenogenetic taxa is higher in 

invertebrates than in vertebrates (Beukeboom and Vrijenhoek, 1998), generally resulting 

from spontaneous thelytokous parthenogenesis (Bullini, 1994). On the other hand, 

parthenogenetic vertebrates are less common (Beukeboom and Vrijenhoek, 1998), 

generally originated through hybridization (but see (Noonan et al., 2013)), are obligate, 

mostly recent (Avise, 2008; Beukeboom and Vrijenhoek, 1998) and often include 

polyploids (Bullini, 1994). The hybridization events that originate them are generally 

multiple, as has already been described in the whiptail lizards Aspidoscelis sp. (Reeder et 

al., 2002), the gecko Lepidodactylus lugubris (Trifonov et al., 2015) and the clonal hybrid 

fish Cobitis elongatoides-taenia (Choleva et al., 2012). 

A hybrid origin of asexuality has been reported recurrently in several groups, including 

plants (Beck et al., 2011), fish (where hybridization may lead to gynogenesis and 
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polyploidy) (Choleva et al., 2012), and lizards (Lutes et al., 2011). Frequently, these 

sexual-asexual complexes are better described as a network of species that recurrently 

hybridize, possibly allowing for gene flow between asexual and sexual species (Menken et 

al., 1995), or even the origin of new parthenogenetic species (Taylor et al., 2015). Cases 

where gene flow occurs between proposed evolutionary units or where there is a recurrent 

origin of new asexual lineages from sexual parents question the current definition and 

applicability of some species concepts (Birky and Barraclough, 2009; Coyne et al., 1988). 

Two general hypotheses have been put forward regarding the conditions of inter-species 

hybridization on the origin of parthenogenetic vertebrates: the Balance Hypothesis (Moritz 

et al., 1989) and the Phylogenetic Constraint Hypothesis (Darevsky, 1967). Although not 

mutually exclusive (Avise, 2008), they describe two different situations. The Balance 

Hypothesis suggests that parthenogenetic vertebrates arise by the hybridization of two 

sexual species divergent enough to disrupt meiosis in the hybrids, yet not so divergent as 

to seriously compromise hybrid viability or (parthenogenetic) fertility (Kearney et al., 2009). 

The Phylogenetic Constraint Hypothesis suggests that asexual lineages originate by the 

hybridization between sexual species that possess lineage-dependent genetic peculiarities 

that allow them to interbreed and produce viable, hybrids capable of reproducing 

parthenogenetically. Since these peculiarities may be specific to the female parent, the 

hybridization events are expected to be directional, with species from different 

phylogenetic clades contributing either the maternal or paternal ancestry (Avise, 2008). 

The model system used in this study, Darevskia lizards, has a hybridization-rich 

evolutionary history, and thus is a very good model to study the correlation between 

hybridization and parthenogenesis. All of its asexual lineages are reported to be of hybrid 

origin (Freitas et al., 2016; Murphy, 2000), there is evidence for recurring mating between 

asexual females and sexual males when in sympatry generating polyploid backcrosses 

(Danielyan et al., 2008; Darevsky and Danielyan, 1968), and for frequent interspecific 

hybridization between sexual species (Darevsky, 1967). Given the restriction to a few 

sexual species as maternal and paternal ancestors of parthenogenetic Darevskia, this 

model fulfils the predictions of the Phylogenetic Constraint Hypothesis. However, current 

evidence for the origin of the different parthenogenetic species and the identification of the 

polyploids is based only on a reduced set of markers, and requires confirmation using 

additional genetic markers. 

Initial estimates of the phylogenetic relationships of sexual species (Murphy, 2000; Murphy 
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et al., 1996) suggest Darevskia

rudis (Fu et al., 1997). Considering the asexual species and their putative parents (Figure 

3.1), D. armeniaca is thought to have resulted from hybridization between 

valentini (Fu et al., 2000b), while both 

resulted from hybridization between 

maternal species was always 

paternal was D. portschinskii, D. rudis 

parthenogenetic Darevskia females and males of their sexual parent species has been 

reported previously based mainly on morphology and karyology of a limited set of 

individuals (Danielyan et al., 2008). Reported triploid hybrids (3n = 57) are eith

male with unknown fertility and different levels of reproductive organ development 

(Danielyan et al., 2008). Since eggs of different ploidy may develop in the same oviduct, it 

is not clear if hybrids between sexual males and asexual females ar

can also be diploid. 

 

 

                                          

Figure 3.1 - Relationships between sexual species 

raddei (rad), with their hybrid parthenogenetic descendant lineages, 

and D. uzzelli (uzz). 

Darevskia is divided into three main clades, caucasica, saxicola and 

al., 1997). Considering the asexual species and their putative parents (Figure 

is thought to have resulted from hybridization between 

, while both D. unisexualis and D. uzzelli 

resulted from hybridization between D. raddei and D. valentini (Fu et al., 2000a)

maternal species was always D. raddei or D. mixta (from caucasica clade) and the 

D. portschinskii, D. rudis or D. valentini (rudis clade). Hybridization

females and males of their sexual parent species has been 

reported previously based mainly on morphology and karyology of a limited set of 

individuals (Danielyan et al., 2008). Reported triploid hybrids (3n = 57) are eith

male with unknown fertility and different levels of reproductive organ development 

(Danielyan et al., 2008). Since eggs of different ploidy may develop in the same oviduct, it 

is not clear if hybrids between sexual males and asexual females are always polyploid or 
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is divided into three main clades, caucasica, saxicola and 

al., 1997). Considering the asexual species and their putative parents (Figure 

is thought to have resulted from hybridization between D. mixta and D. 

 are thought to have 

(Fu et al., 2000a). The 

(from caucasica clade) and the 

clade). Hybridization between 

females and males of their sexual parent species has been 

reported previously based mainly on morphology and karyology of a limited set of 

individuals (Danielyan et al., 2008). Reported triploid hybrids (3n = 57) are either female or 

male with unknown fertility and different levels of reproductive organ development 

(Danielyan et al., 2008). Since eggs of different ploidy may develop in the same oviduct, it 

e always polyploid or 

(val), D. rudis (rud) and D. 

(arm), D. unisexualis (uni) 
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The goal of this study was to address three questions related to the origin of 

parthenogenesis in vertebrates using Darevskia as a model: (i) Are all sexual parentals 

restricted to specific phylogenetic clades and/or do they share the same genetic distance 

between parents; (ii) Do parthenogenetic lineages from the same parental taxa originate 

repeatedly through time or is there a single temporal event in each case; and (iii) Can 

parthenogens still backcross with their sexual parentals and generate fertile offspring? 

To address these issues, we used microsatellite markers and genotyped individuals from a 

wide range of localities from Armenia, Turkey, Georgia and Iran. We reassess the 

inferences of parentage of three parthenogenetic Darevskia: D. unisexualis, D. uzzelli and 

D. armeniaca, comparing matrilineal (mtDNA) and nuclear (maternal + paternal) lineages 

of the putative parentals and parthenogens. Current sympatric localities were examined 

and the evolutionary significance of hybrids is discussed. With this work, we test whether 

the Phylogenetic Constraint Hypothesis holds for this group as proposed previously 

(Darevsky, 1967), either alone or in addition to the Balance Hypothesis. 

 

MATERIAL AND METHODS 

Sample collection 

For this study, 378 Darevskia individuals were analysed (Table S3.1). These samples were 

collected during field expeditions between 2007 and 2011 in Armenia, Turkey, Georgia and 

Iran. Seven species were included in the analyses, four sexual, putative-parental species 

(D. mixta, D. raddei, D. valentini and D. rudis) and three parthenogenetic species (D. 

armeniaca, D. unisexualis and D. uzzelli). Individuals were provisionally identified in the 

field based on overall morphology, size (for putative backcross hybrids), colour pattern and 

scutellation (Arakelyan and Danielyan, 2011). 

Four sympatric localities where sexual and parthenogenetic species coexist were sampled. 

In the first, Kuchak, previous studies had already reported backcross individuals between 

parthenogens and sexual species (Danielyan et al., 2008). There, three species are found: 

two parthenogenetic (D. armeniaca and D. unisexualis) and one sexual (D. valentini), the 

putative paternal species for both parthenogens found here. Backcrossed individuals, D. 

armeniaca x D. valentini and D. unisexualis x D. valentini, are generally identified based on 

morphology, but polyploidy of some individuals has already been confirmed by karyology, 

identifying both triploids and tetraploids (Danielyan et al., 2008). In the second locality, 
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Sotk, the sexual D. valentini and the parthenogen D. armeniaca are found in sympatry, and 

individuals morphologically similar to D. armeniaca x D. valentini backcrosses have also 

been reported based on large body size and intermediate colouration (Arakelyan, M. pers. 

comm.). In the remaining two localities, Lchap and Lchashen, the sexual D. raddei is found 

together with the parthenogen D. unisexualis (Lchap) or with the sexual D. valentini 

(Lchashen). D. raddei and D. valentini are the putative parental species of the hybrid 

parthenogen D. unisexualis. 

 

Genotyping 

Genomic DNA was extracted from 30 mg of tail-tip tissue following standard high-salt 

protocols (Sambrook and Russell, 2001). From a total of 74 tested microsatellite loci that 

had been developed previously for other lacertid lizards, 12 polymorphic markers were 

selected on the basis of reliable amplification and heterozygosity: cross-species markers 

D119, C118, C113 (Remón et al., 2008), Pb55 (Pinho et al., 2004), Lv-4-72 (Boudjemadi et 

al., 1999), P011, P054 (Wellenreuther et al., 2009), Ph39, Ph124, Ph128, Ph170 (NCBI 

accession numbers: KC869962, KC869964, KC869956, KC869961) and Du323, Du47, 

Du418 (Korchagin et al., 2007) (for more information see Table S3.2). 

PCR amplifications were carried out using the Multiplex PCR Kit (QIAGEN) following the 

manufacturer’s instructions in a final 10-μl volume, including a negative control. Amplicons 

were separated by size on an ABI3130xl Genetic Analyser. Allele sizes were scored 

against the GeneScan500 LIZ Size Standard using GENEMAPPER 4.0 (Applied 

Biosystems) and manually checked twice, independently. To control against allelic dropout, 

which is expected to be higher in polyploids due to the greater number of amplicons in a 

given PCR reaction, 35-45% of genotypes per marker were repeated, including all the 

putative polyploids, in independent PCR reactions (Table S3.2). For the repeated samples, 

loci were genotyped individually to confirm that the third (or fourth) allele scored was not 

an artefact of interaction between the different primer pairs in the multiplex.  

To search for the presence of null alleles, genotyping errors and allelic dropout, we used 

Microchecker 2.2.3 (Van Oosterhout et al., 2004). These tests were performed only on D. 

valentini (excluding individuals from sympatric localities) because it was the species with 

most individuals, and the assumptions of this analysis are not appropriate for 

parthenogenetic species or for mixed species samples. Tests for Hardy–Weinberg 

equilibrium (HWE), linkage disequilibrium (LD) and standard genetic diversity measures, 
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observed (Ho) and expected (He) heterozygosities, allele frequencies and allelic richness 

were obtained using Cervus/Fstat v2.9.3.2 (Goudet, 1995). The critical probability for each 

test was adjusted with a sequential Bonferroni correction (Rice, 1989). Population genetic 

differentiation was analysed using Fisher's exact test and by estimating FST (Weir and 

Cockerham, 1984) in Fstat. 

 

Sympatric localities: Ploidy determination and cluster analyses 

Sympatric localities were analysed in pairs on the basis of the ancestry of the species 

found, grouping localities with similar arrangement of species. Individuals from Kuchak 

(with D. valentini, D. armeniaca and D. unisexualis) and Sotk (D. valentini and D. 

armeniaca) were analysed together, while those from Lchap (D. raddei and D. unisexualis) 

and Lchashen (D.raddei and D. valentini) were examined in a separate analysis. 

Ploidy level was identified as the maximum number of alleles found among the markers 

used (ploidy function in Polysat; (Clark and Jasieniuk, 2011)). All individuals characterized 

as triploids had at least two markers with three different alleles. Given the multiple ploidy 

levels in the sympatric localities (see Results), traditional diversity measures and 

population genetic analyses could not be applied to these datasets. Instead, we calculated 

inter-individual genetic distances using the Bruvo method (Bruvo et al., 2004) implemented 

in Polysat (detailed information in SI). 

 

Cluster analyses 

In analyses restricted to diploid individuals we adopted a hierarchical approach, following 

the cluster analysis of the full diploid dataset by running a discriminant analysis of principal 

components (DAPC) using the ADEGENET package (Jombart et al., 2010) on subsets of 

the data, each addressing specific questions. To determine the number of clusters (K) in 

the total sexual species dataset, DAPC was performed and the optimum number of 

clusters was chosen with the find.clusters option, by comparing the different clustering 

solutions using a Bayesian Information Criterion (BIC). Individuals were then assigned to 

clusters and DAPC was used to ordinate individuals according to axes that maximise 

cluster distances relative to variation within clusters. For similar BIC values, the optimal K 

value was selected based on the concordance between the clusters and described taxa. In 

order to distinguish individuals from sexual and parthenogenetic species and to visualise 

their relationships, another DAPC was performed on the dataset of all diploid individuals, 
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including the diploids from the sympatric localities. The optimal K value was chosen as 

previously described. The pairwise FST values for the species (and populations) in this 

dataset were calculated with pairwise.fst in the package hierfstat, version 0.04-22 (Goudet, 

1995) and used for neighbor-joining tree construction. To avoid effects on FST due to small 

sample size, the pairwise FST was estimated only when four or more individuals were 

available per population (or species). Finally, to determine the number of clonal lineages 

and hybrid origins, we conducted assignments using DAPC membership probability values 

for each parthenogenetic species alone. Isolation by distance analyses (IBD) were 

performed on the D. raddei and D. valentini sexual taxa, which were sampled over a wide 

area, using the ADEGENET package in R (Jombart et al., 2010)(Jombart, Devillard, and 

Balloux 2010) (Figures S3.3 and S3.4). 

Population structure and the ancestry of the parthenogens were further investigated using 

the Bayesian multilocus clustering analysis implemented in STRUCTURE v2.3.4 (Hubisz 

et al., 2009; Pritchard et al., 2000) (more details on the runs can be found in the SI). The 

sexual species were used as “learning samples” (PopFlag = 1) (Murgia et al., 2006) to 

define the cluster membership when diploid parthenogenetic individuals were included in 

the dataset. Given their hybrid origin, parthenogens are expected to have half of their 

ancestry from the maternal species and the other half from the paternal species, with little 

variation given their clonal reproduction. Using the same number of clusters determined by 

the sexual dataset in DAPC, the ancestry of the asexual individuals from sympatric and 

allopatric localities (and two diploid individuals of uncertain status) was determined 

(PopFlag = 0) (Pritchard et al., 2000). Some level of misclassification was allowed with the 

MIGRPRIOR set at 0.01. 

 

Phylogenetic inference 

For phylogenetic analyses one partial mitochondrial gene, NADH dehydrogenase-4 (ND4), 

was selected. Sequenced individuals are identified in Table S1 and sequences from 

(Freitas et al., 2016) were added to the analyses. Primers and PCR protocols are 

described elsewhere (Freitas et al., 2016). Chromatograms were edited by eye in 

ChromasPro v1.7.4 (Technelysium) and sequence alignment was performed in MAFFT v6 

(Katoh and Standley, 2013) using the automatic settings for the algorithm of choice. The 

selection of the DNA substitution model and MrBayes run parameters were described 

elsewhere (Freitas et al., 2016). 
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RESULTS 

Analysis of the complete dataset 

All analyses were performed with 12 markers in total, nine of which were discriminant for 

the polyploids. The remaining three markers never presented more than two alleles in any 

of the polyploids, despite their high diversity and heterozygosity in the parthenogenetic 

females. Low levels of uncertainty were found for the 12 selected markers (less than 1% 

disagreement between repeats) and uncertain genotypes were eliminated from further 

analyses. Polyploid individuals were found only in three of the sympatric localities (several 

individuals in Kuchak and Sotk, one in Lchaschen but none in Lchap) and classified as 

hybrids between parthenogens and sexuals (hereafter ‘PS hybrids’). A few individuals 

presented three alleles for only one marker (pink coloured in Table S3.1: four D. 

armeniaca, one D. mixta, two D. raddei, two D. unisexualis and four D. uzzelli). These 

individuals were kept in all downstream analyses, but the specific markers were 

considered genotyping errors and assigned as missing data. 

 

Sexual and parthenogenetic species analyses 

Ploidy determination and an exploratory DAPC analysis on the diploid individuals identified 

major clusters corresponding to the recognized species, but also indicated some putative 

misidentification (three D. valentini females had been morphologically identified as hybrids, 

one PS hybrid D. unisexualis x D. valentini had been identified as D. valentini, and one D. 

armeniaca identified as D. valentini male, which was an obvious labelling error). These 

individuals were kept in the analysis and reclassified according to their genetic 

determination, along with the diploids (from sympatric localities) that had been identified as 

PS hybrids. After re-classification, revised DAPC analyses were performed on the sexual 

data set and on the full diploid dataset including both the sexual and the asexual species 

(Figure S3.1). 

After BIC comparisons, Delta K and the rate of change of the log probability of the data 

between successive K values, K = 7 was selected for the sexual species dataset. This 

level of clustering resulted in consistent groups both in the DAPC and STRUCTURE 

analyses, and it separated the described species but also distinguished groups within 

species that may be relevant to determining the parentage of parthenogens. When adding 

the three parthenogenetic species, individuals were consistently divided into four clusters 



FCUP 
Why sex? Darevskia answers. 

101 
 

in DAPC (two clusters for D. armeniaca), so a K value of 11 was used when analysing the 

total diploid dataset, sexual and parthenogenetic species together. 

FST distances (Figure S3.2; Table 3.1) grouped diploid species into three main clusters, the 

D. raddei group (D. raddei, D. uzzelli and D. unisexualis), the D. valentini group (D. 

valentini, D. mixta-2) and the D. rudis group (D. rudis, D. mixta and D. armeniaca). Note 

that the two groups within D. mixta fell into different clusters (FST = 0.25) whereas other 

within-species groups were much less distinct. 

 

 

Table 3.1 - Pairwise FST distances calculated for all clusters of the diploid sexual species. 

 

Asexual parentage inferences 

Parthenogens (D. unisexualis, D. uzzelli and D. armeniaca) had higher observed 

heterozygosity than the expected heterozygosity, as predicted due to their hybrid origin 

(Figure 3.2). All parthenogenetic species had private alleles not present in the sexual taxa, 

and sometimes in high frequencies (e.g. allele 258 represents 53% of the diversity of C113 

marker in D. uzzelli; Table S3.3). 

 

 

 

 

D. mixta2 D. mixta D. raddei – 1 D. raddei – 2 D. valentini – 1 D. valentini – 2 D. rudis
D. mixta2 0.00 0.25 0.11 0.19 0.08 0.16 0.14
D. mixta 0.25 0.00 0.14 0.23 0.14 0.23 0.15
D. raddei – 1 0.11 0.14 0.00 0.07 0.19 0.15 0.13
D. raddei – 2 0.19 0.23 0.07 0.00 0.25 0.23 0.20
D. valentini – 1 0.08 0.14 0.19 0.25 0.00 0.06 0.12
D. valentini – 2 0.16 0.23 0.15 0.23 0.06 0.00 0.13
D. rudis 0.14 0.15 0.13 0.20 0.12 0.13 0.00
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Figure 3.2 - Expected and observed heterozigosity for all diploid species. Codes are as follows: rud – D. 

rudis, mix2 – D. mixta2, mix – D. mixta, val – D. valentini1, val2 – D. valentini2, rad – D. raddei1, rad2 – D. 

raddei2, arm – D. armeniaca, uni – D. unisexualis, uzz – D. uzzelli. Parthenogens are arm, uni and uzz. 

 

 

STRUCTURE analysis trained on the sexual species clusters (K = 7) and with the 

parthenogenetic species assigned as admixed, clearly shows a shared ancestry for each 

of the parthenogens (Figure 3.3). D. armeniaca shared half of its genomic composition 

with D. mixta (specifically D. mixta-1) but the other half was not exclusively from D. 

valentini as expected, but rather from both D. valentini and D. rudis (predominantly from 

one cluster in each case). Similarly, D. uzzelli shared half of its ancestry with D. raddei 

(both clusters) and the other half with a mix of backgrounds rather than D. valentini alone. 

D. unisexualis ancestry also shared half of its genes with D. raddei (both clusters but more 

strongly from cluster 2) and the other half from a mix of sources, similar but not identical to 

the composition of D. uzzelli. Interestingly, the parthenogens presented a clear 50% 

contribution from the putative maternal species, causing the parthenogenetic species to 

group with their maternal parents in the neighbor-joining tree (Figure S3.2). 
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Figure 3.3 - Bayesian clustering results for the sexual (

asexual (D. armeniaca, D. unisexualis 

D. raddei and D. valentini were divided into two groups as in Table 1. 

mixta – 2. 

 

 

Bayesian inference on the mtDNA ma

parthenogenetic hybrids with their sexual ancestors (Figure 3.4). The parthenogens 

analysed here coalesced to one single lineage per maternal species, 

uzzelli descended from D. raddei

previous studies have shown that several lineages within 

origins when other parthenogens were included (Freitas et al., 2016).

 

 

 

Bayesian clustering results for the sexual (D. raddei, D. mixta, D. valentini

D. armeniaca, D. unisexualis and D. uzzelli) species for K =7  and with set populations parameter. 

were divided into two groups as in Table 1. D. mixta is also distinguished from 

Bayesian inference on the mtDNA marker shows matrilineal relationships of the 

parthenogenetic hybrids with their sexual ancestors (Figure 3.4). The parthenogens 

analysed here coalesced to one single lineage per maternal species, D. unisexualis

D. raddei, and D. armeniaca from D. mixta

previous studies have shown that several lineages within D. raddei contributed to asexual 

origins when other parthenogens were included (Freitas et al., 2016). 
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D. raddei, D. mixta, D. valentini and D. rudis) and 

=7  and with set populations parameter. 

is also distinguished from D. 

rker shows matrilineal relationships of the 

parthenogenetic hybrids with their sexual ancestors (Figure 3.4). The parthenogens 

D. unisexualis and D. 

D. mixta-1, even though 

contributed to asexual 
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Figure 3.4 – Bayesian inference of the phylogenetic relationships among 

sequences. Sexual species names are in black, parthenogenetic species in colour. Black dot whenever 

posterior probability is one. 

 

 

Further DAPC analyses were performed to assess the clonal composition of the 

parthenogenetic species (Figure 3.5). 

together since they share mtDNA. When plotting the densities of individuals on a single 

discriminant function, a parthenogenetic species with a single origin is expected to display 

a unimodal distribution whose variance increases with lineage age (and may become 

fragmented due to extinction of lineages). On the other hand, more than one origin would 

generate a multimodal distribution dependent on sampling of genotypes from the parental 

populations. D. armeniaca was the species with the largest interval of discriminant factor 

(DF) scores among the three parthenogens, consistent with the two groups in the previous 

analysis. Its distribution was bimodal, with one peak markedly wider than the other. 

uzzelli presented one peak only, clearly distinct from 

Bayesian inference of the phylogenetic relationships among Darevskia sp

sequences. Sexual species names are in black, parthenogenetic species in colour. Black dot whenever 

yses were performed to assess the clonal composition of the 

parthenogenetic species (Figure 3.5). D. unisexualis and D. uzzelli

together since they share mtDNA. When plotting the densities of individuals on a single 

parthenogenetic species with a single origin is expected to display 

a unimodal distribution whose variance increases with lineage age (and may become 

fragmented due to extinction of lineages). On the other hand, more than one origin would 

modal distribution dependent on sampling of genotypes from the parental 

was the species with the largest interval of discriminant factor 

(DF) scores among the three parthenogens, consistent with the two groups in the previous 

ysis. Its distribution was bimodal, with one peak markedly wider than the other. 

presented one peak only, clearly distinct from D. unisexualis
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Darevskia sp. based on ND4 partial 

sequences. Sexual species names are in black, parthenogenetic species in colour. Black dot whenever 

yses were performed to assess the clonal composition of the 

D. uzzelli were considered 

together since they share mtDNA. When plotting the densities of individuals on a single 

parthenogenetic species with a single origin is expected to display 

a unimodal distribution whose variance increases with lineage age (and may become 

fragmented due to extinction of lineages). On the other hand, more than one origin would 

modal distribution dependent on sampling of genotypes from the parental 

was the species with the largest interval of discriminant factor 

(DF) scores among the three parthenogens, consistent with the two groups in the previous 

ysis. Its distribution was bimodal, with one peak markedly wider than the other. D. 

D. unisexualis, smaller peaks 



FCUP 
Why sex? Darevskia answers. 

 

corresponding to two samples containing a high proportion of missing data. Finally, 

unisexualis also presented two peaks, although less separated than those of 

armeniaca. 

 

 

 

 

 

 

Figure 3.5 – Distribution of the Discriminant Factor (DF) values (from DAPC) calculated for each 

parthenogenetic species. 

 

 

Sympatric localities 

Individuals found in the sympatric localities were analysed for their ploidy and parentage, 

testing the outcomes of the hybridization between parthenogenetic females and sexual 

males. Polyploid individuals were found in the sympatric localities Kuchak and Sotk, and 

one in Lchap. In Kuchak, individuals were collected randomly, avoiding bias towards 

putative PS hybrids. Following ploidy genetic assignment, 17% (27/160) of the Kuchak 

individuals were polyploids, 3% (5/160) 

unisexualis x D. valentini. 

parthenogenetic D. unisexualis

tetraploid was found in Kuchak and another in Sotk, both PS hybrids

valentini (IDs 12176 and 9910, respectively: Table S3.1). In Sotk, 11 individuals were 

armeniaca x D. valentini triploids and five 

In the PCoA analysis for Kuchak and Sotk (Figure 3.6a), a total of 277 individuals were 

included: 160 from Kuchak and 25 from Sotk, the remainder from the general distribution 

range. Only D. valentini and D. armeniaca x D. valentini

where no individual morphologically identified as 

formed a different cluster from each of the two parthenogens, 

corresponding to two samples containing a high proportion of missing data. Finally, 

also presented two peaks, although less separated than those of 

Distribution of the Discriminant Factor (DF) values (from DAPC) calculated for each 

found in the sympatric localities were analysed for their ploidy and parentage, 

testing the outcomes of the hybridization between parthenogenetic females and sexual 

males. Polyploid individuals were found in the sympatric localities Kuchak and Sotk, and 

e in Lchap. In Kuchak, individuals were collected randomly, avoiding bias towards 

putative PS hybrids. Following ploidy genetic assignment, 17% (27/160) of the Kuchak 

individuals were polyploids, 3% (5/160) D. armeniaca x D. valentini and 14% (22/160) 

 Diploid individuals from Kuchak corresponded to the 

D. unisexualis and D. armeniaca and the sexual 

tetraploid was found in Kuchak and another in Sotk, both PS hybrids

(IDs 12176 and 9910, respectively: Table S3.1). In Sotk, 11 individuals were 

triploids and five D. valentini sexual diploids. 

In the PCoA analysis for Kuchak and Sotk (Figure 3.6a), a total of 277 individuals were 

included: 160 from Kuchak and 25 from Sotk, the remainder from the general distribution 

D. armeniaca x D. valentini hybrids were available 

where no individual morphologically identified as D. armeniaca was sampled. 

formed a different cluster from each of the two parthenogens, D. armeniaca

105 

corresponding to two samples containing a high proportion of missing data. Finally, D. 

also presented two peaks, although less separated than those of D. 

Distribution of the Discriminant Factor (DF) values (from DAPC) calculated for each 

found in the sympatric localities were analysed for their ploidy and parentage, 

testing the outcomes of the hybridization between parthenogenetic females and sexual 

males. Polyploid individuals were found in the sympatric localities Kuchak and Sotk, and 

e in Lchap. In Kuchak, individuals were collected randomly, avoiding bias towards 

putative PS hybrids. Following ploidy genetic assignment, 17% (27/160) of the Kuchak 

and 14% (22/160) D. 

Diploid individuals from Kuchak corresponded to the 

and the sexual D. valentini. One 

tetraploid was found in Kuchak and another in Sotk, both PS hybrids D. armeniaca x D. 

(IDs 12176 and 9910, respectively: Table S3.1). In Sotk, 11 individuals were D. 

In the PCoA analysis for Kuchak and Sotk (Figure 3.6a), a total of 277 individuals were 

included: 160 from Kuchak and 25 from Sotk, the remainder from the general distribution 

hybrids were available from Sotk, 

was sampled. D. valentini 

D. armeniaca and D. 
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unisexualis, and the three clusters were approximately equidistant. Diploi

Kuchak (D. valentini, D. armeniaca

overlapped with the general distribution of the same species. The spread of the total 

variation held by the sexual species was greater than for the par

Triploid D. armeniaca x D. valentini

between their proposed maternal (the parthenogen 

(the sexual D. valentini). As expected, these clusters were closer to the parthenogenetic 

parent, which contributed two out of three alleles. Triploid putative 

valentini PS hybrids from Kuchak behaved similarly, clustering between their proposed 

maternal (the parthenogen D. unisexualis

Lynch distances showed a similar arrangement of clusters and distances between species 

and hybrids (data not shown). Both tetraploid individuals fell among the remaining PS 

hybrids of the same cross. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, and the three clusters were approximately equidistant. Diploi

D. armeniaca and D. unisexualis) and Sotk (

overlapped with the general distribution of the same species. The spread of the total 

variation held by the sexual species was greater than for the parthenogens, as expected.

D. armeniaca x D. valentini PS hybrids from Kuchak and Sotk generally fell 

between their proposed maternal (the parthenogen D. armeniaca) and paternal species 

). As expected, these clusters were closer to the parthenogenetic 

parent, which contributed two out of three alleles. Triploid putative 

PS hybrids from Kuchak behaved similarly, clustering between their proposed 

D. unisexualis) and paternal species (the sexual 

Lynch distances showed a similar arrangement of clusters and distances between species 

and hybrids (data not shown). Both tetraploid individuals fell among the remaining PS 
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, and the three clusters were approximately equidistant. Diploid individuals from 

) and Sotk (D. valentini) mostly 

overlapped with the general distribution of the same species. The spread of the total 

thenogens, as expected. 

PS hybrids from Kuchak and Sotk generally fell 

) and paternal species 

). As expected, these clusters were closer to the parthenogenetic 

parent, which contributed two out of three alleles. Triploid putative D. unisexualis x D. 

PS hybrids from Kuchak behaved similarly, clustering between their proposed 

) and paternal species (the sexual D. valentini). 

Lynch distances showed a similar arrangement of clusters and distances between species 

and hybrids (data not shown). Both tetraploid individuals fell among the remaining PS 
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 Figure 3.6 - (previous page) Principal Coordinate analysis of the Bruvo distances between the individuals 

from the sympatric localities including polyploid hybrids. Polyploid hybrids are identified as triangles and 

diploids as full circles. In this analysis, diploid individuals from non

convex hulls, one for each species: 

and Kuchak are in panel A, and Lcha

 

 

Figure 3.7 – Bruvo pairwise distances among each of the parthenogenetic species (all localities included) 

and among each of the polyploid backcrosses types.

 

 

Principal Coordinate analysis of the Bruvo distances between the individuals 

from the sympatric localities including polyploid hybrids. Polyploid hybrids are identified as triangles and 

ids as full circles. In this analysis, diploid individuals from non-sympatric localities are represented in the 

convex hulls, one for each species: D. armeniaca, D. unisexualis and D. valentini. Sympatric localities Sotk 

and Kuchak are in panel A, and Lchap and Lchaschen in panel B. 

Bruvo pairwise distances among each of the parthenogenetic species (all localities included) 

and among each of the polyploid backcrosses types. 
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Principal Coordinate analysis of the Bruvo distances between the individuals 

from the sympatric localities including polyploid hybrids. Polyploid hybrids are identified as triangles and 

sympatric localities are represented in the 

. Sympatric localities Sotk 

Bruvo pairwise distances among each of the parthenogenetic species (all localities included) 
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Bruvo pairwise genetic distances among the D. unisexualis x D. valentini polyploid PS 

hybrids were distributed in a much larger interval than for the D. armeniaca x D. valentini 

polyploid PS hybrids (Figure 3.7). Also, the pairwise distance interval was much larger for 

the polyploids than for each of the diploid parthenogens (which ranged between 0.0 – 0.4, 

Figure 3.7), and a pairwise distance of naught was never found among the polyploids. 

 

Triploid PS hybrids are expected to present only alleles that are shared with both putative 

parental species. Because their parthenogenetic maternal species are also of hybrid 

origin, D. armeniaca and D. unisexualis, these share alleles with their sexual parental 

species (D. valentini). Therefore, we found that in the PS hybrids, one allele was unique to 

D. valentini and the other (one or) two either unique to the parthenogen (D. unisexualis or 

D. armeniaca) or shared by the parthenogen and D. valentini. The allelic combination for 

each marker was normally such that the source of each allele could easily be determined. 

If the PS hybrids are fertile and capable of backcrossing and producing viable offspring, 

we will find polyploids with a different distribution of alleles, specifically markers with alleles 

exclusive of only one of the species (and not shared by both), and eventually mtDNA 

haplotypes shared with D. valentini (if a male PS hybrid backcrosses with a female D. 

valentini). In our dataset, we found two triploid D. unisexualis x D. valentini PS hybrids 

which presented more than 50% of their markers with D. valentini (ID 12454: six out of 

nine) or D. unisexualis (ID 12572: 8 out of 12) unique alleles (clustering in the PCoA with 

the D. valentini and D. unisexualis clusters, respectively (Figure 3.6a)). Regarding the 

mtDNA, the first (ID 12454) shared its haplotype with D. valentini (H96 in Figure 3.4) and 

the second (ID 12572) with D. unisexualis (H51 in Figure 3.4). The same applies to the D. 

armeniaca x D. valentini PS hybrids: two (10048 and 10050) had five in 12 markers unique 

to D. valentini and another (9875) had five in 12 markers unique to D. armeniaca 

(clustering in the PCoA with the D. valentini and D. armeniaca clusters, respectively 

(Figure 3.6a)). Again, the first two (individuals 10048 and 10050) shared their mtDNA 

haplotype with D. valentini (H98 and H99 in Figure 3.4) and the later (9875) with D. 

armeniaca (H79 in Figure 3.4). Some triploid PS hybrids had unique alleles, that were 

absent not only from the diploids of the sympatric localities, but also from all other species 

(Table S3.3). 

For the PCoA with the Lchap and Lchashen (Figure 3.6b), only 19 individuals in total were 
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available. All D. raddei individuals from these localities clustered with the D. raddei from 

elsewhere in its range, and separately from the D. unisexualis cluster found in Lchap. D. 

valentini individuals fell close to, but not within, the cluster formed by D. valentini 

individuals from the whole range, and unexpectedly not very close together. One PS hybrid 

D. armeniaca x D. valentini fell within the cluster formed by the PS hybrids D. armeniaca x 

D. valentini from Sotk when analysed together (data not shown). 

Diploids from the sympatric localities were included in the STRUCTURE analysis and the 

genomic contribution of these individuals was concordant with the same species from 

other non-sympatric localities. 

 

DISCUSSION 

In nature, asexuality is maintained by the balance between the generation of new asexual 

lineages from sexual progenitors and their loss by extinction. Vertebrate parthenogenesis 

is found only in a reduced number of species (Beukeboom and Vrijenhoek, 1998) and they 

have mostly a hybrid origin (Avise, 2008). However, how these hybridization events take 

place, and the role and extent of hybridization in the sexual-asexual interactions is still not 

clear, as is the extent to which hybridization contributes to gene flow or to new 

parthenogenetic lineages throughout time. 

The origin of hybrid vertebrate parthenogenesis has been tentatively explained by two 

hypotheses, the Balance Hypothesis and the Phylogenetic Constraint Hypothesis. If 

parthenogenetic Darevskia follow the Balance Hypothesis (Moritz et al., 1989), then their 

parental species pairwise distances will fall within a short range interval, different from the 

other sexual species pairwise distances (Kearney et al., 2009). On the other hand, if the 

second hypothesis better explains the origin of parthenogenetic lineages in Darevskia, 

then the pairwise distances of the parental species pairs will be more variable, and other 

species pairs within the same distance range and potential to hybridize will not produce 

any parthenogenetic lineage. They will also maintain the directionality in the parentage of 

the Darevskia parthenogens. If sexual species are capable of originating parthenogenetic 

lineages due to lineage dependent genetic peculiarities, than it is likely that those 

peculiarities are maintained and parthenogenetic females could still backcross and 

produce viable offspring with the sexual males of their parental species. 
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(i) Are all sexual parentals restricted to specific phylogenetic clades and/or do they 

share the same genetic distance between them? 

Sexual diploid individuals analysed here were distinguished into different groups, 

concordant with the initial ascription based on phenotype, by all analyses performed. 

Nevertheless, we find some phylogenetic incongruence in the morphological identification 

of one species, specifically the D. mixta individuals. These were consistently divided into 

two different groups, one containing Georgia samples (D. mixta-1) and the other samples 

from Turkey (D. mixta-2). Pairwise FST between the clusters was 0.25, similar to the 

distance between other sexual species pairs. This is concordant with the division of D. 

mixta into two species already suggested by (Gabelaia et al., 2015) and based on mtDNA 

alone. 

The reassessment of the parentage inference confirmed the hybrid genetic profile of all 

parthenogenetic species studied here. In the STRUCTURE analyses, the maternal 

contribution (confirmed by mtDNA BI analysis) for each parthenogen is clear (either D. 

raddei or D. mixta), and accounts for at least 50% of the nuclear genome of the 

parthenogenetic species. On the other hand, the paternal contribution is less clear, with 

different species contributions varying in the parthenogens. The STRUCTURE analysis 

shows recent admixture using the current genomic constitutions of the putative parental 

populations. However, the hybridization event that originated the parthenogens analysed 

here took place in the past, ~100 kyrs ago (Freitas et al., 2016), when the genetic 

constitutions of the parental species, and populations within species, were different and 

their divergence possibly incomplete. While D. raddei and D. mixta diverged earlier in the 

past, the split between D. rudis and D. valentini seems to be more recent (Freitas et al, in 

prep). Thus, the paternal individual that was part of that hybridization event was likely an 

ancestor state of the D. rudis / D. valentini clade, before the speciation process was 

completed, and shared alleles with extant populations that were not directly involved in the 

hybridization events. Another possibility for the mixed paternal ancestry could be that the 

true parental population was not sampled (and could even be extinct), however this is not 

as likely since the maternal ancestry was correctly identified, even when a reduced 

number of localities (individuals) was used (e.g. D. mixta). 

The STRUCTURE analysis confirmed that D. armeniaca resulted from the hybridization 

between D. mixta (from Georgia) and D. valentini, while D. uzzelli resulted from the 

hybridization between D. raddei and D. valentini. D. unisexualis most likely resulted from 
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the multiple hybridization between D. raddei and D. rudis or D. valentini (Figure 3.3). 

If the origin of parthenogenetic Darevskia is restricted to the hybridization between sexual 

species at a specific divergence as postulated by the Balance Hypothesis, then other 

sexual lineages at least as divergent as the parents of known parthenogens also have had 

the potential to generate asexual lineages. Moreover, if the distance between sexual 

parentals is more relevant to the origin of parthenogenetic lineages than which species 

pairs are involved, then these distances are expected to fall within a narrow interval. FST 

pairwise distances calculated with this set of markers can only give us a rough idea of the 

overall genomic divergence in the present, and may not accurately represent distances at 

the time of origin of the parthenogens. Nevertheless, they tell us that parthenogens 

originated at some point between zero divergence and the current, which considering the 

young age of the parthenogenetic lineages and the reduced time scale sexual parentals 

had to diverge, should not be very different than the distance at the time of the 

hybridization event. Other species pairs have distances within the same interval than the 

sexual parentals, and overlap geographically (e.g. D. mixta / D. rudis in Western 

Caucasus), but no parthenogenetic hybrids have been reported. Besides, the directionality 

of the hybridization events were consistent, with D. mixta and D. raddei always acting as 

maternal species, even though the distance between these species is similar to the 

parental pairs, and their distribution ranges adjoin in the Western Caucasus. In relation to 

other species, despite no inference can be made about their phylogenetic distance, the 

remaining 23 sexual species in the genus have produced no parthenogenetic hybrid 

species (Murphy, 2000). This considered, it is questionable whether phylogenetic 

distances between sexual parentals is an important factor at all. 

The Balance Hypothesis remains the most widely accepted explanation for the origin of 

vertebrate parthenogenesis (Avise, 2008). However, evidence from Darevskia and other 

hybrid parthenogenetic vertebrates favours the Phylogenetic Constraint Hypothesis. For 

instance, the parental species for all parthenogens in the genus Leiolepis (butterfly lizard) 

are always the same and belong to two different phylogenetic clades within the genus 

(Grismer et al., 2014). In other cases, such as fish genus Cobitis, directional hybridizations 

are not always responsible for parthenogenetic hybrids, but parthenogenetic lineages may 

result from the cross between both distant and closely related species (Janko et al., 2003). 

Overall, our results and these studies demonstrate that only a few sexual species 

contributed to the hybridization events that originated parthenogenetic vertebrates, and 



FCUP 
Why sex? Darevskia answers. 

112 
 

that the distance between parental species is not as relevant as the specificity of the 

sexual ancestors, and in some cases as the directionality of the hybridization events. 

These factors are in accordance with the propositions of the Phylogenetic Constraint 

Hypothesis. 

 

(ii) Do parthenogenetic lineages from the same parental taxa originate repeatedly 

through time or is there a single temporal event in each case? 

In localities where the sexual parentals are currently in sympatry (like in the the sympatric 

locality included here, Lchashen, where the parental species for D. uzzelli, D. raddei and 

D. valentini, are found), no evidence of new parthenogenetic lineages (or any 

parthenogenetic individual) was found. Instead, the only hybrid identified there was a PS 

triploid hybrid between the parthenogen D. armeniaca and the sexual D. valentini, which 

likely resulted from a recent expansion and range overlap of this parthenogen with the 

sexual D. valentini. So, even though some sexual parental pairs can be currently found 

together, no evidence that they are originating new parthenogenetic hybrids at the present 

was found. Instead, the origin of parthenogenetic Darevskia was likely associated with a 

temporal event in the past, specifically the last glaciations, as has been previously 

suggested based on phylogeographic patterns and ecological models (Freitas et al., 

2016). 

Nuclear and mtDNA analyses performed here on the parthenogenetic individuals showed 

that even if the hybridization events which originated the parthenogenetic species 

happened in the past, they likely have happened multiple times. Despite many 

parthenogenetic individuals sharing the same mtDNA ancestry, multimodal DF distributions 

of the nuclear markers support the existence of at least two hybridization events for D. 

armeniaca, and possibly for D. unisexualis. 

 

(iii) Can parthenogens still backcross with their sexual parentals and originate 

fertile individuals? 

When hybridizing with their sexual ancestors, parthenogenetic x sexual hybrids frequently 

form new asexual reticulate clades with polyploidization induced parthenogenesis (e.g. 

whiptail lizards Aspidoscelis sp.; (Cole et al., 2014; Taylor et al., 2015)). Darevskia PS 

hybrids pairwise distance distribution (calculated separately for D. unisexualis x D. 

valentini and D. armeniaca x D. valentini PS hybrids) (Figure 3.7) was much wider than the 
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distribution of any of the parthenogenetic diploids (0.0 – 0.4, Figure 3.7). Besides, we did 

not recover any PS hybrid pair with the same combination of genotypes for all markers, as 

we did in all populations of parthenogenetic diploid species analysed here. Therefore, in 

contrast with Aspidoscelis, the possibility of a triploid parthenogenetic lineage in Darevskia 

is not supported, and the backcross hybridization found at present is likely a temporary 

event that will end when the sexual species goes extinct: if sexual males and females 

backcross with parthenogenetic females and triploid males, respectively, then less sexual 

diploid offspring is produced each generation. 

When organisms evolve to be asexual, sexual reproductive traits will likely be lost. In 

Darevskia, the parthenogenetic lineages have been proposed to be quite recent and given 

the generation of triploids, they still present all the sexual machinery necessary to mate 

and produce fertilized zygotes with a paternal contribution. However, it is also expected 

that older lineages will have less possibility of forming viable hybrids with the sexual males 

due to mutation accumulation and/or Dobzhansky-Muller incompatibilities. In Kuchak, a 

higher ratio of D. unisexualis x D. valentini PS hybrids relative to D. armeniaca x D. 

valentini was found, concordant with previous findings (4:1, (Danielyan et al., 2008)). 

However, in Sotk the proportion of PS hybrids was so high that no diploid parthenogens 

were collected. Given the reproductive pressure inferred from the intensity of copulation 

marks of D. valentini males on each parthenogenetic species present in Kuchak is the 

same (Carretero et al, in press), one possible explanation for the high proportion of PS 

hybrids found in Sotk, and low proportion found in Kuchak in relation to the other PS 

hybrid, is that the D. armeniaca lineage present in Kuchak is older and has lost part of the 

sexual reproduction machinery. For asexually reproducing organisms, sex associated 

machinery becomes useless and can even potentially encourage harassment by males, or 

other sex related liabilities (Shine et al., 2004; Sztatecsny et al., 2006). Consequently, in 

the long-term parthenogenetic females are expected to suffer high selection to lose these 

characters. If one D. armeniaca lineage is in fact older than the other, it had more time for 

selection to act upon it and lose sex related traits. This is concordant with the multimodal 

DF distribution for D. armeniaca, suggesting that it had more than one origin through 

hybridization events separated in time and/or space. 

As triploids are likely to result from the hybridization between parthenogenetic diploid 

females and males of the sexual species, the tetraploid found is proposed to result from 

the cross between a “fertile” triploid and another individual. Various lines of evidence 
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support the sexual fertility of triploids, even if at a very reduced level and only infrequently: 

the presence of at least some triploid males with apparently fertile reproductive organs, the 

maintenance of alleles that are only present in the triploids and absent from the parentals 

in the sympatric localities, the varying degree of contribution from D. valentini and 

parthenogenetic alleles in some PS hybrids, and PS hybrids with mitochondrial DNA 

shared with the sexual species D. valentini. This considered, triploid hybrids are the result 

of the hybridization a parthenogenetic female and a sexual male, or between a triploid and 

a diploid individual from any of the diploid species (sexual D. valentini, or parthenogen D. 

unisexualis and D. armeniaca). Previous studies on the reproductive organs of PS hybrids 

from the populations studied here reported individuals with undeveloped reproductive 

organs, that were therefore deemed sterile (Danielyan et al., 2008). However, some of the 

triploids did show apparently normal reproductive organs or evidence of having already 

laid eggs (such as triploid female ID 10034 from Sotk). 

 

Evolutionary consequences of hybridization and polyploidy in Darevskia 

This study identified a considerable number of polyploid hybrids (17%) in sympatric 

locations of parthenogenetic species with their paternal sexual ancestors. Asexuality in 

vertebrates has been presented as a possible stage in the speciation continuum and an 

effective barrier to gene flow, when other forms of pre- and post-reproductive isolation 

mechanisms are absent (Janko et al., 2016). Given the high number of known hybrids 

(either diploid or polyploid) between Darevskia species, gene flow was expected. However, 

despite the high hybridization and backcrossing rates there was no clear evidence of 

recent gene flow, reinforcing the theory of asexuality as a reproductive isolation 

mechanism. 

Sympatric populations such as Kuchak and Sotk are likely to be the scenario of a sporadic 

event, where it is possible to witness the reproductive isolation between the 

parthenogenetic species and their parental species. Observations from these localities 

could be used to determine the potential of the parthenogenetic species in occupying new 

habitats, in particular when in competition with the sexual individuals. It has been shown 

that parthenogenetic Darevskia species may outcompete their sexual ancestors 

(Tarkhnishvili et al., 2010), or even solely occupy habitats suitable for both themselves and 

their parentals (Freitas et al., 2016). When in contact, hybridizing with sexual males would 

mean a lower number of sexual viable offspring each generation. This way, sexual 
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populations could reach levels that would most likely lead to extinction, while 

parthenogens with the presence of only one individual could still reproduce and maintain 

the population. Together with the double reproductive output of parthenogens compared to 

sexuals, hybridization between both could contribute for the apparent out-performance of 

some parthenogenetic species in relation to their sexual ancestors in nature. 

 

Finally, this model of vertebrate parthenogenesis questions whether the Balance 

Hypothesis suggested as a general theory on the origin of hybrid asexuality is applicable in 

this case. Parthenogenesis in vertebrates is rare and generally originates from the 

hybridization between specific species pairs with highly variable phylogenetic distances. 

This fits the proposal that the parthenogenetic parentals must hold some lineage-

dependent specificity that allows them, when hybridizing, to originate a hybrid capable of 

reproducing asexually, as the Phylogenetic Constraint Hypothesis states. Identifying which 

are the constraining factors underlying the origin of parthenogenetic vertebrates gives us a 

better chance at understanding how these hybrids use the sexual reproduction machinery 

to reproduce asexually, escaping the limitations sex might bring. This study identifies major 

factors that are relevant to the origin of parthenogenesis in Darevskia, as in other 

vertebrate genus, but also reinforces the proposal that vertebrate asexuality acts as a 

strong reproductive barrier, as already described for other systems. 
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ABSTRACT 

Phylogenetic inference reconstruction has been extensively used to ask several 

evolutionary biology questions. Recently we have witnessed a steep change of analyses 

methods in phylogenetics, and single marker sequencing is quickly being replaced for 

high-throughput sequencing technologies. These allow the study of several markers 

across the genome for several individuals with a low cost-benefit ratio, but despite the 

promising applications in phylogenetics, next generation sequencing (NGS) techniques  

are still far from being as widely used in this field as in other areas of evolutionary 

genetics. 

Here we develop and test a workflow to design probes from transcritptome sequence for 

downstream capture sequence analyses. This approach has proved to be not only cost-

effective, but also to produce a very high number of cross genome phylogenetically 

informative markers in a non-model species. 

 

 

INTRODUCTION 

Phylogenetic reconstruction is widely used in evolutionary biology as a tool to recover 

evolutionary patterns and to interpret processes in biogeography (e.g., (Ahmadzadeh et 

al., 2013; Wielstra et al., 2013), species diversification (e.g., (Mendes et al., 2016)), rates 

of speciation (e.g., (Pyron and Burbrink, 2013; Rabosky et al., 2013), and conservation 

(e.g., (Rosauer et al., 2016; Tonini et al., 2016), among others. Sanger DNA sequencing 

techniques have been used extensively in phylogenetic studies and, for decades, 
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researchers have been building new data on a few already published markers, creating a 

platform that allows comparative and phylogeographic studies, and the study of non-model 

species using cross-species markers. Entire fields of research, such as the use of "DNA 

barcoding" using CO1 sequences are built on this basis (Smith et al., 2008). Sanger 

methods generate sequences in a highly targeted and straightforward way via primer 

design and PCR amplification, one locus per individual at a time. But the phylogenetic 

analysis of a taxon can be very biased to the history and evolution of the one or few 

markers used. Cases such as introgression, incomplete lineage sorting (ILS), fast 

radiations, hybridization and gene flow can only be resolved with sequences from many 

loci. 

The recent advent of next generation sequencing (NGS) techniques and the increasingly 

fast and cost-effective generation of very large amounts of data allows researchers to 

address ecological and evolutionary questions on a much wider scale and with deeper 

precision (Ekblom and Galindo, 2011; Stapley et al., 2010). However, despite the potential 

NGS techniques presents, phylogenetics as a field was not as quick to adopt them as 

other fields in evolutionary biology (Carstens et al., 2012; McCormack et al., 2013). NGS 

allows the sequencing of libraries of templates, exponentially increasing the amount of 

data gathered per run, not only in terms of the number of markers but also regarding the 

number of individuals assessed (Carstens et al., 2012; Metzker, 2010). However, with 

many NGS methods there is less control over which regions of the genome are 

sequenced, and over whether those regions are either homologous across the whole 

range of individuals analysed or phylogenetically informative (Carstens et al., 2012). This 

may pose a strong constraint on adopting NGS in phylogenetic reconstruction. 

Phylogenetic analyses and coalescent-based methods are typically based on the 

construction of gene trees, which ideally require long and highly informative non-

recombining sequences (e.g., (Bouckaert et al., 2014; Mirarab and Warnow, 2015). The 

challenge in shifting from phylogenetics to phylogenomics and embracing NGS techniques 

has been in the development of a strategy that is not only cost-effective in terms of the 

number of orthologous sequences available across the individuals analysed, but which 

could also provide a wide range of sequences, each as long and phylogenetically 

informative as possible. 

Most commonly used NGS approaches accomplish genome reduction with restriction 
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digest and manual size selection (Baird et al., 2008; Elshire et al., 2011). These methods 

are very cost effective (Stapley et al., 2010), and allow sequencing a large number of short 

markers distributed more or less randomly across the genome, many individuals at a time. 

While they have been used widely for evolutionary studies, they are better applied in 

population genomic studies at intra-specific level (McCormack et al., 2013) since they 

produce short reads that are best suited for generating SNPs and often have low 

repeatability. Moreover, as they amplify sequences next to restriction sites, they often fail 

to sequence orthologous regions among the individuals analysed. On the other hand, 

methods that reduce the genome by targeting specific genomic regions (like target 

enrichment or sequence capture, (Brandley et al., 2015)) can be applied to multiple 

individuals, they generate orthologous sequences and are replicable, showing a higher 

potential for deep-level phylogenomic studies. 

Sequence capture methods use probes targeted to specific regions of the genome and 

can sequence hundreds of markers simultaneously in individuals from multiple species. 

Because they provide orthologous sequences that can be reduced to SNP data, they have 

started to be used not only in phylogenomic studies (Brandley et al., 2015; Leaché and 

Linkem, 2015; Mandel et al., 2014), but also in other evolutionary questions (Tennessen et 

al., 2014; Westram et al., 2016), proving their flexibility and efficiency. Despite their wide 

applications and interesting results in phylogenomics, designing probes to suitable 

sequences is so far the biggest hurdle when working with under-studied taxa. 

Transcriptome analysis has been demonstrated to be a good first approach for gathering 

sequence information in non-model species. In large genomes, such as in the case of 

humans (Treangen and Salzberg, 2012) or maize (Schnable et al., 2009), non-coding and 

repetitive elements account for large parts of the genome (~50 and 85%, respectively). 

Transcriptomes are smaller than genomes and have fewer repetitive elements making 

them easier to assemble and requiring less computational resource. Also, an assembled 

transcriptome can be annotated by comparison with protein sequences from more or less 

distant organisms, taking advantage of the already intensively studied genomes and 

proteomes of model organisms. Due to its feasibility, the number of publications with the 

words “transcriptome” + “non-model species” has been rapidly increasing since the first 

paper in 2007 to about 50 papers in 2016. 

Despite these advantages, transcriptome analysis also carries some drawbacks when 
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compared to other phylogenetic resources. First, sequences recovered from 

transcriptomes are mainly protein coding sequences (even though other regions such as 5' 

and 3' UTRs can be recovered), which are more conserved than other regions such as 

introns or intergenic sequences (McCormack et al., 2013). Second, the coverage of any 

given sequence in a transcriptome is dependent on the number of transcripts sequenced 

and the expression rate, which is highly variable across genes, tissues and life/age stages. 

The unequal coverage can be a problem since transcripts with low representation may 

remain undetected, but also cannot be used in de novo assemblies of transcriptomes to 

resolve repeated motifs (such as gene duplications) as in the case of genomes. Third, 

alternative splicing can also complicate the assembly since splicing isoforms are made of 

different combinations of exons belonging to the same genes. Last but not least, due to the 

high number of studies and applications of transcriptome analysis and RNAseq, there was 

also a high turnout of software and pipelines that are available which perform very 

cohesive de novo assemblies of transcriptomes only with the read information despite the 

possible limitations the transcriptome may present (Peng et al., 2013; Robertson et al., 

2010; Schulz et al., 2012). 

Here we use transcriptome sequencing to select sequence information needed for probe 

design and hence the sequencing of many targeted orthologous regions. Genome 

sequencing has been widely used to design probes in understudied taxa (Faircloth, 2016; 

Lemmon et al., 2012). However, probe selection from transcriptomes may be a more cost 

effective procedure to sequence several regions of high phylogenetic information in non-

model organisms. We performed a de novo assembly of RNAseq data to first find regions 

of interest and design the probes used downstream for a capture sequencing approach. 

Given their under-representation in genomic studies, reptiles are ideal for testing our 

approach. In terms of evolutionary interest they represent a wide diversity of life histories, 

reproduction types, sex-determining systems and physiologies. However, apart from the 

anole lizards, non-avian reptiles are rarely considered model organisms and therefore are 

poorly represented at the genomic level: there are six sequenced reptilian genomes, 

compared to the 11 of birds and 73 of mammals (Ellegren, 2014). 

One of the peculiarities of reptiles is the presence of different reproductive modes. While 

most of the species are sexual, some are found to be parthenogenetic. Parthenogenesis is 

typically obligatory, although there have been cases of spontaneous  parthenogenesis in 
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captive females that have called into question the number of vertebrate species that can 

reproduce in the absence of sex (Avise, 2008). The genus studied here, Darevskia, is a 

genus of rock lizards found in the Caucasus. They were the first vertebrates to be 

described as true parthenogenetic (Darevsky, 1967). In this group all parthenogens are 

hybrids of two sexual species belonging to two different clades (Freitas et al., 2016; 

Murphy et al., 2000). Seven parthenogenetic species have been described and their hybrid 

origins are expected to have been between species of different clades and directional 

(maternal and paternal species are always from the same clades) (Fu et al., 2000; Murphy 

et al., 2000). Given both the hybrid origin and the unusual reproductive mode, 

transcriptome analysis of these species is of great interest. 

In this study we describe the workflow used to design sequence capture probes from 

transcriptomes. We sequenced the transcriptome of two species, one sexual and other 

parthenogenetic of hybrid origin, using one individual of each species, enough to detect 

phylogenetically informative loci. De novo assembly of the transcriptomes was then used 

for development of capture sequence probes for downstream phylogenomic analyses 

across the whole genus (Chapter 5 – Freitas et al, in prep). 

 

METHODS 

RNA extraction 

Total RNA was extracted from four samples; tail-tip from a male individual of the sexual D. 

valentini, brain and ovaries from one individual and tail-tip from another individual of the 

parthenogenetic D. unisexualis. Given the expected differential expression depending on 

the tissue, in the parthenogenetic individual tissue samples were analysed separately. The 

tail-tips were collected in the field and preserved in RNAlater. Ovaries and brain were used 

from a sacrificed animal, and were preserved in RNAlater immediately after the animal’s 

dissection. All tubes were kept at -80º C prior to extraction, except during the fieldwork. 

RNA was extracted using a Trizol (Invitrogen) extraction method, following (Westram et al., 

2014). All extractions were performed in duplicate. RNA was preserved at -80ºC until ready 

to proceed with library preparation. Total RNA quality and concentration were determined 

using the Agilent 2100 BioAnalyzer and the sample used for library preparation was 

selected according to quality parameters. 
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Reads processing 

RNAseq libraries for the four samples were prepared in Edinburgh Genomics, Edinburgh, 

UK where they were then sequenced in a single lane, using an Illumina HiSeq 2000 

machine (100 bp paired-end reads; insert size around 80 bp). Read quality, before and after 

filtering, was assessed with FastQC (Andrews, 2010). Filtering was performed with Scythe 

(Buffalo, 2011) and Sickle (Joshi and Fass, 2011) discarding all reads shorter than 50 bp 

and/or with Ns, leaving the remaining parameters as the default option. 

  

De novo assembly 

A de novo assembly for the contigs selection was constructed with Velvet (1.2.10)(Zerbino 

and Birney, 2008) and Oases (version 0.2.08; http://www.ebi.ac.uk/~zerbino/oases/) 

(Schulz et al., 2012). Two assemblies were done, one with the reads from the tail-tip of D. 

valentini (VT) and the other with all reads from the ovaries and the brain of D. unisexualis 

(UBUO). The same parameters were used in both de novo assemblies, with initial Velvet 

assemblies using k-mer length values from 25 to 65 and a step increase of 8 [25, 33, 41, 

49, 57, 65], and a final assembly of the initial runs was performed with Oases with a k-mer 

length of 31 and a coverage cut-off of 4. Redundancy of the assembly was decreased with 

CD-Hit (version:1.3.1)(Li and Godzik, 2006), setting a minimum similarity of 0.95 and a 

word length of 8. 

For a more detailed annotation, reads from each sample were later used to construct four 

de novo assemblies, one per tissue/species. Given the extremely rapid turnout of 

softwares for transcriptome assembly, a different software was used for these de novo 

assemblies, more convenient to our dataset than the one used so far, which had not been 

available at the time of the reference contigs selection. IDBA-tran (Peng et al., 2010, 2013) 

is an iterative De Bruijn Graph De Novo short read assembler for transcriptome reads. It 

used local assembly to reconstruct missing k-mers in low-expressed transcripts, and 

separated the graph into components, which are one gene in most cases and do not 

contain many transcripts. Isoforms are searched by a heuristic algorithm based on paired-

end reads. These assemblies were only used for annotation purposes. 

 

SNP calling 

To map the reads against the reference transcriptome, Stampy (version 1.0.23)(Lunter and 
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Goodson, 2011) was selected due to its high sensitivity for indels and divergent reads. 

Platypus (version 0.7.9.1) (Rimmer et al., 2014) was used to call the variants mapped. 

We aimed to select contigs to give a total capture target of approximately 500kbp, with 

sufficient variable sites to give good phylogenetic signal within Darevskia. Given the high 

expected heterozygosity of the hybrid parthenogenetic D. unisexualis (Freitas et al., 2016), 

the transcriptome of the tail tissue of D.valentini was preferred as the reference for SNP 

calling. The longest isoform per contig was selected. To simplify downstream analyses, 

contigs with indels were eliminated, and only contigs with SNPs were selected. The D. 

unisexualis de novo assembly was also used to select variable loci and the same method 

was applied. The most variable contigs were selected from both assemblies and added to 

the target set until the required total target size was reached. 

After contig selection from the VT and UBUO assemblies, the sets were blasted against 

each other using megablast option in blastn (Camacho et al., 2013) with a minimal value of 

1e-3 in order to eliminate possible repeated sequences selected simultaneously from both 

assemblies. 

Probe design for the reference loci and capture sequence was outsourced to RAPiD 

Genomics (FL, USA). Probes were designed to span across the two transcript contigs data 

sets (575,561 bp), to be 120 bp long, tiled across the whole length of the contig, with a 40 

bp shift so giving 3x coverage. 10,000 probes are needed to cover the ~500kb capture 

target intended. A total of 75 individuals belonging to 14 sexual Darevskia species and 

three outgroup individuals (two Iranolacerta brandtii and one Podarcis atrata) were 

sequenced after genomic DNA fragmentation and ligation with barcoded Illumina-

compatible adapters to the resulting fragments. Enrichment PCR and capture reactions 

with the custom-designed probes preceded the libraries sequencing. 

 

Phylogenetic inference 

Read filtering, read mapping against the reference contigs and SNP calling is described 

elsewhere (Chapter 5 – Freitas et al, in prep). Heterozygosity was calculated in the vcf 

outputs using vcftools -het option (Danecek et al., 2011). 

Fasta files for each marker were made from the vcf file using a python script 

(https://github.com/SusanaFreitas/capture-data). Fasta files were then trimmed to remove 

missing data allowing only for maximum of 10% missing genotypes for each position in 
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each alignment. Species tree was constructed with SVDQuartets for the most variable 300 

markers (Chifman and Kubatko, 2015). 

 

Annotation of assembled contigs 

The de novo assemblies performed per sample, four in total (tail of D. valentini, and brain, 

ovaries, and tail of D. unisexualis), were annotated. Annotation was performed with 

Interproscan v5 (Jones et al., 2014; Zdobnov and Apweiler, 2001). Functional annotation 

(GO and KEGG) was performed using BLAST2GO (Conesa et al., 2005) using the default 

parameters (BLAST e-value threshold of 1e-06, Gene Ontology annotation threshold of 55). 

 

RESULTS 

Reads and SNP detection 

Between 36 and 42 million paired-end reads were generated per library and 94% were 

kept after trimming, adaptor removal and size and quality filtering. The reads of the D. 

valentini tail-tip sample and the reads of the D. unisexualis ovaries together with D. 

unisexualis brain samples were used to construct two de novo assemblies. 

De novo assembly of the sexual D. valentini tail tissue (VT) generated 245,539 transcripts 

distributed over 26,866 contigs with an average length of 1588 bp and N50 length of 2315. 

Oases assembles transcripts and groups then according to similarity in contig groups. 

After CD-Hit redundancy analysis, 103,605 transcripts distributed over 26,899 contigs 

were left with a mean contig length of 1447 bp and N50 length of 2095 (Table 4.1). De 

novo assembly of the brain and ovaries tissue of the parthenogen D. unisexualis (UBUO) 

originated 690,263 transcripts distributed over 58,106 contigs with an average length of 

1588 bp and N50 length of 2469. After CD-Hit redundancy analysis, 289,870 transcripts 

distributed by 54,563 contigs were left with and average contig length of 1556 bp and a 

maximum length of 24,289 bp and N50 length of 2544. N50 length was used to evaluate 

the quality of the contigs. This is a measure widely used in genomics and is defined as the 

length N for which 50% of all bases in the sequences are in a sequence of length L < N. 

The longest transcript per contig was selected for each assembly to be used as a 

reference for the mapping and downstream analyses. 
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Contigs selection 

To select the most variable contigs, all reads were mapped against both the D. valentini 

(VT) and the D. unisexualis (UBUO) de novo assemblies. Only reads mapped with PHRED 

quality over 100 were selected, so that there is 1% or less probability of a wrongly 

identified SNP. 

Around 80% of the D. valentini reads mapped against the VT reference, with a bit less 

(between 69 – 72%) for the D. unisexualis reads. The yield of mapping regarding the 

UBUO assembly was significantly lower than for the VT assembly, with only around 50% of 

the reads successfully mapping against that reference (Table 4.1 - SI). 

The SNP calling of all reads against the VT assembly resulted in a total of 721,238 

variants. Only reference contigs that presented SNPs but not indels, in the reference allele 

were selected. In the end, 773 contigs were selected, presenting in total 2372 SNPs. The 

same approach was followed in the UBUO assembly. For this de novo assembly a total of 

3765 contigs were selected, presenting a total of 7981 variants. 

From these lists of contigs, the most variable contigs with a minimum length of 500 bp 

were selected from each (Table 4.2). Given that contigs were selected from two different 

assemblies that could contain orthologous sequences, the selected contig sets were 

blasted against each other and the shorter of any pair of duplicated contigs was removed. 

This resulted in 193 (215) contigs from the VT assembly (163,534 bp in total) and 

400(410) contigs (265,335 bp) from the UBUO assembly. We also added random 

sequences that did not present any variation in the backward alignment, 23 from the VT 

assembly and 10 from the UBUO assembly. Finally we had 215 contigs from the VT 

assembly and 410 from the UBUO assembly. 

Probe design was outsourced to RAPiD Genomics Inc. (FL, USA) and, out of a total of 625 

Table 4.1: Statistics for the D. valentini tail de novo assembly (VT) and the D. unisexualis brain + ovaries de 
novo assembly (UBUO).

Assembly test steps N50

VT 245539 26899 25-65 8 31 4 80 2315 28740 1588.12 47.52
VT-cdhit0.95 103605 26899 2095 28740 1446.77 47.46
VT-cdhit0.80 60706 26894 2116 28740 1470.33 47.20
UBUO 690263 58106 25-65 8 31 4 80 2469 24289 1500.10 47.20
UBUO-cdhit0.95 289869 54465 2544 24289 1555.63 47.15

nr of 

transcripts

nr of 

loci

Kmer 

interval

merge 

Kmer

coverage 

cutof f

insert 

length

max 

contig 

length

average 

contig 

length

GC 

content
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sequences, probes were successfully designed for 624. 

 

 

SNP calling and Phylogenetic inference 

SNPcalling of the Darevskia species against the reference contigs resulted in a total of 

64150 SNPs. Probes successfully captured all contigs, however one recovered no SNP 

variation. SNP count varied from 1 – 379 per contig (0.12 – 24%). A total of 10318 SNPs 

from 453 contigs were recovered in all individuals. If a maximum of 10% missing data was 

allowed, 37092 SNPs from 582 contigs were recovered. 

The 300 more variable contigs were used to calculate the species tree with SVDQuartets. 

Three major clades are recovered in the species tree, and most phylogenetic relationships 

confirm previous studies (Murphy et al. 1996; Murphy et al. 2000; Ahmadzadeh et al. 2013; 

Freitas, et al. 2016; Freitas, et al. 2016) (Figure 4.1). 

 

 

Table 4.2: Selected contigs from VT and UBUO de novo assemblies: statistics about length and number 
of variants.

length variant count length

VT

193 seqs > 163534 bp 188 seqs > 160288.8 bp
Min.   1 500 0.000464  1 500 0.000464
1st Qu. 2 561 0.002597  2 561.8 0.002575
Median 4 697 0.005340  4 698.5 0.005297
Mean   4.953 847.3 0.006382  4.973 852.6 0.006383
3rd Qu. 7 863 0.009682  7 875.5 0.00969
Max.   35 3408 0.021708 35 3408 0.021708

UBUO

400 seqs > 370240 bp

Mi n.    2 600 0.00216 in green > corrected after the BLAST hits.

1st  Qu. 2 679 0.003003
Medi an 3 794.5 0.003954
Mean   4.295 925.6 0.004711
3r d Qu. 5 999 0.005597
Max.    21 4065 0.015458

de novo 
assembly

variant 
count

prop 
(var/length)

prop 
(var/length)
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Figure 4.1: Phylogenetic relationships within genus Darevskia, with three major clades: Saxicola, Caucasica 
and Rudis. 

 

 

Annotation 

Annotation was performed on the de novo assemblies done per sample (four in total: tail of 

D. valentini, and brain, ovaries, and tail of 

transcripts were successfully annotated using Interproscan (Figure 4.2), an

could be assigned to a gene ontology class: 17%, 43%, 5% and 35% for UB, UO, UT and 

VT de novo assemblies, respectively. GO terms for Biological Processes, Cell 

Components and Molecular Function are summarised on  (Figure 4.3). We note, howeve

that the assemblies with higher proportion of annotated transcripts were the de novo 

assemblies for the D. unisexualis

that presented the reads with the lowest heterozygosity values (Table 4.3).

heterozygosity values can be a factor disturbing assemblies, which could explain why the 

assembler performed better in these tissues (Ruttink et al., 2013).

Figure 4.1: Phylogenetic relationships within genus Darevskia, with three major clades: Saxicola, Caucasica 

Annotation was performed on the de novo assemblies done per sample (four in total: tail of 

, and brain, ovaries, and tail of D. unisexualis). Only a small percentage of 

transcripts were successfully annotated using Interproscan (Figure 4.2), an

could be assigned to a gene ontology class: 17%, 43%, 5% and 35% for UB, UO, UT and 

VT de novo assemblies, respectively. GO terms for Biological Processes, Cell 

Components and Molecular Function are summarised on  (Figure 4.3). We note, howeve

that the assemblies with higher proportion of annotated transcripts were the de novo 

D. unisexualis ovaries and D. valentini tail, which were also the tissues 

that presented the reads with the lowest heterozygosity values (Table 4.3).

heterozygosity values can be a factor disturbing assemblies, which could explain why the 

assembler performed better in these tissues (Ruttink et al., 2013). 
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Figure 4.1: Phylogenetic relationships within genus Darevskia, with three major clades: Saxicola, Caucasica 

Annotation was performed on the de novo assemblies done per sample (four in total: tail of 

). Only a small percentage of 

transcripts were successfully annotated using Interproscan (Figure 4.2), and even fewer 

could be assigned to a gene ontology class: 17%, 43%, 5% and 35% for UB, UO, UT and 

VT de novo assemblies, respectively. GO terms for Biological Processes, Cell 

Components and Molecular Function are summarised on  (Figure 4.3). We note, however, 

that the assemblies with higher proportion of annotated transcripts were the de novo 

tail, which were also the tissues 

that presented the reads with the lowest heterozygosity values (Table 4.3). High 

heterozygosity values can be a factor disturbing assemblies, which could explain why the 
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DISCUSSION 

The molecular study of non-model species can be very restricted in terms of the scientific 

questions posed due to the lack of comparative literature. Recently, with the advent of 

NGS techniques, this disadvantage could be overcome and several studies are emerging 

on the application of these techniques to scarcely known species. P

NGS techniques are no longer restricted to comparative and descriptive analyses of 
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The coalescent-based methods currently employed can produce robust phylogenetic 

inferences but require long sequences present in most of the individuals analysed (Hosner 

et al., 2016; Roure et al., 2012). The approach developed here was able to detect 

hundreds of regions with high variability and successfully sequence these homologous 

DNA regions from many species within the same genus. The amount of data generated 

could then be used downstream for phylogenetic inferences. 

 

Table 4.3: Heterozygosity calculated for each of tissue mapped against the reference transciptome used for 
the probe design. Values for observed homozygous positions (Ho), observed heterozygous positions (He), 
Dxy (Dxy = -(3/4) * ln( 1- 4/3 * D), from (Nei, 1978)) and observed heterozygosity (Observed He = He / (He + 
Ho)). Codes for the tissues analysed are as follow: UB (D. unisexualis – brain), UO (D. unisexualis – 
ovaries), UT (D. unisexualis – tail), VT (D. valentini – tail). 

 

 

 

 

 

 

Here we propose a workflow for the development of markers across the genome of non-

model taxa from transcriptome de novo assembly. These markers can be used for capture 

sequence probe design and these probes can then be used in capture sequence analysis. 

Given the probe design was performed on transcriptome data, the markers selected could 

be identified to the protein level, once the transcriptome is annotated. Given the high 

degree of allelic diversity found in protein level coding sequence, such as obtained from 

the transcriptome (with sequences with high diversity and others more conserved), this 

approach can be applied not only at a species level, but also at a generic level. 

Gene ontology terms from the annotation (GO) provide information on the function, locus 

of action and possible interactions of the transcripts assembled from our transcriptomes. 

From those we can identify gene product properties and describe them in terms of their 

UB UO UT VT

He 7214 4319 5803 4316

Ho 421128 326091 388613 350613

Dxy 0.0132 0.0119 0.0127 0.0117

Observed He 0.0168 0.0131 0.0147 0.0122



FCUP 
Why Sex? Darevskia answers. 

139 
 

associated biological processes, cellular components and molecular functions. Here we 

could assign a total of 15978, 16337, 4050 and 13898 for the UB, UO, UT and VT de novo 

assemblies, respectively. This is the first annotation performed on Darevskia sp. or any 

other member of the lizard family Lacertidae. 

We also found that the tail tissue presented lower heterozygosity in D. valentini than in D. 

unisexualis. This was expected given D. unisexualis is known to have a recent hybrid 

origin (Freitas et al., 2016; Murphy et al., 2000). Less expected was the high variation of 

heterozygosity across tissues within D. unisexualis, with the ovaries being the tissue with 

the lowest heterozygosity values (Table 4.3). This is likely the result of the biased 

expression of only one of the parental genomes, which could be due to genetic 

incompatibilities in the sex organs. However, a specific study of the RNA expression in the 

different tissues of parthenogens and sexual species has to be performed to determine 

either if the different genomic contributions in the hybrid parthenogens are generally 

differentially expressed, or if this is specific to the parthenogen individual we sequenced. 

This work provides a way of using NGS techniques in non-model taxa that is efficient and 

cost-effective. The probes developed allow sequencing hundreds of markers across the 

genome and can be successfully used in different species of the same genus 

simultaneously and in several individuals. The data set provided can then be used 

downstream for phylogenomics, population genomics and other evolutionary ecology 

studies. 
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CHAPTER 5 

DEEP BRANCH GENE FLOW – paper V 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.0 - D. unisexualis 
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ABSTRACT 

Recent evolutionary evidence highlights the influence and extent of introgressive 

hybridization during species divergence. However, the emerging studies demonstrating 

hybridization with gene flow during divergence generally focus on the relationships 

between only a limited number of species, missing the wider perspective of the larger 

group to which these species belong. Moreover, the extent of hybridization with gene flow 

is unknown in groups of species with parthenogenetic lineages of hybrid origin, and how 

that is related with possible barriers or opportunities for gene flow. Here we show evidence 

of frequent past hybridization in a species-rich genus of rock lizards, with two different 

outcomes. We found widespread gene flow between all major clades in the group, 

including those that diverged recently and anciently, except between the parental species 

for the parthenogenetic hybrids. While this widespread introgressive hybridization is 

uncommon in other groups, the role of hybrid asexuality as a reproductive isolation 

mechanism in the absence of other pre- and post- zygotic barriers to gene flow in 

diverging taxa is demonstrated here. 

 

 

INTRODUCTION 

The role, frequency and relevance attributed to hybridization in evolution has changed 

markedly in recent decades. When the biological species concept was first developed 

(Dobzhansky, 1940; Mayr, 1942), hybridization between different populations was seen as 

mostly ineffective, hybrid zones were expected not only to be transient but also were 

considered evidence of reproductive barriers between the diverging groups, and could 

even be responsible for disrupting stable populations where natural selection had been 
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reinforcing mating preferences (Abbott et al., 2013; Soltis, 2013). Recently, and especially 

with the development of high-throughput sequencing techniques and the exponential 

increase of analytical power, extensive evidence has been provided of ongoing 

hybridization within and between diverging clades (Abbott et al., 2016). This allowed the 

investigation of the role of hybridization in the origin of new hybrid species (Alves et al., 

2001; Freitas et al., 2016; Mavárez et al., 2006), in eroding barriers to gene exchange 

during speciation events (Abbott et al., 2013), and in offering evolutionary novelties as 

drivers of local adaptation, accelerating speciation by adaptive introgression (Cronk and 

Yang, 2016; Pereira et al., 2014; Stankowski and Streisfeld, 2015). 

In vertebrates, interspecific hybridization is the most common process known to be 

responsible for the origin of new hybrid parthenogenetic species. However, it is not known 

how the hybrid origin of parthenogenesis fits the overall history of hybridization within a 

given group. Also, it is still not clear whether the origin of vertebrate parthenogenesis is 

induced by the hybridization of species at a specific degree of divergence (Balance 

Hypothesis: (Moritz et al., 1989)) or by the hybridization of specific pairs of phylogenetic 

clades (Phylogenetic Constraint Hypothesis: (Avise, 2008; Darevsky, 1967)). Nevertheless, 

the same sexual parental species are likely to hybridize not only to the extent of originating 

new parthenogenetic species, but possibly allowing for fertile sexual hybrids to vector gene 

flow between different clades. Depending on whether interspecific hybridization originates 

new parthenogenetic species due to their phylogenetic distance (Moritz et al., 1989) or 

phylogenetic constraints (Avise, 2008; Darevsky, 1967), we can expect gene flow either 

between sexual species younger than those that generated the parthenogens, or only 

between similarly aged and older lineages in some specific clades. 

The group studied here is a genus of rock lizards present in the Caucasus, Darevskia, that 

has a wide distribution range and includes saxicolous and ground-dwelling species. The 

species D. praticola, D. derjugini, D. steineri, D. clarkorum and D. chlorogaster are ground-

dwelling, mostly found in forest habitat, but some, like D. praticola, inhabit both forest and 

grasslands. On the other hand, D. raddei, D. defilippii, D. portschinskii, D. saxicola are 

exclusively saxicolous, and D. valentini and D. rudis (both belonging to the Rudis clade) 

can be found both in rocky habitats (saxicolous) as in grasslands (ground-dwelling) 

(Ahmadzadeh et al., 2013; Tarkhnishvili et al., 2013). Given this diversity of habitats 

occupied, it is not clear whether lineages in this group can shift their niche readily and 

occupy new habitats, or if niche specializations took place early in Darevskia evolution and 
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remained conserved, allowing for allopatric isolation. 

Seven hybrid asexual species have been described in Darevskia, each resulting from the 

interspecific hybridization between a specific sexual species pair, and only some sexual 

species participated in these hybridization events. In particular, D. raddei and D. mixta 

alone contributed as the maternal species, and D. portschinskii and D. valentini as the 

paternal species. Parthenogenetic lineages are recent hybrids between pairs of sexual 

species (Freitas et al., 2016; Murphy, 2000), and polyploid backcross hybrids are known to 

occur where parthenogenetic populations are in sympatry with sexual species (Danielyan 

et al., 2008; Freitas et al., in prep). 

In this study we assess the extent of introgressive hybridization events, and secondary 

contact, Darevskia sexual species underwent during divergence. If gene flow is detected, 

we predict different patterns of hybridization with gene flow in the genus depending on 

whether interspecific hybridization that originated the parthenogens was limited by the 

sexual species’ phylogenetic distance or due to some specific phylogenetic constraints. 

Under the Balance Hypothesis, we predict gene flow between pairs of lineages younger 

than those that generated the parthenogens, and/or gene flow between the parental pairs 

of the parthenogens until these were originated. In contrast, under the phylogenetic 

hypothesis, we predict gene flow either concentrated in the lineages that produce 

parthenogens and at earlier stages, if hybridization is a specific property of the lineage 

pair, or widespread gene flow that is sometimes older than the lineages that generate 

parthenogens but absent between the parental pairs, if parthenogenesis rather than 

hybridization is the property of the lineage pair required for the origin of asexual lineages. 

Moreover, where gene flow is, in fact, detected between sexual species, we test whether it 

is restricted to a small proportion of the genome or whether there are “hybrid species” with 

even mixtures of alleles across the genome from different clades. 

To answer these questions we used targeted re-sequencing to analyse over 600 loci in a 

phylogenetic framework. These loci were previously selected from transcriptome data of 

two Darevskia species (Freitas et al, in prep). A species tree was built to determine the 

divergence times between the different clades and tree topology. The markers were also 

analysed for discordance in tree topology, for evidence of introgression, and using 

migration tests to date the admixture events. 
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MATERIAL AND METHODS 

Species selection 

In total, 69 individuals belonging to 14 sexual species are included in this study (Table 1-

SI). All samples were collected from the field, where tail tips were preserved and 

photographs and basic measurements were recorded for later assessment of species 

identification. An outgroup species, Iranolacerta brandtii, was chosen due to its 

phylogenetic proximity to our study group (Mendes et al., 2016) and DNA was extracted 

from fresh tissue samples collected from the field for all individuals. Total genomic DNA 

was extracted from approximately 30 mg of each tail tip following standard high-salt 

protocols (Sambrook and Russell, 2001). For older samples the Qiagen DNeasy Blood 

and Tissue kit was used, following manufacturer's instructions. 

 

Capture sequence and genotyping 

Probes for the capture sequence were previously designed using a de novo assembly of a 

Darevskia transcriptome (Freitas et al, in prep: Chapter 4). Library preparation and Illumina 

paired-end sequencing of the captured fragments was performed at Rapid Genomics Inc 

(Florida 32601 USA), resulting in reads 100 bp long with a 80 bp insert size. 

Read filtering was performed with Cutadapt (Martin, 2011) eliminating all reads shorter 

than 40 bp and with PHRED quality lower than 20. Stampy (Lunter and Goodson, 2011) 

was used to map the reads against the reference de novo assembly used to design the 

probes. A substitution rate was set regarding the distance of the different species to the 

reference transcriptome, higher for phylogenetically distant species and lower for 

phylogenetically close species. Accordingly, individuals were divided into three groups 

(tests were repeated after correcting for misidentified individuals): Rudis group (with 

SR=0.01), non-Rudis group (SR = 0.03) and the outgroup (SR = 0.1). In cases of multiple 

mappings that are almost (but not exactly) the same, the SR parameter helps to choose 

the best mapping by influencing the mapping quality (MAPQ) score. Best SR values were 

chosen when comparing number of variants (after SNP calling) and flagstat values for the 

alignments. Samtools (Li et al., 2009) was used to convert to bam, sort, index and 

calculate basic statistics of the alignment (flagstat option). The MarkDuplicates option in 

Picard tools was used to remove PCR duplicates, which can be high given the capture 

sequence protocol. SNP calling was used with FreeBayes (Garrison and Marth, 2012) 

using minimum coverage of two per position, calling the four best alleles (for high 



FCUP 
Why Sex? Darevskia answers. 

153 
 

substitution rate loci, given we are using different species and expect more variation than 

within population) and without the population priors. Post-vcf filtering was performed with 

VCFtools (Danecek et al., 2011) and vcflib (https://github.com/vcflib/vcflib) selecting 

variants with genotype quality > 30, coverage between 5 and 400 for ingroup species. 

Ingroup individuals D. parvula [12738], D. valentini [12641] and D. valentini [16280] were 

filtered separately since they had higher coverage; the selected coverage interval was 5-

800 read depth. Outgroup individuals (Iranolacerta brandtii) were filtered with the same 

parameters as the ingroup except for coverage (DP = 2-400). Only SNPs were used in the 

downstream analyses, so indels and other types of variants were removed. Multiple 

nucleotide positions (MNP) identified by FreeBayes were deconstructed with 

vcfallelicprimitives option from vcflib. 

 

Phylogenetic analyses 

Fasta files for each marker were made from the vcf file using a python script 

(https://github.com/SusanaFreitas/capture-data). Fasta files were then trimmed to remove 

missing data allowing only for a maximum of 10% missing genotypes for each position in 

each alignment. Phylogenetic analysis on each marker were performed using Bayesian 

inference (BI) (MrBayes v. 3.2, (Huelsenbeck and Ronquist, 2001; Ronquist and 

Huelsenbeck, 2003) and the resultant output trees were later used as input for Bucky 

(Larget et al., 2010) analysis (see bellow for detailed information about this analysis). 

Bucky looks for tree incongruence, thus if the number of taxa is too high the tree space is 

very large, reducing the probability of detecting the same tree more than once. To increase 

Bucky's sensitivity, taxon number was reduced my merging some of the most recently 

diverged species (after *BEAST2 analysis). Species merged were D. brauneri - D. 

saxicola, D. mixta2 - D. parvula and the two D. praticola clades, resulting in 13 taxa plus 

the ougroup. Only one randomly selected sequence per taxon was used in BI runs. In 

MrBayes, all analyses started with randomly generated trees and ran for 30x106, with 

sampling at intervals of 1000 generations, producing 30,000 trees. A GTR + I + Γ model (a 

General Time Reversible model with a gamma-shaped distribution of rates across sites) 

was chosen, so that conversion rates for each nucleotide pair were estimated, and no 

partitioning was assumed. Two independent runs were performed on each dataset. To 

guarantee analysis was performed on the stabilised likelihood, 40% of each total run was 

treated as burn-in. 
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Species tree estimates were performed with BEAST* 2 v2.4.4 (Bouckaert et al., 2014) and 

SVDQuartets (Chifman and Kubatko, 2014, 2015). The BEAST* package performs 

simultaneous gene tree and species tree inference under a combined coalescent and 

sequence evolution model, and for this analysis the most variable 31 markers were 

selected. The tMRCA was estimated using as prior the split between the ingroup 

(Darevskia) and the outgroup (Iranolacerta) estimated elsewhere (10 Myrs: Mendes et al., 

2016). To improve the convergence of the runs, this split was calibrated ignoring 

uncertainty. Run convergence for BEAST* 2 was evaluated by ESS values above 200 for 

all model parameters and posterior tree samples were combined to produce maximum 

clade credibility species trees with the software Tree Annotator v2.4.4 (Bouckaert et al., 

2014), with node heights set to mean age estimates. To confirm the species tree topology, 

SVDQuartets (Chifman and Kubatko, 2014, 2015) was used with the most variable 300 

markers concatenated and run together. This is not a concatenated species tree inference, 

instead the method calculates the unrooted topology for quartets of taxa for each value of 

a matrix of site patterns (the matrix of concatenated SNPs), and later infers the species 

phylogeny using quartets methods (Chifman and Kubatko, 2015). The primary 

concordance tree calculated by Bucky is also a reliable estimate of the species tree under 

the coalescent model (Degnan et al., 2009), and it was also used for comparison. 

 

Species structure and population analyses 

To identify any misclassified individuals, a discriminant analysis of principal components 

(DAPC) using the ADEGENET package (Jombart et al., 2010) was used on the SNP data 

set. The optimum number of clusters was chosen with the find.clusters() option, by 

comparing the different clustering solutions using a Bayesian Information Criterion (BIC). 

Genetic composition was further investigated with STRUCTURE (Pritchard et al., 2000), 

which also allowed us to estimate the level of admixture for each species. This software 

applies a Bayesian clustering algorithm to identify subpopulations in Hardy-Weinberg 

equilibrium, assigning individuals to different clusters (or populations) and estimating the 

population allele frequencies. A random SNP per marker was selected and ten runs were 

performed, each with a different combination of randomly selected SNPs. Values from the 

different runs were combined with Clumpp (Jakobsson and Rosenberg, 2007). The best K 

was selected using a combination of methods: Delta K (Evanno et al., 2005) and the 

ADEGENET best K approximation calculated with the BIC. 
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Tests of introgression 

Bucky (Larget et al., 2010) analysis was performed on a set of 300 loci. Given the low 

variability of some markers, and thus low phylogenetic information, only the most variable 

markers out of the 616 re-captured were selected for the Bucky run. This software takes 

as input unique trees from the tree distribution calculated for the Bayesian phylogenetic 

inference for each locus in MrBayes, as detailed above. It examines the tree distribution 

for each marker used and, with a non-parametric Dirichlet process, clusters markers into 

groups that share the same topology. The Dirichlet process uses an a priori level of 

discordance α, which combines the information in the sequences of those genes that are 

inferred to be congruent (Chung and Ane, 2011). The primary concordance tree is 

constructed based on the inferred clades for the largest proportion of loci analysed, 

including the highest concordance factors (CFs) for each clade represented. This value 

corresponds to the proportion of genes that truly have the clade in their trees and is 

calculated not only for the primary concordance tree, but also for the clades which are 

found in the distribution of trees but are not represented in the concordance tree. If the CF 

is high enough, we can assume the discordance which lead to the high proportion of this 

clade is relevant and these taxa present signs of incomplete lineage sorting (ILS), 

introgressive hybridization or horizontal gene transfer (HGT). Since no assumptions are 

made by this software for the reasons of discordance, it should be used only to detect it 

and downstream comparative analyses should be undertaken in order to understand the 

causes of discordance. 

Patterson's D-statistics (Durand et al., 2011) were used for formal tests of whether the 

pattern of shared variation between species provided by Bucky is better explained by gene 

flow than incomplete lineage sorting. These tests, also called ABBA/BABA tests, determine 

whether the number of derived alleles (B) shared by reciprocally monophyletic taxa is 

greater than expected under the null model of incomplete lineage sorting (ILS). Ancestral 

(A) and derived (B) alleles are identified by comparison with an outgroup taxon. The 

numbers of ABBA and BABA patterns are calculated in a group of four clades, two sister 

clades (P1 and P2), a putative admixed clade (P3) and the outgroup (O). If no differential 

gene flow has happened between one of the sister taxa (P1, P2) and the “admixed” taxon 

(P3) the numbers of ABBA and BABA patterns are expected to be the same. D-statistics 

were estimated with the evobiR package in R (https://github.com/coleoguy/evobir) which 

takes as input a fasta file with the concatenated sequences of each of the taxa (P1, P2, P3 
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and O) without any missing data. Different combinations of taxa were used to test 

evidence of introgression from previous analyses and, for each tested combination, 

individuals of each species were randomly arranged so that for each combination of taxa 

D-statistics were calculated for multiple sets of individuals. These combinations were 

made such that the *BEAST2 species tree relationships were respected. For each 

combination of taxa (hereafter referenced as a test), 150 random combinations of 

individuals were run and D-statistics estimated for each. Significant deviations from zero of 

the distribution of the estimated D-statistics per test were calculated with Student's t-test 

and a Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) for multiple 

comparisons was used for the p-values. In the four-taxon tests a significant deviation from 

0 of the D-statistic distribution indicated introgression between P1 and P3 (if the mean was 

< 0) or between P2 and P3 (if the mean was > 0), compared with the expectation from ILS 

alone. 

In addition to the ABBA/BABA tests, formal tests with three-population (f3) and four-

population (f4) statistics (Reich et al., 2009) were used to estimate admixture proportions in 

groups of populations (or taxa), testing for introgression. f3 and f4 statistics estimate 

correlations between allele frequencies of three  (f3) or four (f4) populations joined by an 

unrooted tree. If the populations tested are unadmixed, the genetic drift (measured by the 

allele frequency as a proxy) should be uncorrelated. If correlation between populations is 

found, this is indicative of gene flow. The f3  statistic (X; Y, W) tests for admixture between 

a test population X and two reference populations, Y and W. In case of no admixture, its 

expected value is positive, and negative in case of admixture between X and Y, X and W, 

or both X and Y/W. On the other hand, the f4 statistic tests the correlation between allele 

frequency differences in an unrooted tree (A,B;C,D). It is equal to zero if there are no 

correlations, and no admixture across the tree branches, positive if admixture occurs 

between A and C, between B and D, or both, and negative if admixture occurs between A 

and D, B and C, or both. The statistical significance for both of these tests was assessed 

using a Z-score (f3 or f4 divided by its standard deviation), and a threshold Z-score of 3, 

which corresponds to a p-value of 0.01, was used. threepop and fourpop programs in the 

TreeMix package (v 1.13; (Pickrell and Pritchard, 2012)) were used to calculate f3 and f4 

statistics, respectively, as well as Z-scores to assess the significance of the test values for 

all possible combinations of three and four taxa within Darevskia. These Z-scores were 

then transformed into P-values and significance was confirmed after a Benjamini-
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Hochberg correction as described above. 

To visualise the extent, directionality and time of gene flow the graph-based method 

developed in TreeMix was used. This approach uses allele frequencies at genome-wide 

polymorphisms and a Gaussian approximation of the genetic drift among populations to 

estimate population graphs with 0-21 migration/admixture events connecting populations. 

The number of admixture events was estimated by comparing the change in log likelihood 

for each additional event. The proportion of the variance in population covariances 

explained by each population graph with different number of admixture events was 

calculated, and the best model estimated from the plot of the changes in the percentage of 

explained variance. Following this, we added 4 and 11 migration edges to the tree and 

observed the estimated admixture events. For TreeMix, f3 and f4 a total of 5823 SNPs was 

used, missing data excluded. Only ingroup species were tested here: Iranolacerta was not 

included. 

 

 

RESULTS 

Mapping and SNP calling 

From the 574,341 bases in the transcriptome reference alignment used (Freitas et al, in 

prep: Chapter 4), a total of 429,078 sites for 75 individuals were recovered from the 

mapping of capture sequencing reads and SNP calling analyses, of which 11,738 were 

indels, 2,156 were MNPs and 408,082 were SNPs. On average, 226 bp were missing from 

each reference contig, and the amount of recovered sequence was between 25 and 2893 

bp per target (reference contigs ranged from 550 to 3740bp: Freitas et al, in prep). Two 

individuals, one outgroup and one ingroup, had to be removed due to very low read 

coverage. After filtering and resolution of MNPs, 433,168 sites were left corresponding to 

64,150 SNPs. From the total 627 contigs targeted, 616 were used in this work. All contigs 

analysed were variable in this dataset (except one: Locus_9712), ranging from 1 to 379 

SNPs in total (0.12 to 24%). A total of 45,959 positions showed a minor allele count of 2 or 

higher, i.e. they were phylogenetically informative. 

 

Phylogenetic inference 

Species tree topologies calculated by SVDQuartets (Figure S5.1), *BEAST2 (Figure 5.1) 

and the population tree from Bucky (Figure 5.2) were concordant for nearly all clades. Test 
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runs with fewer positions in SVDQuartets (Figure S5.1) showed some inconsistency in the 

position for D. parvula, which grouped with the Rudis clade (D. rudis, D. valentini and D. 

portschinskii) instead of with D. mixta/D. clarkorum clade for those SVDQuartets analyses 

(data not shown). Also, in the SVDQuartets tree the D. mixta/D. clarkorum clade branched 

with the main D. raddei clade, while in the remaining analyses (*BEAST2 and Bucky) it 

branched with D. parvula. SVDQuartets and Bucky do not allow for clock rate 

assumptions, so the resulting tree branch lengths were not estimated. 

In the *BEAST2 species tree the most basal split within Darevskia is between the Rudis 

clade and the remaining species, dated to have happened approximately ~5 [3.9, 6.1] My 

ago (posterior mode [95% credible interval]). The next split divided the Saxicola clade (D. 

praticola, D. brauneri and D. saxicola) from the Caucasica clade (D. raddei, D. mixta, D. 

parvula, D. chlorogaster, D. steineri, D. defilippi, D. clarkorum, D. derjugini), at ~4.5 [3.5, 

5.5] My ago. 

The species tree inference (Figure 5.1) also showed that species with different habitat 

requirements, saxicolous (rocky habitat) and ground-dwelling (forest or grass habitats), 

can be found in all major Darevskia clades. 
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Figure 5.1 – Densitree representation of the *BEAST2

species analysed in this study. Parthenogenetic parental species are highlighted, green the paternal species 

and grey the maternal species. The recovered clades are noted with letters, A the Rudis clade, B the 

Caucasica and C the Saxicola. Habitat requirements are identified for all species, saxicolous (grey block) 

and ground dwelling (tree for forest habitat, grass for grasslands). Branch colours correspond to the 

likelihood of the trees: blue is the most likely tree

third most likely topology. Consensus tree is drawn as a single blue line above all the others.

 

 

 

 

 

 

 

 

 

 

Densitree representation of the *BEAST2 species tree inference for the

species analysed in this study. Parthenogenetic parental species are highlighted, green the paternal species 

and grey the maternal species. The recovered clades are noted with letters, A the Rudis clade, B the 

ica and C the Saxicola. Habitat requirements are identified for all species, saxicolous (grey block) 

and ground dwelling (tree for forest habitat, grass for grasslands). Branch colours correspond to the 

likelihood of the trees: blue is the most likely tree topology, red the second most likely topology and green the 

third most likely topology. Consensus tree is drawn as a single blue line above all the others.
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tree inference for the sexual Darevskia 

species analysed in this study. Parthenogenetic parental species are highlighted, green the paternal species 

and grey the maternal species. The recovered clades are noted with letters, A the Rudis clade, B the 

ica and C the Saxicola. Habitat requirements are identified for all species, saxicolous (grey block) 

and ground dwelling (tree for forest habitat, grass for grasslands). Branch colours correspond to the 

topology, red the second most likely topology and green the 

third most likely topology. Consensus tree is drawn as a single blue line above all the others. 
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Introgression tests 

Bucky analysis showed alternative clades not represented in the 

have higher concordance factor (CF) than the other combination of taxa, and thus reject 

the null hypothesis that the coalescent model is sufficient to explain the observed gene 

tree discordance. To explain this incongruence, altern

hybridization or ILS, have to be considered.

Evidence for incongruence (Figure 5.2) was found at different levels in the tree, not only 

between recently diverged taxa (e.g. 

clade pairs (e.g. Rudis clade, 

between any of the parental pairs known to have generated parthenogens.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 - Primary concordance tree inferred with Bucky. Insets correspond to

represented in the primary concordance tree, and colour correspondence to CF values is identified in the 

gradient. 

 

 

Bucky analysis showed alternative clades not represented in the primary concordance tree 

have higher concordance factor (CF) than the other combination of taxa, and thus reject 

the null hypothesis that the coalescent model is sufficient to explain the observed gene 

tree discordance. To explain this incongruence, alternative hypotheses, introgressive 

hybridization or ILS, have to be considered. 

Evidence for incongruence (Figure 5.2) was found at different levels in the tree, not only 

between recently diverged taxa (e.g. D. chlorogaster , D. raddei), but also between majo

clade pairs (e.g. Rudis clade, D. parvula). No evidence for gene 

between any of the parental pairs known to have generated parthenogens.

Primary concordance tree inferred with Bucky. Insets correspond to

represented in the primary concordance tree, and colour correspondence to CF values is identified in the 
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primary concordance tree 

have higher concordance factor (CF) than the other combination of taxa, and thus reject 

the null hypothesis that the coalescent model is sufficient to explain the observed gene 

ative hypotheses, introgressive 

Evidence for incongruence (Figure 5.2) was found at different levels in the tree, not only 

), but also between major 

 flow/ILS was found 

between any of the parental pairs known to have generated parthenogens. 

Primary concordance tree inferred with Bucky. Insets correspond to significant clades not 

represented in the primary concordance tree, and colour correspondence to CF values is identified in the 



FCUP 
Why Sex? Darevskia answers. 

161 
 

D-statistics were estimated for several different combinations of species in order to test if 

Bucky gene tree discordance results are due to introgressive hybridization or ILS. From 

the 79 D-statistics tests, more than half were significantly different than zero (Table S5.1). 

Regarding the f3 and f4 formal tests, only the four-population values were significant. A 

significantly negative f3 (X; Y, W) value indicates that the frequencies of alleles in 

population X tend to be intermediate between Y and W, which can only arise if population 

X resulted from a mixture of populations related to Y and W. However, if populations had 

enough time for drift to happen, or X had suffered bottlenecks after the admixture event, 

consistent with the complex demographic history of this genus, the f3 statistic may not 

recover a signal of introgression (Decker et al., 2014; Kamdem et al., 2016). The f4 formal 

tests provided additional evidences to widespread admixture in the genus, however 

because this test should be evaluated as admixture between either/or both species pairs 

tested, it was only used here as a confirmation of other admixture evidence (Figure S5.2). 

D-statistics and f4 formal tests showed that directional hybridization is widespread in the 

genus Darevskia (Figure 5.3). Even though most clades presented evidence for 

introgression, there was no evidence for directional hybridization between the parental 

pairs of the parthenogenetic hybrids, except D-statistics between D. portschinskii and D. 

mixta – 1. However, whenever the pair D. portschinskii and D. mixta-1 were analysed 

together with other species that have also presented evidence for gene flow with either 

one of these two, a significant test favoured gene flow between the third species and either 

D. portschinskii or D. mixta -1 (see tests 6, 70 and 76 as an example, in Table S5.1). 
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Figure 5.3 – Coloured vertical arrows depict ABBA/BABA significant relationships within 

(for detailed information about all the significant and non

tree adapted from Bucky result. 

 

 

 

TreeMix was used to construct a tree connecting the 15 taxa in order to describe and date 

admixture events. The variance explained by the TreeMix ML model without migration 

edges was high (98.9%, Figure S5.3), whi

can also be explained by a bifurcating tree (with no assumptions for gene flow). However, 

this value is in agreement with other studies that have used TreeMix to detect admixture 

between different taxa, even whe

sequencing (Kamdem et al., 2016) and SNP data (Decker et al., 2014)). Most of the 

genetic affinities found by TreeMix (Figure 5.4) was consistent with the evidence for 

introgression found by both the formal t

introgression in Figure S5.2). No evidence for introgression between the parthenogens' 

Coloured vertical arrows depict ABBA/BABA significant relationships within 

(for detailed information about all the significant and non-significant tests performed see Table S5.1).

TreeMix was used to construct a tree connecting the 15 taxa in order to describe and date 

admixture events. The variance explained by the TreeMix ML model without migration 

edges was high (98.9%, Figure S5.3), which means the main relationships between taxa 

can also be explained by a bifurcating tree (with no assumptions for gene flow). However, 

this value is in agreement with other studies that have used TreeMix to detect admixture 

between different taxa, even when different types of markers are used (e.g. RAD 

sequencing (Kamdem et al., 2016) and SNP data (Decker et al., 2014)). Most of the 

genetic affinities found by TreeMix (Figure 5.4) was consistent with the evidence for 

introgression found by both the formal tests and Bucky (comparison of all analyses of 

introgression in Figure S5.2). No evidence for introgression between the parthenogens' 
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Coloured vertical arrows depict ABBA/BABA significant relationships within Darevskia clades 

significant tests performed see Table S5.1). Species 

TreeMix was used to construct a tree connecting the 15 taxa in order to describe and date 

admixture events. The variance explained by the TreeMix ML model without migration 
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ests and Bucky (comparison of all analyses of 
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parental pairs was found, even though there was an estimated introgression event D. 

mixta (maternal species) and the ancestral state of D. valentini and D. portschinskii 

(paternal species). 

 

The TreeMix model also showed admixture events happened along the evolutionary time-

scale of Darevskia, with some events happening more recently (such as the D. raddei-D. 

chlorogaster introgression) and others estimated to have happened before the split within  

its clades (such as the D. praticola – Caucasica clade). The D.parvula - Rudis clade 

migration edge falls after the split within the Rudis clade, and specifically between D. 

portschinskii – D. parvula. This analysis also showed, in concordance with all the others, a 

high number of introgressive events between the parthenogens' sexual parentals and 

other Darevskia species, but not within the parthenogens' parental pairs. 

The values of the residual covariance between each species pair identify deviations the 

proposed model. In Figure 5.4, heat colours depict the residual covariance between each 

species pair and darker colours indicate taxa more closely related to each other than 

expected by the proposed model, which could mean that the bifurcating model together 

with the estimated migration events may still not fully explain the covariance among 

Darevskia species. 
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Figure 5.4 – TreeMix Maximum Likelihood (ML) trees estimated from the allelic frequency of 5823 SNPs. ML 

tree (left) and residual fit from the ML model (right) inferred with 4 migrations (top) and 11 migration edges 

(bottom). The arrows on the ML trees (left) indicate the directionali

colour of  the edge reflect the intensity of admixture. The colours in the residual fit matrix represent the 

standard error depicted in each corresponding tree (light colours are close to 0, dark colours have higher 

standard error). 

 

 

 

 

Likelihood (ML) trees estimated from the allelic frequency of 5823 SNPs. ML 

tree (left) and residual fit from the ML model (right) inferred with 4 migrations (top) and 11 migration edges 

(bottom). The arrows on the ML trees (left) indicate the directionality of gene flow migration edge and the 

colour of  the edge reflect the intensity of admixture. The colours in the residual fit matrix represent the 

standard error depicted in each corresponding tree (light colours are close to 0, dark colours have higher 
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Likelihood (ML) trees estimated from the allelic frequency of 5823 SNPs. ML 

tree (left) and residual fit from the ML model (right) inferred with 4 migrations (top) and 11 migration edges 

ty of gene flow migration edge and the 

colour of  the edge reflect the intensity of admixture. The colours in the residual fit matrix represent the 

standard error depicted in each corresponding tree (light colours are close to 0, dark colours have higher 
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DISCUSSION 

Recent studies on speciation and species divergence have not only challenged the 

conventional idea of the disruptive role hybridization has on divergence and speciation 

(Martin et al., 2015), but have also been showing how hybridization can accelerate 

speciation by adaptive introgression (Cronk and Yang, 2016; Pereira et al., 2014), or even 

originate new hybrid species (Alves et al., 2001; Trier et al., 2014). Enhanced with the 

advent of high-throughput sequencing techniques and the exponential increase of 

analytical power, which allowed for the analysis of cross genome markers in several 

individuals, introgressive hybridization has been acknowledged as a part of the 

evolutionary history of organisms (Abbott et al., 2016), with different parts of the genome 

presenting different permeability rates to gene flow. 

In vertebrates, hybridization can frequently lead to the origin of parthenogenetic hybrid 

lineages, however it is not known whether this hybridization is a specific property of the 

parthenogens' parental species pair, or how hybrid asexuality affects gene flow among 

such groups. In this study we tested the rate and frequency of hybridization with gene flow 

in a group that suffered repeated secondary contact during divergence and that presents a 

reticulate evolutionary history (Freitas et al., 2016). Here we aimed to understand the role 

of hybrid asexuality on the general patterns of within group introgression: if hybrid 

asexuality is dependent on the genetic distance between the parental clades, then we 

expect gene flow only between young diverged clades, or ancient gene flow between the 

parthenogens' parental species pairs (until the origin event); on the other hand, if hybrid 

asexuality depends on the specificity of the species pairs, then gene flow will be found 

widespread except between the parental species pairs. 

 

 

Evolutionary history of Darevskia 

Taxonomic groups with highly dynamic species ranges, such as species inhabiting regions 

strongly affected by climate-induced geographic range shifts during the Pleistocene, are 

more prone to secondary contact and intermittent gene flow, because behavioural 

reproductive barriers are not likely to evolve while in allopatry (Christe et al., 2016). The 

Early Pliocene was marked by great orogenic and climatic changes in the Caucasus 

mountain ranges, leading to a regression of sea water and the formation of the modern 

outlines of the Black and Caspian Seas (Popov et al., 2006). This was induced by high 
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volcanic activity in the region, continuing until the Mid Pliocene (Tarkhnishvili et al., 2013). 

The first split within Darevskia was dated to ~5 M yrs (beginning of Pliocene), coincident 

with these strong changes. Speciation events in Darevskia seemed to have ranged 

between ~5 (beginning of Pliocene) to 0.3 (Pleistocene) My ago. However, given the lack 

of uncertainty associated to the calibration used for the species tree construction, 

interpretation of the age of the splits within Darevskia should be taken cautiously. 

When speciation events happen in a few generations time scale, as in situations with 

abrupt climate changes, divergent lineages can retain shared ancient polymorphisms 

(and/or if they had large effective population size) (Takahashi et al., 2001). This incomplete 

lineage sorting (ILS) can lead to incongruence in the gene trees, which can mislead the 

detection of introgression hybridization. Because of that, a multifaceted approach has to 

be taken in order to distinguish the different degrees of incongruence that we can find in a 

group divergence continuum. 

The present species tree matches the genus phylogeny previously proposed (Murphy et 

al., 2000), except for the position of D. parvula and D. mixta. In the available phylogeny 

produced with mitochondrial DNA (Cyt-b (Murphy et al., 2000) and ND4 (Freitas et al, in 

prep) and allozymes (Fu et al., 1997), D. parvula is placed within the Rudis clade, while in 

our study D. parvula is closer to the species of the Caucasica clade, even though early 

diverging. However, our analyses showed high degrees of introgression, identified by 

Bucky (Figure 5.2), and confirmed by ABBA/BABA tests (Figure 5.3), f4 (Figure S5.2) and 

TreeMix (Figure 5.4), between D. parvula and the Rudis clade, as well as between D. 

parvula and the Caucasica clade, which could have lead to the incongruence in the 

position of this species in the different studies. The same happens with D. mixta, which 

instead of branching with D. raddei (Murphy et al., 1996) in our study is congruently found 

together with D. clarkorum. Like with D. parvula, D mixta also showed evidences for 

frequent hybridization with gene flow with other sexual species, specifically D. raddei 

(Figure 5.4), which could explain the incongruence found. 

The species tree analysis also showed that the niche change from saxicolous habitat 

ground-dwelling environments happened more than once in Darevskia evolution, since 

neither of the habitat requirements was restricted to all species in each clade. The species 

D. praticola, D. derjugini, D. steineri, D. clarkorum and D. chlorogaster are ground-

dwelling, while D. raddei, D. defilippii, D. portschinskii are saxicolous (Ahmadzadeh et al., 

2013; Tarkhnishvili et al., 2013). But despite such habitat differences potentially limiting the 
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possibility for hybridization and gene flow between species with different habitat 

requirements, our results do not show any evidences that species with similar behaviours 

share higher levels of admixture between them. So, given these species are unlikely to 

have overlapped recently, either Darevskia species can rapidly change niche and adapt to 

new habitats or niche changes happened recently in Darevskia evolution and allopatric 

isolation still has not made a clear effect on the admixture. 

 

 

Hybridization and gene flow 

The different types of introgression analyses performed here behave differently regarding 

incomplete lineage sorting (ILS). While Bucky does not distinguish between ILS and gene 

flow (Larget et al., 2010), the formal tests (D and f4 statistics) used are not expected to be 

affected by ILS, and if these tests are significant, gene flow must be the only responsible 

actor (Durand et al., 2011). Also, these formal tests are not sensitive to recombination, 

since they can detect gene flow even after recombination has partially diluted the 

introgressed genome. Bucky, on the other hand, since it is based on gene tree analyses, 

can be affected more intensively by recombination. If recombination breaks the 

introgressed sequence analysed, clades may not coalesce, because recombination breaks 

the sequence and also dilutes the signal of the introgression. Following this reasoning, 

while D-statistics and f4 formal tests can detect both old and recent hybridization with gene 

flow events, Bucky can only detect gene flow events that have not been diluted by 

recombination, and thus, are more recent. To complement these analyses, TreeMix was 

used not only to confirm the patterns of introgression found, but also as a way to date the 

historical splits and admixture within Darevskia.  

Together, all analyses show a high frequency of gene flow between all major clades, that 

have happened not only between recently diverged taxa, but also between more anciently 

diverged clades. TreeMix results, and Bucky vs formal tests, showed admixture events 

have happened along the divergence continuum during Darevskia evolution, even though 

the precise date and amount of introgressed alleles could not be measured with this 

dataset. 

This widespread evidence of introgressive hybridization in Darevskia confirms the 

expectation for episodic secondary contact throughout evolution of this group. Even 

though Darevskia species occupy different habitats, they are distributed in very 
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heterogeneous landscapes, which could allow for species with different habitat uses to 

hybridize. Moreover, the absence of introgressive hybridization between some species 

pairs could be only due to biogeographic restrictions, since some species ranges do not 

overlap, rather than to genetic constraints. Evidence for introgressive hybridization 

between diverging clades has been found in several systems (Mavárez et al., 2006; 

Pereira et al., 2014; Stankowski and Streisfeld, 2015), however this is the first study to find 

such widespread patterns of deep branch gene flow in a vertebrate group with known 

recurrent hybridization, past and present. 

 

Gene flow, asexuality and reproductive barriers in diverging clades 

Despite the high number of introgressive events detected among Darevskia, no evidence 

of hybridization with gene flow was found between the parental species pairs of the 

asexual hybrids, D. raddei and D. mixta (maternal species) and D. portschinskii and D. 

rudis/D. valentini (paternal species), in Bucky, D-statistics, f4 or TreeMix (with one 

exception, see Results). Contrary to other sexual species that might have never had the 

change to geographically overlap, and thus hybridize, the existence of the asexual hybrids 

is in itself an evidence for secondary contact and hybridization between these sexual 

species pairs. Thus, the lack of gene flow was prevented by reproductive barriers between 

the species pairs, and can be interpreted in the light of the Balance and Phylogenetic 

constraint hypotheses. When these taxa hybridized in the past, they originated a hybrid 

which was capable of reproducing asexually, but not sexually viable. Thus, it could not 

have acted as a vector of gene flow and represented the reproductive isolation between 

both clades (Janko et al., 2016). If the origin of parthenogenetic hybrids in vertebrates was 

due to the phylogenetic distance between parentals, we would find evidence of gene flow 

only between pairs of lineages younger than those that generated the parthenogens. 

However, we find gene flow not only between young lineages, but also deep branch gene 

flow, recent and past. On the other hand, if only some specific species pairs can produce 

parthenogens, we would find widespread gene flow in the genus, except between the 

parental species pairs before the origin of the parthenogens. Our study showed that the 

hybrid parthenogenetic lineages are the only record of the past hybridization between the 

parthenogens parental species, and no evidence of gene flow (before or after that 

hybridization event) was found. Extant parthenogenetic Darevskia are expected to be 

relatively recent (~100 Kyrs, Freitas et al, 2016). Thus, the absence of any gene flow 
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between these parentals is most likely explained by the fact that every time they contacted 

they originated a hybrid that was not capable of sexually reproducing with any of the 

parentals. Even though both hypotheses are not mutually exclusive, the Phylogenetic 

Constraint Hypothesis better explains the origin of parthenogenetic hybrids and the 

patterns of gene flow found in this genus. 

The expectations of the Phylogenetic Constraint Hypothesis, and the evidence provided by 

this genus, are that parthenogenetic hybrids can only be originated under rather special 

conditions. Given this, the scarcity of asexual lineages could be partially because of their 

low origination rate (Janko et al., 2008). Sexual reproduction is widespread in nature, and 

its higher potential for adaptation when in comparison to asexual reproductive species is 

generally used to explain its prevalence (Luijckx et al., 2017; McDonald et al., 2016). 

However, the reproductive potential asexual individuals present (Maynard Smith, 1971), 

the fact it has been shown that some lineages are known to have been reproducing solely 

asexually for millions of years (Judson and Normark, 1996), and their potential to occupy 

more diverse habitats than sexual relatives (Fontcuberta García-Cuenca et al., 2016) are 

an indication that a complementary explanation for the scarcity of aseexual lineages is 

needed. If the conditions that lead to the origin of asexual lineages are so particular that 

only rarely can happen in nature, more than their low potential to adaptation the rarity of 

asexual lineages could simply be due to low origination rates. 

 

In this study we found extensive evidence of episodic introgression between the different 

clades in Darevskia, both anciently and recently diverged, with the exception of the 

species pairs that originated the parthenogenetic hybrids. Regardless of the reproduction 

type, this study showed the depth of hybridization and gene flow during taxa divergence in 

Darevskia, contributing to the rising number of evidences that species divergence and 

gene flow are not two exclusive events (Mavárez et al., 2006; Pereira et al., 2014; 

Stankowski and Streisfeld, 2015). The low evidence for introgression within the parental 

pairs of the parthenogens suggests these species, if they were in contact more than once 

in the past, could only have originated hybrids that were not capable of sexually 

reproducing with the parentals, and thus not being able to vector gene flow between them. 

This study highlights the evidence for hybrid asexuality acting as a reproductive isolation 

barrier that arises before other pre-zygotic mechanisms, and the specificity of the 

conditions that surround the origin of hybrid asexuality in vertebrates, contributing to its low 
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frequency in nature. 
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CHAPTER 6 

GENERAL DISCUSSION 
 

 

 

Figure 6.0 - a very high and foggy mountain (Armenia). 
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Evolutionary History of Darevskia: new insights 

Darevskia lizards are a group of rock lizards found throughout the Caucasus and adjacent 

regions, and the Balkans. The Caucasus mountain range is marked by highly irregular 

topology, with two mountain massifs, Greater and Lesser Caucasus, and several plateaus 

and planes. This region has been strongly affected by climate-induced changes during 

time, and species inhabiting the Caucasus consequently present highly dynamic species 

ranges with several geographic range shifts throughout geological times. Extreme 

orogenic changes in the Caucasus mountain ranges happened during the Early Pliocene, 

leading to a regression of sea level and the formation of the modern outlines of the Black 

and Caspian Seas (Popov et al., 2006). This was induced by high volcanic activity in the 

region, continuing until the Mid Pliocene (Tarkhnishvilli, 2014). In the Pleistocene cyclical 

ice-ages, organisms were forced to contract during colder periods, and were able to 

expand when the temperatures rose, opening the possibility of constant geographic range 

shifts, secondary contact and possibly prone to hybridization and gene flow, since 

behavioural barriers are not likely to evolve while in allopatry (e.g. Christe et al., 2016). 

Most Darevskia species are found in the Caucasus and adjacent regions, except for one, 

D. praticola sensu lato, which has a disjoint distribution range, found in the Caucasus 

region but is also the only Darevskia representative in Europe, more specifically in the 

Balkan region. Its disjoint distribution is another evidence of the intense effects climate-

induced changes had over species ranges, and more specifically on Darevskia. Our 

results show this separation likely has happened during the Pliocene-Pleistocene 

transition, when the Balkans and Asia Minor became connected (Kerey et al., 2004). 

During subsequent Pleistocene glacial cycles the sea level fluctuated and the Black Sea 

connection to the Mediterranean Sea (via Marmara Sea) was frequently discontinued (or 

at least significantly restrained) (Popov et al., 2006). Only during the late Pleistocene the 

forests could expand again (Willis et al., 1999), after the aridification of the climate during 

the interglacials (Esin et al., 2014). These events were responsible for the vicariance in D. 

praticola, and similar paleoclimatic scenarios have already been proposed for lineage 

diversification in other reptile and amphibian species in this region (Ahmadzadeh et al., 

2013a, 2013b; Wielstra et al., 2013). 

In the phylogenetic reconstruction of the genus 14 species were included. This analyses 

confirmed the three main phylogenetic clades in Darevskia previously described (Murphy 

et al., 2000), despite more species being included here. Only one species presented a 
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different position in the phylogenetic arrangement, D. parvula, which instead of grouping in 

the Rudis clade, was closer to the Caucasica clade. This incongruence was likely due to 

the high levels on introgression, and possibly incomplete lineages sorting(ILS), found 

between this species and the species from the rudis clade, and others from the Caucasica 

clade. In rapid speciation events, and/or when populations with large effective population 

size (Ne) diverge,the segregation of alleles may not happen simultaneously, leading to 

gene trees to present different evolutionary histories for the same system. Because here 

we are using multiple markers, we can provide a more accurate estimate of phylogeny 

despite incomplete lineage sorting, or even other effects that could mask the phylogeny 

such as selection or genetic drift (Maddison et al., 2006). 

In relation to their habitat requirements, Darevskia species can be saxicolous or ground 

dwelling. Even though the ancestral state could not be recovered, phylogenetic inference 

also shows that niche shift from saxicolous to ground-dwelling happened more than once 

throughout Darevskia's evolution, since neither of the habitat requirements is restricted to 

all species of any given clade. Even though habitat differences could limit the potential for 

interspecific hybridization, the results reported here do not show any evidence that species 

with similar behaviours share higher levels of admixture between them. Examples of 

ground-dwelling species (eg D. chlorogaster) and saxicolous (D. raddei) (Ahmadzadeh et 

al., 2013) that are not likely to overlap in range in the present but still show high levels of 

introgression between them, suggest that Darevskia sexual species can rapidly change 

niche and adapt to new habitats, or niche changes happened recently in Darevskia 

evolution and allopatric isolation still has not made a clear effect on the admixture. 

Finally, parthenogenetic species are not frequently in sympatry with their sexual parentals, 

or with any other sexual species, despite the similarity on niche requirements between 

parthenogens and their parentals. At a geographic scale, the suitable area of D. 

unisexualis predicted by ecological niche modelling widely overlaps that of D. raddei sensu 

lato. This niche overlap (Figure 6: Chapter 2 – Freitas et al, 2016), together with the wide 

distribution range of D. unisexualis (despite its recent origin) and the evidences for 

population expansion, suggest this parthenogen may even outcompete its maternal 

species within its range. At a local scale, this has been already demonstrated for another 

parthenogenetic species, D. dahli, which has been shown to outcompete its sexual 

maternal species, D. mixta (Tarkhnishvili et al., 2010). 
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Origin of asexuality in Darevskia 

Parthenogenesis is a rare reproductive mode that, despite being found in most animal 

groups, is observed in less than 0.1% of known vertebrate species (Vrijenhoek, 1989). 

Given the low number of species, the switch from sexual to parthenogenetic reproduction 

is expected to happen only rarely. Most sexual-parthenogenetic complexes in vertebrates 

show a multiple and polyphyletic origin of parthenogenetic lineages (Crease et al., 1989; 

Grismer et al., 2014; Simon et al., 2003), where parthenogenesis has evolved more than 

once. In non-vertebrates asexuality is generally originated from spontaneous thelytokous 

parthenogenesis (Bullini, 1994), but most parthenogenetic vertebrates are originated by 

interspecific hybridization (Kearney et al., 2009). 

The reassessment of the parentage inferences (Chapter 3: Freitas et al, in prep) confirms 

the hybrid genetic profile of parthenogenetic Darevskia and that they originate from the 

directional hybridization between specific sexual species pairs. Only the hybridization 

between these sexuals resulted in successful parthenogenetic hybrids, which occurred 

multiple times during a single temporal event, possibly ~100,000 yrs ago, during the 

Pleistocene (Chapter 2 - Freitas et al., 2016; Chapter 3 – Freitas et al, in prep). The 

cyclical Pleistocene ice ages and subsequent expansion-contraction of organisms in a 

very heterogeneous habitat allowed for the secondary contact of sexual Darevskia 

lineages in incomplete stages of reproductive isolation (Vrijenhoek, 1989). This paved the 

way for repeated hybridization events in separate geographical areas that eventually 

originated hybrids that could not reproduce sexually, but instead were able to reproduce 

parthenogenetically. 

The maintenance of asexual species depends on the balance between the generation of 

asexual lineages from sexual progenitors and their loss. Many evolutionary occurrences 

can be involved in the extinction of asexual lineages, such as mutation accumulation 

(Haigh, 1978) or failure to adapt (Lively, 2010), but recent studies have also shown 

asexual lineage loss can happen simply by neutral processes (Janko, 2014; Schwander 

and Crespi, 2009), contradicting the general belief that parthenogenetic lineages are short 

lived only due to the constraints of asexuality. 

The study of the origin of different parthenogenetic vertebrates has motivated the 

construction of two hypothesis addressing how hybridization can originate asexual 

reproduction in this group. The Balance Hypothesis, impelled by the study of Aspidoscelis 

(previously Cnemidophorus) and Heteronotia systems, suggests that parthenogenetic 
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vertebrates mostly arise by the hybridization of two sexual species divergent enough to 

disrupt meiosis in the hybrids, yet not so divergent as to seriously compromise hybrid 

viability or fertility (Kearney et al., 2009). The Phylogenetic Constraint Hypothesis, impelled 

by the study of Darevskia, suggests parthenogenetic lineages are originated by the 

hybridization between specific pairs of sexual species, which likely present genetic 

peculiarities that allow them to interbreed and produce hybrids capable of reproducing 

parthenogenetically (Avise, 2008). 

The results reported here show that only a few sexual species pairs were responsible for 

the origin of the parthenogens, that some species acted always as the maternal species 

and others always as the paternal, that the phylogenetic distances between each pair are 

included in a wide range interval, and that introgression is found widespread across the 

genus but absent between the parental pairs. This evidence is more congruent with the 

Phylogenetic Constraint Hypothesis. Even though other parthenogenetic hybrid vertebrate 

models also suggest specificity in the sexual parental pairs is more relevant than the 

phylogenetic distance between them (Grismer et al., 2014; Janko et al., 2003), the 

Balance Hypothesis is still the most widely accepted explanation for the origin of 

vertebrate asexuality (Kearney et al., 2009). 

Until the discovery of Darevskia parthenogenetic species almost 60 years ago, 

parthenogenesis was thought to be restricted to non-vertebrate species. This strongly 

impacted our interpretation of asexuality in nature and the notions of the evolution of 

sexual reproduction. However, we are still discussing and trying to understand how 

asexuality originates in vertebrates, its implications and consequences. The fact that the 

Balance Hypothesis is the most common explanation on the origin of parthenogenesis, 

despite the evidence of other forces that could be more influential than phylogenetic 

distance alone, leads scientists to focus on the wrong questions and miss the point to 

study. It is important to collect more evidence in other parthenogenetic vertebrates and test 

whether the Darevskia system provides a good model that can be used to understand the 

origin of asexuality in vertebrates. 

 

Methodology: advantages and caveats 

The recent appearance of next generation sequencing (NGS) techniques allowed for the 

generation of a very large amount of data, with considerable low initial economic 
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investment (Ekblom and Galindo, 2011). The work presented in this thesis is 

representative of the intense transformation evolutionary genetic analysis methods have 

suffered in the last couple of decades. From Sanger sequencing and microsatellites 

genotyping, to NGS methods including RNA seq and capture sequence analysis, the 

advantages and caveats for each type of analyses were tested. 

Sanger sequencing and microsatellite genotyping generate markers in a highly targeted 

and straightforward way. These methods have been widely used in phylogenetic and 

population genetic studies, are easy to apply cross species and use in comparative studies 

(due to the high amount of data already produced) and have been tested extensively. 

These type of markers can still prove to be a cost-effective and quick method, as 

demonstrated by the effectiveness of ploidy detection using cross-species microsatellites 

(Chapter 3: Freitas et al, in prep), but also for general surveys of many individuals (Mira et 

al., 2017), species assignment and discrimination (Harrison et al., 2014), just to state 

some examples. However, the analyses of only a restricted number of markers can also 

depict a very biased account of the evolutionary history of the model studied. 

NGS techniques allow the study of several individuals and markers cross-genome in a fast 

and cost-effective way (Carstens et al., 2012; Metzker, 2010). However, with many NGS 

methods there is less control over which regions of the genome are sequenced, and if 

those regions are homologous across the individuals studied and also phylogenetically 

informative (Carstens et al., 2012). Considering our goal was to analyse interspecific 

relationships recurring to phylogenetic inferences, this was a strong caveat that had to be 

taken into account. 

To overcome this problem, RNA sequencing and transcriptome de novo assembly was 

used to look for several markers that are long, phylogenetically informative and conserved 

enough that would be able to not only be used to sequence several different regions of the 

genome, but also that could be used across the species of the genus (and also in the 

outgroup) so that phylogenetic analyses could be performed downstream. 

This approach proved to be successful, and provided new insights into the evolutionary 

history of Darevskia, such as the high levels of interspecific gene flow found, that would 

have been more difficult to achieve if still analysing one locus per individual at a time. 

 

Gene flow between sexual clades 

In vertebrates, and more specifically in Darevskia, interspecific hybridization can originate 
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new hybrid parthenogenetic species. However, how the hybrid origin of parthenogenesis 

fits the overall history of hybridization within the group it is still not understood. If sexual 

species are known to have hybridised in the past, originating the parthenogenetic 

vertebrates, they are also likely to have hybridised not only to the extent of originating new 

parthenogenetic species, but possibly allowing for fertile sexual hybrids to vector gene flow 

between different clades. 

Tests for introgression within the genus show a high degree of gene flow between all major 

clades. Due to the extensive hybridization found at present, either between 

parthenogenetic and sexual species (Chapter 3: Freitas et al, in prep), or between different 

sexual species (Arakelyan and Danielyan, 2011), some recent gene flow could be 

expected. Results presented here show recent gene flow not only between closely related 

species, but also deep branch gene flow, both recent and in the past between distantly 

related clades. This introgression between taxa with deep divergence, at least in some 

examples such as the case of D. parvula and the rudis clade species, happened after a 

period of divergence. 

Several evidences of hybridization with gene flow between diverging clades have been 

found in other systems (Cronk and Yang, 2016; Pereira et al., 2014; Stankowski and 

Streisfeld, 2015). However, such widespread patterns where introgression has happened 

between all major clades, and in a very high number of species pairs, either recently or 

anciently diverged, are not frequently found. In groups with sexual-parthenogenetic 

reproducing species, pre- or post-zygotic reproductive barriers could be more difficult to 

attain and hybrid asexuality can, thus, effectively create reproductive barriers between 

diverging sexual taxa, that were likely faced with recurrent secondary contact. 

Models such as Darevskia can help to understand not only the significance of sex and 

asexual reproduction, but also how species can escape the evolutionary constraints of 

sexual reproduction and originate organisms that reproduce asexually. 

 

Final remarks 

Parthenogenetic species have some advantages over sexual species, they can reproduce 

twice as fast as the sexual species (Maynard Smith, 1978) and are not affected by other 

costs of sex (Lehtonen et al., 2012). In the short term, this may provide an advantage 

when in sympatry with sexual species (Burke et al., 2015; Tarkhnishvili et al., 2010). 

However, sexual reproduction has been shown to be more successful in changing 
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environments and is known as a driver of evolution and speciation. In an ever-changing 

environment, with several different pressures, asexual species which lack the 

recombination benefits of sexual reproduction are expected to be at a disadvantage when 

in competition with sexual species. 

If asexuality is so disadvantageous in relation to sexual reproduction, we would expect 

sexual species were positively selected and asexual reproduction extinct from Nature. 

Even if sexual vertebrates outnumber parthenogenetic ones, asexuality in vertebrates is 

still found recurrently in many groups. Despite their relative abundance and phylogenetic 

distribution, we have very reduced information about the mechanisms that are relevant in 

the origin and evolution and parthenogenetic vertebrates.Given the lack of recombination 

and higher reproduction rate, asexual species are likely to show different patterns of 

genomic evolution than sexuals. The mutation rate, transposable elements (TEs) 

propagation and mutation accumulation will not act the same way in a genome that can 

recombine and lose alleles and allelic combinations in one generation, to other that will 

pass on the same allelic combination as a bloc to their descendants. 

Future research in Darevskia should focus on the study of the differential evolution 

between sexual and asexual genomes. To do that, capture sequence data on the same 

markers already sequenced on the sexual species should be phased and mutation rate 

estimated. Several theoretical studies have shown a increase of the substitution rate in 

asexual organisms, when comparing to their sexual relatives, in the presence of clonal 

interference. Some studies have already provided indirect empirical evidences that 

substitution rate is faster in asexuals in relation to their sexual relatives, showing longer 

branch length in phylogenetic inferences (Tucker et al., 2013) or even higher number of 

mutation accumulation after the same number of generations in a changing environment 

(McDonald et al., 2016). However, no empirical study addressed so far the rate of 

substitution directly of sexual and asexual relatives, evolving in the same conditions. 

Studying asexual species in the context of their sexual relatives can help to understand the 

effect of asexuality (or the absence of sex) on the genome. Darevskia lizards provide a 

promising model for the study of the evolution of asexuality and why sexual reproduction is 

so widespread in the tree of life. 
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CHAPTER 2.2 – SUPPLEMENTARY INFORMATION 

 

Table 1: Individuals included in this study: location, accession numbers, latitude/longitude, 

haplotypes for each marker analysed – mtDNA (concatenated Cyt-b and ND4 sequences), 

MC1R and C-mos). 
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(Table 1 cont.) 
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(Table 1 cont.) 

 

 

 

 

 

 

 

 

 

Table 2 – Forward and Reverse primer sequences for all markers used in the study (Cyt-b, 

ND4, MC1R, Cmos). 
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Table 3 – Percent contribution and permutation importance of each variable used for the 

ecological models constructed for both each species. 

 

 

 

 

Figure 1 – Graphics of the contribution (jacknife of regularised training gain, AUC and test 

gain) of each environmental variable on the D. raddei and D. unisexualis ecological niche 

models. 
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CHAPTER 3 – SUPPLEMENTARY INFORMATION 
 
 
 
Table 3.1:  Samples information of the genotyped individuals: Sample identification (ID), species code 
(code), species name, sympatric locality, ploidy number, country of origin, latitude and longitude. 
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Table 3.2: Mulitplex PCR details. 
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Table 3.3: Private alleles for each diploid species. 
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(Table 3.3 cont.) 
 
 
 
 
 
Table 3.4: Private alleles for each polyploid hybrid grouping 
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Figure S3.1 - Discriminant analysis of principal components (DAPC) of the sexual (

valentini and D. rudis) and parthenogenetic (

diploid individuals are used in this analysis. Colours used correspond to the same coding as in the other 

figures. 

 

 

 

 

 

 

 

 

 

Discriminant analysis of principal components (DAPC) of the sexual (D. raddei, D. mixta, D. 

) and parthenogenetic (D. armeniaca, D. unisexualis and D. uzzelli

individuals are used in this analysis. Colours used correspond to the same coding as in the other 
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Figure S3.2 – Neighbour-joining tree of the F

 

 

 

 

Figure S3.3 – Isolation by distance calculated for the sexual species 

 

joining tree of the FST pairwise distances. 

 

 

 

 

 

 

 

 

 

Isolation by distance calculated for the sexual species D.valentini. 
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Figure S3.4 – Isolation by distance calculated for the sexual species D. raddei. 
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CHAPTER 4 – SUPPLEMENTARY INFORMATION 
 
 
Table 4.1: Flagstat mapping results for all tissue reads against the D. valentini – tail reference (VT) and D. 
unisexualis – brain/ovaries reference (UBUO). 
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CHAPTER 5 – SUPPLEMENTARY INFORMATION 
 
 
Table 5.1: Species information for all individuals included in the analyses. 
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Figure S5.2 – Summary of the introgression hybridization events detected with the different analyses used in 
this study. 
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# P1 P2 P3 O significant?

1 POR VAL RAD IRANO NO 1
2 RUD VAL RAD IRANO < YES 2
3 POR RUD RAD IRANO > YES 3
4 RAD MIX1 VAL IRANO NO 4
5 RAD MIX1 RUD IRANO NO 5
6 RAD MIX1 POR IRANO > YES 6

47 RAD DEFI CHLO IRANO NO 47
48 RAD STEI CHLO IRANO < YES 48
49 PAR CHLO RAD IRANO > YES 49
50 MIX2 CHLO RAD IRANO > YES 50
51 MIX1 CHLO RAD IRANO > YES 51
52 CLAR CHLO RAD IRANO > YES 52
59 RAD CLAR VAL IRANO > YES 59
60 RAD CLAR RUD IRANO > YES 60
61 RAD CLAR POR IRANO > YES 61
62 RAD PRA VAL IRANO NO 62
63 RAD PRA RUD IRANO > YES 63
64 RAD PRA POR IRANO > YES 64
65 MIX1 CLAR VAL IRANO > YES 65
66 MIX1 CLAR RUD IRANO > YES 66
67 MIX1 CLAR POR IRANO > YES 67
68 MIX1 PRA VAL IRANO NO 68
69 MIX1 PRA RUD IRANO NO 69
70 MIX1 PRA POR IRANO > YES 70
71 CLAR CHLO DEFI IRANO NO 71
72 MIX1 CLAR CHLO IRANO > YES 72
73 RAD CHLO PRA IRANO < YES 73
74 PARM MIX1 VAL IRANO < YES 74
75 PARM MIX1 RUD IRANO NO 75
76 PARM MIX1 POR IRANO < YES 76
77 PARM CLAR VAL IRANO NO 77
78 PARM CLAR RUD IRANO NO 78
79 PARM CLAR POR IRANO NO 79
80 PARM PRA VAL IRANO < YES 80
81 PARM PRA RUD IRANO < YES 81
82 PARM PRA POR IRANO NO 82
83 PARM DEFI VAL IRANO NO 83
84 PARM DEFI RUD IRANO > YES 84
85 PARM DEFI POR IRANO NO 85
86 PARM STEI VAL IRANO < YES 86
87 PARM STEI RUD IRANO < YES 87
88 PARM STEI POR IRANO NO 88
89 PARM RAD VAL IRANO < YES 89
90 PARM RAD RUD IRANO < YES 90
91 PARM RAD POR IRANO < YES 91
92 PARM CHLO VAL IRANO < YES 92
93 PARM CHLO RUD IRANO < YES 93
94 PARM CHLO POR IRANO < YES 94
95 PARM BRAUSAVAL IRANO < YES 95
96 PARM BRAU RUD IRANO < YES 96
97 PARM BRAU POR IRANO < YES 97
98 DEFI STEI VAL IRANO < YES 98
99 DEFI STEI RUD IRANO < YES 99

100 DEFI STEI POR IRANO < YES 100
101 DEFI STEI RAD IRANO < YES 101
102 PARM MIX1 CHLO IRANO NO 102
103 PARM MIX1 RAD IRANO NO 103
104 PARM MIX1 DEFI IRANO NO 104
105 PARM MIX1 STEI IRANO > YES 105
106 PARM MIX1 BRAUSAIRANO NO 106
107 PARM MIX1 PRA IRANO > YES 107
108 PARM CLAR CHLO IRANO > YES 108
109 PARM CLAR RAD IRANO NO 109
110 PARM CLAR DEFI IRANO NO 110
111 PARM CLAR STEI IRANO > YES 111
112 PARM CLAR BRAUSAIRANO > YES 112
113 PARM CLAR PRA IRANO > YES 113
114 DEFI STEI CHLO IRANO < YES 114
115 RAD DEFI CHLO VALg < YES 115
116 RAD STEI CHLO VALg < YES 116
117 PARM CHLO RAD VALg > YES 117
118 CLAR CHLO DEFI VALg > YES 118
119 MIX1 CLAR CHLO VALg > YES 119
120 RAD CHLO PRA VALg > YES 120
121 VAL POR RUD IRANO < YES 121
122 CLAR MIX1 PARM IRANO < YES 122
123 RAD MIX1 PARM IRANO < YES 123
124 CHLO MIX1 PARM IRANO < YES 124

I = rank
m = total number of tests

Q = rate of false discovery

D < 0 P1 IS CLOSER THAN P2
D > 0 P2 IS CLOSER THAN P1

Signal of D-
statistic

significant 
tests (yellow)

The largest P value that has P<(i/m)Q is significant, and all of the P values 
smaller than it are also significant, even the ones that aren't less than their 

Benjamini-Hochberg critical value. 
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Table S5.1 – (previous page) Combinations of species (tests) used to estimate introgressive hybridization 
with D-statistics. 
 
 
 
 
 
 
 
Figure S5.1 – SVDQuartets species tree inference calculated with 300 markers. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



FCUP 
Why Sex? Darevskia answers. 

223 
 

 
 
Figure S5.2 – Distribution of D-statistics values calculated for each test. 
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Figure S5.3 - The fraction of variance in relatedness between populations accounted for by phylogenetic 

models with 0 through 21 migration edges. The fraction of variance in the sample covariance matrix () 

accounted for by the model covariance matrix (). (Pickrell and Pritchard, 2012) showed that the fraction 

began to asymptote at 0.998 when the models accurately depicted relationships between simulated 

populations. We also observed this asymptote near 0.998 in our empirical analysis, leading us to conclude 

that the relationships between the Darevskia sexual taxa were accurately described by a phylogenetic 

network with 11 migration edges. 
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Figure S5.4 – STRUCTURE analysis using the optimum K value of 6. All species were included in this 
analysis, but only 3 individuals was used per species. 
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