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Behavioural ecologists often use data on patterns of male–female association

to infer reproductive success of free-ranging animals. For example, a male seen

with several females during the mating season is predicted to father more off-

spring than a male not seen with any females. We explored the putative

correlation between this behaviour and actual paternity (as revealed by micro-

satellite data) from a long-term study on sand lizards (Lacerta agilis), including

behavioural observations of 574 adult males and 289 adult females, and pater-

nity assignment of more than 2500 offspring during 1998–2007. The number of

males that contributed paternity to a female’s clutch was correlated with

the number of males seen accompanying her in the field, but not with the

number of copulation scars on her body. The number of females that a male

accompanied in the field predicted the number of females with whom he fath-

ered offspring, and his annual reproductive success (number of progeny).

Although behavioural data explained less than one-third of total variance in

reproductive success, our analysis supports the utility of behavioural-ecology

studies for predicting paternity in free-ranging reptiles.
1. Introduction
To test ideas about the adaptive significance of mating systems, we need to measure

the impact of behavioural variation on individual fitness. For females, we can

measure the production of progeny to obtain a measure of annual reproductive

success; but for males, the challenge is greater because paternity of offspring is

uncertain, especially in internally fertilizing species [1]. Copulations are difficult

to observe in the field, and (even if observed) may not lead to paternity of offspring.

For example, the female partner may fail to reproduce, or may use sperm from

another male when she does so, or the resultant embryo may die before hatching

from the egg or before intact DNA can be harvested for paternity assignment.

Most scientific literature on mating systems in reptiles perforce has relied

upon behavioural data, with correlates of reproductive success in males ident-

ified from traits such as numbers of copulations, or numbers of females with

whom a male is seen in close proximity [2–4]. Molecular methods to establish

paternity have been used to clarify mating systems of an increasing number of

reptilian taxa [5–9], but few studies have gathered the data needed to compare

male behaviour with paternity. We have such data for a population of lizards,

and the present paper compares behaviourally based indicators of male repro-

ductive success with measures based on molecular analysis of paternity for

more than 2500 hatchlings.
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Figure 1. The number of males contributing paternity to a female sand
lizard’s clutch as a function of (a) the number of males she was seen
with in the field during the mating season and (b) the number of copulation
scars on her flanks.
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2. Methods
(a) Study species and area
Sand lizards (Lacerta agilis) are diurnal surface-active lacer-tids

with a broad geographical distribution [10,11]. The population

we studied at Asketunnan in Sweden (578220 N, 118590 E) inhabits

a rocky archipelago site surrounded by the ocean [12–14] close to

the northern limit of the species’ range [10]. The lizards are active

above ground from March each year, mate in April through to

early June and females lay a single clutch of eggs in June [12,13].

Clutch size averages around nine eggs (range 5–15: [15]). Males

mate-guard females after copulation, and we often see male–

female pairs in close association at this time [16,17]. Females

mate with multiple males, but selectively use sperm from distantly

related males to fertilize their eggs [18,19].

(b) Field methods
Throughout the mating season over the period 1998–2007, we vis-

ited the study site on as many days as possible when weather

conditions were suitable for lizard activity (see [12–14] for details).

We recorded male–female associations, and collected tissue samples

from all adult lizards for use in paternity analyses (see below). We

collected females when their bodily distension suggested that egg-

laying was imminent, and returned them to the laboratory, where

they were maintained until oviposition. Eggs were incubated in

the laboratory, and hatchlings were released at the study site after

tissue samples had been taken (see [19] for detailed methods).

(c) Laboratory methods
We conducted parentage analysis using CERVUS v.3.0 [20] based on

17–21 microsatellites resulting in a non-exclusion probability

of 5.87�1025 with one parent known (details available in [21];

see also the electronic supplementary material). In brief, DNA

was isolated from 4543 adult and offspring samples (blood and

tissue) collected over a 9-year period (1998–2006), representing

3938 individuals. Our analysis was based on the subset of these

animals for which we had complete data on parental traits in our

mating system analyses. Because of the low level of genetic varia-

bility in this population and the overlap of generations, it was

necessary to use 17–21 microsatellite loci to assign paternity

with high confidence [21].

(d) Statistical analyses
We used ANOVA (in JMP v.13.1; SAS, Cary, NC, USA) to conduct

the following analyses, using individual animals within each year

as the unit of replication. For data on females, we used the number

of males with whom a female had progeny per year as the depen-

dent variable, and either the number of males a female was seen

with in the field in that year or the number of copulation scars

(left by the jaws of males during mating) as independent variables.

Some females were recorded in multiple years, so we included

female ID and year as random factors in these analyses.

For males, the independent variable was the number of

females with whom a male was seen during the mating season.

Our dependent variables were either total number of progeny

per annum (as determined by paternity analyses), or the number

of clutches (females) to which a male contributed paternity per

year. Male ID and year were included as random factors. We con-

ducted these male-specific analyses on two datasets: one

consisting of all adult-size males (greater than 60 mm snout–

vent length) and one consisting only of males that were recorded

to father offspring in the year in question.

3. Results
Our analyses below are based on data for 289 female lizards

that were each present in the field population for a mean of
1.64 years as reproducing adults. In total, those females pro-

duced 3626 offspring (mean ¼ 12.67, range 1–55 per female),

of which we were able to assign paternity to 2384 ( ¼ 66%).

We also obtained behavioural data on 252 males that were suc-

cessful in obtaining paternity (in a mean of 1.76 years each,

range ¼ 1–7 years), and 322 that sired no offspring (i.e. had

zero reproductive success). The analysis including all adult

males was based on 574 individuals, which were present in

the dataset for a mean of 1.70 years (range 1–8 years) per male.

(a) Females
The number of males that fathered a female’s progeny in any

given year was positively correlated with the number of

males with which she was seen in the field (F1,369.8 ¼ 4.158,

p ¼ 0.0422, r2 ¼ 0.33) but not significantly correlated with

the number of copulation scars that we counted on her

flanks (F1,322 ¼ 0.44, p ¼ 0.51, r2 ¼ 0.36; figure 1).

(b) Males
Within the subset of males that were reproductively success-

ful in a given year, the number of females a male was seen

with was positively correlated with his reproductive success

(number of offspring: F1,211.6 ¼ 18.84, p , 0.0001, r2 ¼ 0.13)

and with the number of females with which he had offspring

(F1,214 ¼ 23.20, p , 0.0001, r2 ¼ 0.12). The same patterns were

evident, but stronger, if the analysis included all males rather
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Figure 2. The number of female sand lizards with which a male was seen in
the field as a function of (a) the number of offspring he sired and (b) the
number of females to whose clutches he contributed paternity.
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than only the reproductively successful ones (number of off-

spring: F1,707.1 ¼ 153.17, p , 0.0001, r2 ¼ 0.20; number of

females with which a male had offspring: F1,707.1 ¼ 167.23,

p , 0.0001, r2 ¼ 0.22; figure 2).
4. Discussion
Our analysis provides empirical support for a critical but

rarely tested assumption of research on the behavioural ecol-

ogy of reptiles: that an individual’s reproductive success can

be inferred from indirect measures based on the animal’s

behaviour. Significant correlations between microsatellite-

determined paternity and behavioural traits (male–female

proximity, home range size, aggregation) have been reported

from field studies of scincid, agamid and xantusiid lizards

[7,22,23]. An extensive literature documents multiple pater-

nity within natural clutches of many reptile species [24,25],

sometimes associated with behavioural traits (e.g. mating

order [26]). In our population of sand lizards, knowledge of

male–female associations in the field predicted the extent

of multiple paternity within clutches, and also a male’s

total reproductive success (in terms of number of offspring

as well as number of clutches to which he contributed pater-

nity). However, correlations between behavioural variables

and actual paternity were relatively low (explaining only

12–36% of variance in paternity). Surprisingly, the number

of copulation scars evident on a female lizard (widely used

as a proxy for the number of times she has copulated
[25,26]) was not significantly correlated with the number of

males fathering her offspring.

Overall, our results are both encouraging (simple-to-record

behaviours are indeed associated with male reproductive

success) and discouraging (correlations between behaviour

and paternity are relatively low). The relationship between

the two sets of scores tended to be higher in males than in

females, especially if non-successful males were included in

the analysis. The only clearly non-significant result was the

lack of association between the number of copulation scars

on a female versus the number of fathers of the eggs in her

clutch. That result may reflect rapid healing of scars, such

that earlier copulations fail to be scored when the female is col-

lected late in the mating season. Also, a male may mate more

than once with a female, leaving multiple mating scars

[25,26]. Our results suggest that fieldworkers should interpret

copulatory scars with care.

In our study population (and likely, in many others), the

link between matings and paternity is weakened by non-

random use of sperm by females [18], as well as by random

‘noise’ in the data. For example, we may have failed to

observe some male–female pairings because they were

brief, or occurred in places or at times when we failed to

note the animals. Likewise, progeny from some pairings

may have been inviable (and hence never scored for

paternity), for example, owing to genetic incompatibility

between partners resulting in mortality occurring so early

in embryonic development that we were unable to obtain

viable DNA for molecular analysis [18]. Given the array of

such potential confounding effects, the significant predictive

value of male–female association data for inferring male

reproductive success and multiple paternity within clutches

is reassuring. The degree to which behavioural data predict

genetic measures of reproductive success will depend upon a

range of factors specific to study species and systems. For

example, male sand lizards mate-guard females for long

periods, increasing the investigators’ ability to detect male–

female associations during the mating season. Technological

advances doubtless will make paternity assessment increas-

ingly easier and cheaper; but our data suggest that even in

the absence of such molecular analyses, behavioural-ecology

studies can provide robust insights into the correlates of

variance in male reproductive success in free-ranging reptiles.
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