
ORIGINAL ARTICLE

doi:10.1111/evo.13397

Signatures of selection in embryonic
transcriptomes of lizards adapting
in parallel to cool climate
Nathalie Feiner,1,2,3 Alfredo Rago,1 Geoffrey M. While,2,4 and Tobias Uller1,2

1Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
2Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom

3E-mail: nathalie.feiner@biol.lu.se
4School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia

Received August 17, 2017

Accepted November 4, 2017

Populations adapting independently to the same environment provide important insights into the repeatability of evolution at

different levels of biological organization. In the 20th century, common wall lizards (Podarcis muralis) from southern and western

Europe were introduced to England, north of their native range. Nonnative populations of both lineages have adapted to the

shorter season and lower egg incubation temperature by increasing the absolute rate of embryonic development. Here, we tested if

this adaptation is accompanied by signatures of directional selection in the transcriptomes of early embryos and, if so, if nonnative

populations show adaptive convergence. Embryos from nonnative populations exhibited gene expression profiles consistent with

directional selection following introduction, but different genes were affected in the two lineages. Despite this, the functional

enrichment of genes that changed their expression following introduction showed substantial similarity between lineages, and

was consistent with mechanisms that should promote developmental rate. Moreover, the divergence between nonnative and

native populations was enriched for genes that were temperature-responsive in native populations. These results indicate that

small populations are able to adapt to new climatic regimes, but the means by which they do so may largely be determined by

founder effects and other sources of genetic drift.
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Populations inhabiting similar environments often evolve similar

phenotypes. Birds and mammals living at high altitudes com-

monly exhibit higher haemoglobin-oxygen affinity (Natarajan

et al. 2016; Storz 2016), sticklebacks colonizing freshwater

predictably lose their body armour (Colosimo et al. 2005), and

reptiles expanding into cool climates often become live-bearing

(Webb et al. 2006). Convergent evolution of phenotypes is

sometimes underpinned by convergence of its underlying

molecular mechanisms (e.g., evolution of toxins and resistance;

Jensen et al. 2011; Ujvari et al. 2015), but similar phenotypes

can also be produced by very different processes (e.g., wing

shape in Drosophila; Huey et al. 2000). Revealing the patterns

of convergence at different levels of biological organization,

and understanding the causes of those patterns, represent major

challenges for evolutionary biologists (Agrawal 2017).

Adaptive evolution often involves changes in gene regula-

tion, suggesting that populations with similar phenotypes may

have convergent gene expression profiles. For example, a study

of 900 genes expressed in the liver of juvenile brown trout (Salmo

trutta) found that gene expression profiles clustered according to

whether the populations are migratory or resident rather than the

populations’ genetic similarity (Giger et al. 2006). Despite this,

the evidence that selection plays a major role in divergence in gene

expression profiles is limited. For example, more recent studies of

whole transcriptomes have revealed that, although differences in

gene expression between populations can be substantial, usually
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only a small number of genes exhibit convergent expression in

populations that share the same environment (Dayan et al. 2015;

Ghalambor et al. 2015; Zhao et al. 2015).

A weak signature of convergence in gene expression pro-

files may suggest that most of the variation in transcriptomes

observed between populations accumulates under neutrality (e.g.,

Khaitovich et al. 2005). Furthermore, there are many developmen-

tal routes to the same phenotype (Wagner 2011). Most characters

are not only polygenic, but developmental pathways are often

highly redundant and harbor substantial genetic variation (Paaby

and Gibson 2016). This suggests that selective history, founder

effects, and other sources of genetic drift will influence the extent

to which populations evolving in the same environment converge

with respect to gene expression. For example, abundant standing

genetic variation at a key locus in marine sticklebacks appears

to have facilitated the repeated evolutionary loss of body armour

following colonization of freshwater (Colosimo et al. 2005).

A well-known example of convergent evolution in ectotherms

is that individuals from cool climates grow and develop more

rapidly than individuals from warmer climates, in particular at

low temperatures (“counter-gradient adaptation,” Conover et al.

2009). For example, lizard embryos from populations at high al-

titude or latitude grow absolutely faster than conspecific embryos

from populations in warmer climates (e.g., Oufieroi and Angilletta

2006; Du et al. 2010; Rodriguez-Diaz and Brana 2012). This

implies that populations colonizing cooler environments evolve

changes in gene regulation that counter-act the direct effect of

temperature on growth and metabolism. It has been hypothesized

that this mode of adaptation will primarily affect genes responsive

to temperature in ancestral populations (Ghalambor et al. 2007);

reducing the maladaptive direct effects of temperature on gene ex-

pression while exaggerating existing plastic expression patterns

that facilitate maintenance of growth and development at low

temperature. However, despite the contemporary focus on ther-

mal adaptation in vertebrates, almost nothing is known about the

mechanism by which embryos adapt to incubation temperature.

Here, we test for adaptive divergence and convergence of

gene expression profiles in lizard embryos, using two genetically

distinct lineages of wall lizards adapting to cool climate following

their introduction from Europe to England. Embryos in English,

nonnative, populations face drastically cooler soil temperatures

during incubation than do embryos in native populations (While

et al. 2015a). While low temperature slows down growth and de-

velopment, strong natural selection for early hatching has made

embryos of nonnative populations develop absolutely faster, in

particular at low temperature (While et al. 2015a). We compared

gene expression of early embryos incubated at harsh and benign

temperatures, and tested for signatures of adaptive divergence be-

tween native and nonnative populations and adaptive convergence

of nonnative populations.

Materials and Methods
STUDY SYSTEM AND EXPERIMENTAL DESIGN

The common wall lizard is a small (approx. 50–70 mm snout-

to-vent length), egg-laying lacertid, widely distributed in Europe.

Here, we focus on two main genetic lineages inhabiting western

Europe and Italy, which diverged from each other approximately

two million years ago (Gassert et al. 2013). Lizards from each of

the two lineages have repeatedly and independently been intro-

duced to England over the last 100 years (Michaelides et al. 2013).

There are currently more than 25 populations across southern

England, and the introduction histories have been reconstructed

in detail (Michaelides et al. 2015).

Our aim was to analyze differences in gene expression pro-

files in early embryos, at three different levels of comparison:

(1) harsh (15°C) versus benign (24°C) temperatures, (2) French

versus Italian lineage, and (3) native versus nonnative popula-

tions. This resulted in a 2 × 2 × 2 experiment in which we refer

to the main factors as (1) “temperature,” (2) “lineage,” and (3)

“introduction.” We used a split clutch design in which embryos

from each clutch were divided between the two thermal treatments

(see below) allowing us to control for variation in the response

to temperature caused by genetic similarity due to relatedness

(Fig. S1A).

In April 2015, we collected 13 gravid females from France

(Fr; Pouzagues [46.788 N, 20.448 E]) and 18 from Italy (It; Greve

in Chianti [43.588 N, 11.318 E], Colle di Val d’Elsa [43.428 N,

11.118 E], Certaldo [43.548 N, 11.042 E]), as well as 12 each from

nonnative populations of both lineages in England (Italian origin:

Ventnor Town [50.598 N, 21.218 E], Ventnor Botanical Garden

[50.588 N, 21.228 E]; French origin: Cheyne Weare [50.538

N, 22.438 E] and East Portland [50.548 N, 22.428 E]). The

nonnative Italian and French populations were introduced in the

1930s and 1980s for the Italian and French lineages, respectively

(Michaelides et al. 2015). The native populations were chosen

because they fall within the approximate geographic origin of

the nonnative populations (Michaelides et al. 2015). Once in the

laboratory, females were housed individually in cages (590 ×
390 × 415 mm) with sand as substrate, bricks as shelter, and

a water bowl. They were kept at a light cycle of 12 L:12 D,

and given access to basking lights (60 W) for 8 h per day and a

UV light (EXO-TERRA 10.0 UVB fluorescent tube) for 4 h per

day. Mealworms and crickets were provided ad libitum. Females

were inspected in the morning and in the afternoon for signs of

egg-laying to ensure that eggs were collected within a maximum

of 12 h after oviposition. Within each clutch, one egg was dis-

sected immediately upon laying to determine the developmental

stage at laying and the remaining eggs were divided into two

groups. One group of eggs was incubated at 15°C (cool) and the

other group was incubated at 24°C (warm). The cool incubation
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Figure 1. Overview of the study design. (A) Marked in black is the native distribution of P. muralis in continental Europe (truncated

at the Eastern range). Triangular symbols mark the approximate geographic origin of lizards introduced to the South coast of England

(round symbols), and the color codes illustrate the genetic lineage. (B, C) A French and an Italian common wall lizard female. The lineages

diverged in the Pleistocene, approximately 2 million years ago (Gassert et al. 2013) and differ in a suite of characteristics (While et al.

2015b). (D) A representative embryo at the developmental stage that was subjected to transcription profiling (stage 27, 32 somites).

Somite counts are indicated with white numbers. Abbreviations: bv, brain vesicle; ey, eye; ov, otic vesicle. Picture in panel (B) courtesy of

Guillem Pérez i de Lanuza.

treatment represented temperatures frequently encountered by

eggs in nests under English climatic conditions, but below the

constant temperature conditions that allow successful hatching

(While et al. 2015a). The warm incubation treatment represented

temperature within the range encountered in natural nests of both

lineages, and within the optimum thermal range for the species

as estimated from the incidence of scale malformations (While

et al. 2015a). All eggs were incubated in small plastic containers

filled two-thirds with moist vermiculite (5:1 vermiculite/water

volume ratio) and sealed with clingfilm.

To compare gene expression patterns at a precise develop-

mental stage, we needed to account for the increase in develop-

mental rate with temperature by adjusting the incubation duration.

We estimated developmental rates of P. muralis embryos from na-

tive and nonnative populations at 15 and 24°C based on While

et al. (2015a). We chose to target the embryonic stage 27 (Dufaure

and Hubert 1961), which roughly corresponds to the pharyngula

stage, since this allowed the warm incubated embryos to develop

for at least 12 hours at 24°C, and thus acclimatise their gene

expression, while allowing the cool incubated embryos to reach

that stage in less than 4 weeks (approximate developmental rates

at 24°C: four somites per 1 day and at 15°C: four somites per

7 days). Based on this prediction, we selected eggs for dissection

at regular intervals to ensure that a sufficient number of embryos

of the targeted developmental stage were obtained. Since embry-

onic stage 27 encompasses a range of 29–34 somites, we further

narrowed the developmental time point for the subset of em-

bryos subjected to gene expression by selecting only embryos with

32 ± 1 somites (Fig. 1D).

We further decreased the confounding variation among our

samples by following a strict protocol. First, we performed dis-

sections between paired embryos of a clutch at the same time of

day (within a one-hour interval) to minimize variation caused by

diurnal patterns of embryonic gene expression (Seron-Ferre et al.

2007). Second, all eggs were processed within five minutes of

removal from the incubator to avoid changes in gene expression

patterns. Embryos were separated from yolk and extraembryonic

membranes in DEPC-treated PBS (phosphate-buffered saline) by

using sterile forceps under a dissecting microscope. Each em-

bryo was photographed, staged (including somite count), and sub-

merged in RNAlater (Qiagen) to stabilize RNA. Total RNA from

a total of 96 embryos (40 for single- and 56 for pooled embryo-

sampling strategy) at developmental stage 27 (31 ± 1 somites)

was extracted by using the RNeasy Micro Kit (Qiagen). The yield
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of total RNA was measured with the Qubit R© 2.0 Fluorometer

system using the Qubit RNA BR Assay Kit (Thermo Fisher

Scientific) and determined to be on average 7.45 (±0.38) µg

per embryo. RNA integrity was assessed with the Experion

system using the Eukaryote Total RNA StdSens Analysis kit

(Bio-Rad).

TRANSCRIPTOME SEQUENCING

An overview of the applied bioinformatics pipeline is provided in

Fig. S1B. For each of the eight experimental groups, five samples,

each consisting of the total RNA of a single, whole embryo, were

used for expression analysis. In addition, we pooled equimolar

amounts of RNA from 4 to 6 (4.63 ± 1.19) embryos from dif-

ferent mothers per study group to obtain one gene expression

dataset with minimal individual variation. These pooled samples

were used in de novo transcriptome assembly to ensure a max-

imally complete reference set (see below). Thus, a total of six

samples per study group were subjected to library preparation,

resulting in a total of 48 samples. Per sample, 2 µg of puri-

fied, high-quality total RNA (RQI values >9) was subjected to

RNA sequencing. In brief, the mRNA fraction was converted into

cDNA, end-repaired, A-tailed, and adapter-ligated. Size selected

and multiplexed libraries were paired-end sequenced (100 bp)

over a total of 16 lanes on a HiSeq2000 Sequencing System (Il-

lumina) by applying a balanced block design (Auer and Doerge

2010).

We obtained on average 39.3 million raw reads per

sample. Quality control was performed using FastQC soft-

ware (URL: http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). Low quality reads were removed and a sliding window

approach was used to trim low quality bases at the ends of the

reads using Trimmomatic Version 0.32 (settings: LEADING:3

TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:36; Bolger

et al. 2014). The French and Italian lineages of P. muralis

are sufficiently genetically differentiated to warrant de novo

assembly of separate reference transcriptomes. For this purpose,

we pooled eight representative samples for each lineage: each one

consisting of a randomly selected single embryo sample and the

pooled sample for cool and warm incubation treatments for native

and nonnative populations. Prior to assembly, using the Trinity

software Version 2.3.2 (Haas et al. 2013) and strand-specific

information, the redundancy in the French and Italian pooled

datasets were removed by performing in silico normalization

as part of the Trinity pipeline. The raw assemblies were further

filtered in three steps: first, duplicates were removed by clustering

the assembly at 95% sequence similarity using CD-HIT-EST

version V4.6.5 (Li and Godzik 2006). Second, pools containing

all French and Italian reads, respectively, were mapped to the

respective raw assembly using Bowtie 2 (Langmead and Salzberg

2012), and all transcripts with a FPKM coverage of <1 were

discarded by using the RSEM algorithm (Li and Dewey 2011)

implemented in the Trinity wrapper. Third, if several isoforms of

a given transcript were present in the assembly, only the longest

isoform was retained. To make expression profiles of French

and Italian lizard embryos comparable, we merged the two de

novo assemblies by using the Proteinortho software Version 5.15

(Lechner et al. 2011) and a custom script, and created a shared

wall lizard reference transcriptome (divergent nucleotides are

masked as “N”s). To exclude the possibility of biotic contam-

ination of our samples, we excluded transcripts with bit scores

at least 10 times higher in blastx searches against invertebrate

metazoan peptides (NCBI: taxid 33208 and excluding taxid

89593) than against vertebrate peptides (NCBI: taxid 89593)

using NCBI’s Entrez Direct. Trimmed reads of all 48 samples

were mapped to the shared reference transcriptome using Bowtie

2 and raw counts per sample were estimated using the RSEM

algorithm. To avoid spurious effects from lowly expressed

transcripts, we retained only transcripts with more than 10 reads

in more than 50% of the samples. Our substantial filtering

methodology resulted in a transcriptome comprising 20,221

transcripts with a N50 value of 2894. We refer to expressed

sequences as transcripts in the technical sense but use the term

“genes” and “gene expression” in more general discussions.

FUNCTIONAL ANNOTATION OF TRANSCRIPTS

The de novo assembled transcriptome of embryonic P. muralis

lizards was functionally annotated using the Trinotate pipeline

(https://trinotate.github.io/). The longest open reading frames of a

minimum of 50 amino acids in length were predicted using Trans-

decoder v.2.0.1 (http://transdecoder.sourceforge.net/). These pu-

tative peptides (and original transcripts) were used as queries

in blastp (blastx) searches against the UniProtKB/Swiss-Prot

database (release “2017 02 15”). From accepted blast hits (E-

value cut-off 10−5), Trinotate retrieves Gene Ontology (GO) an-

notations (Ashburner et al. 2000). We found significantly similar

peptides in the Swissprot-Uniprot database for 9991 out of total

20,221 transcripts (49.4%), and for 9421 transcripts (46.6%) we

retrieved at least one GO term (see File S1). Note that the Trino-

tate pipeline also retrieves annotations from other sources (e.g.,

KEGG or PFAM), but since we obtained by far the most annota-

tions from GO terms, which we consider to be most informative,

we restricted our enrichment analysis to these annotations. The

R package GOseq (Young et al. 2010) was used to detect over-

and underrepresented GO terms by using a FDR adjusted P-value

<0.05. By using information theoretic similarity concepts, we

estimated similarities between sets of GO terms (similarity calcu-

lation based on Schlicker et al. 2006; implemented in R package

GOsim, Frohlich et al. 2007). For this analysis, we removed GO

terms whose direct “parent” GO term was also included in the

same dataset to avoid pseudo replication.
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NEUTRAL EXPECTATION OF DIFFERENCES IN GENE

EXPRESSION

Nonnative populations are likely to become different from the

source population due to founder effects and subsequent genetic

drift. To evaluate the extent to which gene expression differences

between populations are the result of neutral processes versus di-

rectional selection, a null model of gene expression differences is

needed. We employed a comparison of FST – MST values, where

FST is the differentiation index derived from putatively neutral

molecular marker loci, and MST is the proportion of total variance

in gene expression explained by the variance between popula-

tions (Whitehead and Crawford 2006; Hughes et al. 2015). MST,

as well as the related and more commonly used index QST (used

for quantitative phenotypic traits), are derived from the variances

within and between populations, and are directly comparable to

FST values (Whitlock 2008; Leinonen et al. 2013). The conven-

tional interpretation is that traits or gene expressions with QST

or MST values higher than FST values are putative signatures of

natural (directional) selection, while values lower than FST are

signatures of stabilizing selection and QST or MST equal to FST

indicates neutral evolution of traits or gene expressions (Whitlock

2008; Leinonen et al. 2013).

FST values were recalculated from a previously published

dataset of 13 microsatellite loci (Michaelides et al. 2015) using

Arlequin 3.5.1.3 (Excoffier and Lischer 2010). MST values

were calculated from the expected mean squares of a one-way

ANOVA with “introduction” as response variable (see File S2

for details). This calculation was executed for variance-stabilized

count data for every transcript, and independently for each

lineage and temperature, resulting in four sets of MST estimates

(“Fr-cool,” “Fr-warm,” “It-cool,” and “It-warm”). The rationale

for subdividing the dataset is that we are interested in comparing

MST values between the two lineages and that the experimental

design did not allow precise estimates of family variation

independently of the temperature treatment.

Since these calculations provide only point estimates of FST

and MST values, and since these estimates are generally associated

with large variances, we followed the approach of Whitlock and

Guillaume (2009) to derive the expected distribution of MST val-

ues based on the FST estimates for microsatellite markers and the

variance of gene expression within populations (Vawithin; see File

S2). Assuming the approximation of MST = FST, which should

be true for neutral traits, we simulated one million neutral MST

values (MST neutral) by sampling the distribution of observed FST

values and the variance in gene expression within each popu-

lation (Vawithin) under the Chi-square distribution of Lewontin

and Krakauer (1973); (R script adapted from Lind et al. 2011).

We evaluated the observed MST values of the entire transcriptome

(MST observed) and of the subgroup of genes differentially expressed

following introduction (MST DEG) against the MST values under

neutral evolution (MST neutral). We considered transcripts with as-

sociated MST values that lie above the 97.5% confidence interval

of MST neutral to be candidates under directional selection.

DIFFERENTIAL GENE EXPRESSION

To gain a first overview of the broad patterns of variation in gene

expression profiles, we applied a principal component analysis

to the full dataset by using the R package DESeq2 (Love et al.

2014). After we confirmed that samples derived from a pool of

embryos are clustering closely with samples derived from single

embryos (Fig. S2), we exclude the pooled samples from further

analyses to avoid deflating within-population variances. We used

a FDR (false discovery rate) adjusted P-value <0.01 as the cut-

off for differential expression. First, we interrogated the dataset

for differentially expressed genes by fitting a full factorial model

that contained “lineage” (Fr – It), “temperature” (cool – warm),

and “introduction” (native – nonnative), plus all possible inter-

actions as fixed effects. Second, we divided the data into four

subsets partitioning out the effect of “lineage” and “temperature,”

to obtain more specific insights into gene expression changes that

are associated with the introduction of lizards to England. This

strategy allowed us to also assess if responses are stronger at low

incubation temperature, which we might expect for populations

adapting to a cooler environment (see Discussion). This analy-

sis produced four sets of genes that are differentially expressed

between native and nonnative populations (DEGintro). Third, we

selected the total set of DEGintro for a given lineage and examined

to what extent these genes are recruited from a pool of ances-

trally temperature-responsive genes. To address the question, we

asked if DEGintro are enriched in genes that are differentially ex-

pressed in native populations in response to temperature. This set

of ancestrally “plastic” genes (DEGancPlast) was obtained fitting a

model with “temperature” as sole factor to a dataset containing

only native populations. Fourth, we investigated how the extent

to which DEGintro respond to temperature has changed follow-

ing introduction. For native and nonnative populations separately,

we fitted a model with “temperature” as sole factor to the set

of DEGintro and assessed if the total number and regulation of

temperature-responsive genes changed following introduction.

To verify if our results are robust against different strategies

of analysis, we also investigated the effect of the introduction by

controlling for temperature in the statistical model, instead of an-

alyzing the two incubation temperatures separately (see above).

The results of these latter approaches produced very similar find-

ings as the main analyses and are presented in File S3.

TRANSCRIPT CLUSTERING AND DIFFERENTIAL

CLUSTER EXPRESSION

To overcome the limitations of differential gene expression

analysis at the level of single genes (e.g., the problem of
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multiple-testing, general noise in gene expression data; Horgan

and Kenny 2011; Conesa et al. 2016), we applied coexpression-

based transcriptome clustering (Langfelder and Horvath 2008).

This approach reduces the high dimensionality inherent in tran-

scriptomic datasets, and thereby increases the power of detecting

modules of genes that exhibit shared gene expression profiles

(Meng et al. 2016). We performed coexpression-based clustering

of our variance-stabilized transcript count data using the R pack-

age WGCNA (Langfelder and Horvath 2008), which constructs a

network based on pairwise correlations of transcript expression,

and aggregates transcripts that share the same neighbors into mod-

ules. We subsequently used the first principal component of each

module (eigengene) to summarize its expression in the whole

experiment.

Robust pairwise correlations were calculated using biweight

midcorrelations, which penalize scores proportionally to their dis-

tance from the median (Langfelder and Horvath 2008). We also

allowed the two most extreme data points (5%) to be consid-

ered as outliers and excluded these from calculations. We con-

structed a signed network to retain information on the sign of

the correlations as well as their strength, and power-transformed

it to the lowest exponent that generated a scale-free topology

(17), which is expected for gene expression networks (Langfelder

and Horvath 2008). We tested a different range of clustering

specificities and compared their results to select the parame-

ters that minimized correlation between modules while retain-

ing unique patterns. We opted to apply the most permissive

split criterion (“deepSplit” option set to 0), merging modules

that diverged at tree height lower than 20% and setting a min-

imal modules size of 20 transcripts. A heatmap of the eigen-

gene correlations between the resulting modules is shown in

Figure S3.

To look systematically for modules that show significant

response to any of our explanatory variables, we applied linear-

mixed models (LMMs) as implemented in the R package lme4

(Bates et al. 2015) to the eigenvalues of each module. We specified

clutch identity as a random factor to account for the expected cor-

relation due to higher genetic similarities within the same clutch.

Starting from a full model containing all three terms (“lineage,”

“temperature,” and “introduction”) and their interactions, we fit-

ted a model for every combination of those factors. We then

compared the resulting model set by using AICc, selecting the

models that best fit the data (�AICc < 2; Table S1). Only five

modules out of total 25 showed multiple models being equally fit,

and we selected the model with fewest terms for these five cases

(Table S1). To ensure appropriate fit of the models to our data, we

examined quantile–quantile plots of sample residuals for the best

and null models for each module (data not shown). All model-set

comparisons were performed using the R package MuMIn (Barto

2015).

ENRICHMENT ANALYSES

Enrichments or general significance in overlapping sets of tran-

scripts or GO terms was tested by simulating 10,000 permutations

of a randomly selected dataset. If the observed number of overlap-

ping transcripts or GO terms was larger than the 97.5% confidence

interval of the permutated dataset, the enrichment was considered

to be significant.

Results
PATTERNS OF VARIATION IN GENE EXPRESSION

The principal components showed that the eight experimental

groups clearly separate into four clusters according to the two

main effects, incubation temperature and lineage (Fig. 2A). The

signal of introduction, setting native and nonnative populations

apart, was substantially smaller. However, within lineages and

temperatures, native embryos were significantly more similar to

each other than to their nonnative counterparts (see dashed ar-

rows in Fig. 2A). The direction of divergence between native and

nonnative populations was different for the two lineages; that is,

the principal component values did not fall along the same axis

(Fig. 2A). This pattern was consistent with the prediction from

putatively neutral microsatellite markers, which revealed that the

nonnative populations of French and Italian origin were more dis-

similar to each other than were the native populations of French

and Italian origin (Fig. 2B).

DIFFERENTIALLY EXPRESSED TRANSCRIPTS

Using a model including all interaction terms, we found that

21.7% (4393) of all transcripts were differentially expressed in

response to incubation temperature and 19.8% (3998) showed dif-

ferences between lineages (Table S2). The number of transcripts

that were consistently differentially expressed between native and

nonnative populations were fewer, but still substantial (3.9%, 783

differentially expressed transcripts). There were also a significant

number of transcripts for which we identified a significant inter-

action between lineage and introduction (2.4%, 476 differentially

expressed transcripts; Table S2).

We partitioned our dataset into four subsets along the major

factors (lineage and temperature) to identify transcripts that were

differentially expressed (DEGintro) between nonnative and native

populations (see below). When comparing the observed MST val-

ues for the four subsets to the MST neutral distribution, we found that

substantially more transcripts than expected by chance had MST

values above the 97.5% confidence interval (Table 1; Fig. S4).

This effect was particularly pronounced for the French lineage,

where there were almost three times as many transcripts with

highly divergent than expected by chance. In addition, the vast

majority of MST values associated with the DEGintro identified
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Figure 2. Principal component analysis of gene expression profiles and genetic divergence at microsatellite loci. (A) Plotted are 40

samples, each representing first and second principal components of regularized logarithm transformed read counts of a single embryo

across 20,221 transcripts. The first two principal components explain 24% and 22% of the variation and separate the samples according

to lineage and incubation temperature into four distinct clusters. At a given temperature, samples from native lizards show more similar

expression profiles than samples from nonnative lizards (dashed arrows mark this trend). (B) Principal components of 13 microsatellites

(Michaelides et al. 2015) show the putatively neutral pattern of divergence between native and nonnative populations from Italian and

French lineages. Pairwise FST estimates between populations are: Fr – native and It – native, 0.156; Fr – native and Fr – nonnative 0.125;

It – native and It – nonnative, 0.140; Fr – nonnative and It – nonnative, 0.319. The first two principal components explain 62% and 23%

of the variation in FST estimates.

in the single gene analysis (see below) fall well outside of the

97.5% confidence interval of the MST neutral distribution (Table 1,

Fig. 3). Thus, there is evidence that the DEGintro identified in the

single gene analysis are candidates for being under directional

selection following introduction to England.

Overall, more transcripts were differentially expressed in

lizard embryos of French origin and at the warm incubation tem-

perature (Fig. 4). More than 15% of transcripts that differed in

their expression between nonnative and native embryos (DEGintro)

were consistently up- or downregulated at both temperatures

within a lineage (198 (18.7%) versus 79 transcripts (16.0%) for

French and Italian origin, respectively; note that all of these tran-

scripts showed the same sign of expression difference at both

temperatures; Fig. 4). The overlap of DEGintro between lineages

was small, but higher than expected by chance at both cool and

warm temperature (15°C: 16 transcripts; 1.9%; neutral expec-

tation: 8, 95% CI [4–13]; 24°C: 20 transcripts; 2.1%; neutral

expectation: 10, 95% CI [5–15]). However, only half of these

DEGintro shared between lineages showed a consistent direction

of expression change. We identified only one transcript that was
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Table 1. Comparison of observed MST values of whole transcriptome and of subset of DEGintro with the neutral expectation derived

from FST values.

Data
subset

Mean
FST

Mean
MST neutral

Mean
MST observed

Mean MST

of DEGintro

Expected
number of
genes
outside
97.5% CI

Observed
number of
total
transcripts
outside
97.5% CI

Fold
enrichment

Observed
number of
DEGintro

outside 97.5%
CI [percent of
all DEGintro]

It/cool 0.137 0.205 0.060 0.808 463–549 599 1.2 × 257 [91.8%]
It/warm 0.137 0.204 0.074 0.809 462–549 686 1.4 × 271 [92.5%]
Fr/cool 0.109 0.176 0.119 0.808 463–550 1405 2.8 × 566 [96.4%]
Fr/warm 0.109 0.174 0.107 0.818 463–548 1509 3.0 × 652 [97.2%]

The neutral expectation of the number of transcripts with have MST values higher than the 97.5% confidence interval was estimated using permutation

tests. The distributions of the estimated MST neutral and the MST DEG are shown in Figure 3, and the distribution of all observed MST values (MST observed) is

plotted in Figure S3. DEGintro refers to genes that are differentially expressed between native and nonnative populations.

differentially expressed in all four data subsets, and the direc-

tion of the change in nonnative compared to native populations

differed between lineages.

Transcripts that were differentially expressed in nonna-

tive versus native populations were significantly (approximately

1.6-fold) enriched for transcripts that showed a temperature-

dependence in native populations (i.e., “ancestral plasticity”;

Table S3). However, we did not find evidence that transcripts dif-

ferentially expressed following introduction change their response

to temperature, and there was a large overlap of temperature-

responsive transcripts between native and nonnative populations

(Fr: 124 transcripts; 33%; neutral expectation: 48, 95% CI [37–

59]; It: 54 transcripts; 32%; neutral expectation: 21, 95% CI [13–

28]). Furthermore, the vast majority (96%) of transcripts that were

temperature responsive in the native population (“ancestral plas-

ticity”) qualitatively retained their expression profile in respect to

temperature following introduction (Table S4).

DIFFERENTIALLY EXPRESSED GENE MODULES

Coexpression-based clustering produced 24 modules of coex-

pressed genes plus one module that consisted of three genes that

showed no significant coexpression (module “gray”; naming of

modules by color names is default in the WGCNA software;

Fig. 5). The average size of modules was 842 genes, with the

largest module containing 3443 genes (module “turquoise”), and

the smallest module 30 genes (module “darkgray”).

Consistent with the results described above, 18 out of 25

modules showed significant differences in expression at 15°C

versus 24°C (Table S1), and the expression pattern of six mod-

ules was best explained by temperature alone. While there was

no statistical support for a module with lineage as the only ex-

planatory variable, lineage was included as an explanatory factor

in the best models for 14 modules. In six of those modules tem-

perature and lineage alone provided the best explanation for the

observed expression patterns, in two modules lineage and intro-

duction were selected as best predictors, and in the remaining six

modules all three factors best-explained variation in the data. All

eight modules that supported “introduction” as a main effect in-

clude the interaction term between “introduction” and “lineage”

(Table S1), consistent with the lack of convergence in gene ex-

pression profiles in nonnative populations revealed above. By

comparison, out of the 18 temperature-responsive modules, only

two show lineage-specific responses to temperature.

The overall divergence between native and nonnative popula-

tions is evident in the graphical representation of the eigenvalues

of gene modules (Fig. 5). For example, modules “red,” “purple,”

“salmon,” and “tan” have significantly lower expression in French

populations introduced to England compared to native French

populations, whereas the same modules show higher expression

in Italian populations introduced to England compared with na-

tive Italian ones. In contrast, the eigenvalues of the two modules

“midnightblue” and “lightyellow” are characterized by identical

expression profiles across experimental groups except for French

native lizard embryos (Fig. 5). A corresponding pattern, but with

Italian native lizards exhibiting the divergent expression profile is

shown by module “lightgreen.” These three modules (“midnight-

blue,” “lightyellow,” and “lightgreen”) are significantly enriched

in genes that are differentially expressed following introduction

(percentage of DEGintro in whole dataset: 7.44%; percentage in

“midnightblue”: 31.80%; percentage in “lightyellow”: 37.86%;

percentage in “lightgreen”: 21.05%).

FUNCTIONAL CHARACTERIZATION OF RELEVANT

GENES

Comparing the GO terms associated with genes differentially

expressed between native and nonnative populations (DEGintro)
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Figure 3. Neutral expectation of differentiation of gene expression profiles between native and nonnative lizard embryos. Density plots

of the simulated distribution of MST values under neutral evolution (MST neutral) are shown (black graphs). The 2.5% tail of the distribution

is shaded in red. In addition, histograms of the frequency distributions of the observed MST values of the differentially expressed genes

are plotted in blue (scale on the right). Arrows indicate the average FST values (orange), average MST neutral (black), average observed

MST values for the entire transcriptome (green), and average observed MST values for DEGintro (blue).

against a neutral expectation, we find enrichment of 209, 300,

210, and 244 GO terms for the Fr-cool, Fr-warm, It-cool, and It-

warm datasets, respectively. GO terms overlapped within lineages

between incubation temperatures (Fr: 38; It: 44; Table S5), and

within incubation temperature between lineages (cool: 8; warm:

12). The similarity between the shared group of GO terms be-

tween the French and the Italian lineage was significantly higher

than expected by chance for the two GO domains “biological pro-

cess” and “molecular function” (Table 2), suggesting convergence

between nonnative populations at the level of gene function. For

example, French DEGintro are enriched in the term “purine nucle-

obase catabolic process” (GO:0006145), while the corresponding

Italian group of genes are overrepresented with the term “pyrim-

idine nucleoside catabolic process” (GO:0046135).

Discussion
Following their introduction to England in the 20th century, wall

lizards originating from France and Italy have adapted to the

cooler climate experienced in their nonnative range by increasing
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Figure 4. Venn diagram showing overlap of differentially ex-

pressed genes in nonnative compared to native lizard embryos

(DEGintro). Each circle represents the number of genes that were

differentially expressed following introduction in one partition

of the data subset according to the two main axes of variation

(incubation temperature and geographic origin). The numbers in

gray given at the overlap of circles represent the number of genes

shared between the individual subsets.

developmental rate (While et al. 2015a). A faster rate of embryonic

development shortens incubation duration, which enables lizards

to hatch before the onset of autumn despite the low incubation

temperatures in England. Our results here suggest this faster de-

velopmental rate has been accompanied by adaptive modification

of cellular metabolism. However, the genes that have evolved

higher or lower expression following introduction showed no, or

at best very limited, overlap for lizards of the French and Italian

lineages. Nevertheless, we find that these genes share substantial

similarity in their putatively assigned gene functions. Our study

thus exemplifies that founder effects and other sources of histor-

ical contingency can allow convergence of phenotype in the face

of divergence of gene expression profiles.

SIGNATURES OF NEUTRALITY AND SELECTION

IN TRANSCRIPTOMES

Introduced populations often become genetically more different

from each other because of founder effects and drift due to low

population size. The wall lizard populations studied here were in-

troduced by humans, likely through the release of tens of individ-

uals, and show a modest reduction in genetic diversity compared

to populations in their native range (Michaelides et al. 2016).

Indeed, estimates of neutral genetic divergence (FST) show that

nonnative populations of the two lineages are genetically more

different to each other than the corresponding comparison of pop-

ulations from the native range (see also Michaelides et al. 2016),

suggesting that genetic drift has played an important role during

or following introduction.

The overall divergence in embryonic gene expression be-

tween nonnative and native populations (i.e., MST) followed the

pattern predicted by FST, and hence the majority of variations in

transcriptomes among populations are selectively neutral. This

result is in line with the limited number of other studies that have

compared divergence in transcriptomes to a neutral model based

on FST (e.g., Roberge et al. 2007; Lamy et al. 2011; Hughes et al.

2015). Nevertheless, the analyses revealed more highly divergent

transcripts than expected by chance, suggesting that at least part

of the transcriptome has been under directional selection since

the populations were introduced. This was also supported by the

analyses of modules of coexpressed genes, which revealed a small

number of modules for which the nonnative and native popula-

tions differed substantially from each other. Both types of analy-

ses strongly suggested that the targets of directional selection in

gene expression patterns were different for the French and Italian

lineages.

The signal of directional selection was particularly strong for

the French lineage, a more recent introduction that has retained

more neutral genetic diversity (Michaelides et al. 2016). Since

populations in western France are genetically more homogenous

than in Italy (Michaelides et al. 2015), the more pronounced dif-

ference between nonnative and native populations of French com-

pared to Italian origin is unlikely to be caused by sampling bias.

Nevertheless, an obvious limitation for inference of selection on

transcriptomes, which applies to our study as well, is that a ro-

bust rejection of selective neutrality (and environmental maternal

effects) requires an experimental design that allows more precise

estimates of additive genetic variance (e.g., a quantitative genetic

breeding design).

Although few studies have compared divergence in transcrip-

tomes to a neutral model based on sequence data (Leinonen et al.

2013), other studies of genetically distinct populations of animals

that inhabit similar environments have found that a (usually very

small) part of the transcriptome has converged. This is evidence

that the expression of those genes have been under directional

selection. For example, Zhao et al. (2015) showed that around

1% of the transcriptomes of two Drosophila species exhibit the

same changes between pairs of high and low altitude popula-

tions. The results from wall lizard embryos are consistent with

directional selection on gene expression in populations of both

lineages following introduction. However, we found very limited

support for convergence of gene expression profiles between lin-

eages in nonnative, cool-adapted, populations. Specifically, while

more transcripts with divergent expression between nonnative and

native populations were in fact shared between lineages than ex-

pected by chance, these transcripts did not show a consistent up-

or downregulation in nonnative populations. In addition, the rela-

tively low fold enrichment of highly divergent gene expression in

nonnative populations of the Italian lineage suggests that a portion
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of the putative targets of selection are false positives. This may

have limited the overall signal of convergence between lineages.

However, given the low number of shared transcripts (fewer than

20 for a given temperature) between lineages, together with the

limited signal in the Italian lineage, we conclude that there is no

robust evidence for convergence in the expression of particular

genes in nonnative populations.

Despite limited evidence for convergence in gene expression,

we did find considerable similarity in the putative functionalities

associated with genes that were differentially expressed in non-

native populations. For example, genes differentially expressed

in embryos from nonnative populations of both lineages were

highly enriched for GO terms associated with nucleotide- and

glucose-metabolism. Although functional annotations should be

interpreted with caution, the enrichment of functional categories

suggests that nonnative populations of both lineages exhibit an

increase in absolute transcription and replication rate, a higher

cellular metabolism and faster cell cycle. Thus, these results are
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Table 2. Comparison of similarities between sets of GO terms

between French and Italian lineage.

Category

Number
of GO
terms Fr

number
of GO
terms It

Observed
similarity

95% CI of
simulated
similarity

BP 10 14 0.2356 0.0645–0.1641
MF 12 13 0.1072 0.0408–0.1071

Both categories BP (“biological process”) and MF (“molecular function”)

show significant similarity between the two lineages. Note that the number

of GO terms in each category does not correspond to the total number of

enriched GO terms since not all GO terms were associated with an “Infor-

mation content” that is a prerequisite for calculating similarities (Schlicker

et al. 2006). Category CC (“cellular component”) had too few GO terms

with an associated “Information content,” and therefore no similarity was

calculated.

consistent with the faster developmental rate of embryos from

nonnative populations, a difference that is apparent already at this

early stage of development.

The lack of overlap in modules of coexpressed genes under

putative directional selection, and at best a very modest overlap

of individual genes, implies that there is a very large number of

variants that can contribute to thermal adaptation. In nonnative

populations, the standing genetic variation available to natural

selection will largely be determined by founder effects. The En-

glish wall lizard populations studied here are isolated with no

gene flow, which restricts the likelihood of convergence of gene

expression profiles when populations are adapting to the same

conditions. The situation could be different for a more natural

range expansion. For example, common wall lizards are abundant

even at thermally challenging altitudes across their native range.

Because high-altitude lizard populations often show an adaptive

increase in developmental rate, there are opportunities to test if

populations that adapt independently to cool climate without the

bottlenecks and genetic isolation associated with an introduction

event show more consistent gene expression profiles. More gener-

ally, such comparisons of populations with different demographic

histories may be useful to identify how historical contingencies

influence the extent of convergent evolution at the molecular level,

and thus the repeatability of adaptive evolution at different levels

of biological organization.

TEMPERATURE-DEPENDENT GENE EXPRESSION

AND ADAPTATION

Despite the highly conserved embryonic stage we based our anal-

ysis on, there was a strong effect of temperature on transcription

profiles with as many as 20% of all transcripts showing differ-

ences in their relative expression at 15°C versus 24°C. There

does not appear to be any comparable data for other vertebrate

embryos, but this figure is consistent with what has been re-

ported for temperature-dependent gene expression in Drosophila

melanogaster and D. simulans where 10–20% of all genes re-

sponded significantly to a temperature difference of 8˚C (Zhao

et al. 2015). The existence of temperature-specific gene expres-

sion suggests that it should be possible for organisms to adapt

to low temperature without necessarily changing their response

to high temperature. In contrast to their native counterparts, wall

lizard embryos in England are likely to consistently experience

temperatures below 20°C (While et al. 2015a). One could there-

fore expect divergence between nonnative and native populations

to be particularly pronounced at very low temperature. This does

not appear to be the case, however. Within each lineage, the puta-

tively adaptive gene expression differences that have accumulated

in nonnative populations were equal in magnitude across the two

incubation temperatures. This result may reflect the strong se-

lection for shorter incubation in nonnative populations since a

faster developmental rate at high temperatures can have a dispro-

portionate effect on incubation period even if such temperatures

are encountered only rarely (While et al. 2015a). Indeed, cool-

adapted populations of ectotherms often develop and grow faster

also at high temperatures that should only occasionally be encoun-

tered in the wild (Angilletta 2009). In our study, some 16–18%

of transcripts that were differentially expressed between the non-

native and native populations (i.e., DEGintro) showed a consistent

response at both 15 and 24°C. These genes are perhaps particularly

likely candidates for directional selection for faster developmen-

tal rate, not the least since they were highly enriched for processes

related to nucleotide metabolism and transcription, as described

above.

There is a growing interest in how environment-dependent

gene expression may change during adaptation to novel environ-

ments. On the one hand, maladaptive plasticity in gene expression

is expected to quickly become eliminated by natural selection.

For example, in guppies, gene expression under putative direc-

tional selection in a predator-free environment showed reduced

sensitivity to predatory cues (Ghalambor et al. 2015). In the

context of adaptation to cool climate, this should involve selective

removal of extreme gene expression profiles at low temperature,

resulting in an overall weaker temperature-dependence. On the

other hand, strong temperature-dependent expression may reflect

adaptive plasticity. In this case, selection in more extreme thermal

environments may exaggerate the temperature responsiveness

of genes that already show some degree of thermal sensitivity

(Lande 2009). Thus, both reduced and increased plasticity in gene

expression are possible outcomes of adaptation to an extreme

environment.

There is some empirical evidence that transcripts that

are highly responsive to temperature also figure disproportion-

ally as candidates for climate adaptation. In the estuarine fish
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Fundulus heteroclitus, eight out of 11 genes that were upregu-

lated in muscle at cool acclimation temperatures were downreg-

ulated in cool-adapted versus warm-adapted populations (Dayan

et al. 2015). Our results also provide some support for the pre-

diction that adaptation to cool climate will preferentially involve

genes that show native temperature responsiveness (i.e., ancestral

plasticity). The putative adaptive gene expression differences in

lizard embryos from England were enriched for transcripts that

were significantly up- or downregulated with temperature in na-

tive populations from both Italy and France. However, there was

no evidence for a consistent increase or decrease in the tempera-

ture sensitivity of expression of those genes. Thus, it appears as if

evolution in nonnative populations did not tinker with the thermal

sensitivity of gene expression, but rather adjusted constitutive ex-

pressions. Suffice to say that the results suggest that evolutionary

adaptation to temperature preferentially involves modification of

the same regulatory interactions that also make embryos develop-

mentally responsive to temperature.
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